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SUMMARY

In this article we propose a new model, called the inner envelope model, which leads to effi-
cient estimation in the context of multivariate normal linear regression. The asymptotic distri-
bution and the consistency of its maximum likelihood estimators are established. Theoretical
results, simulation studies and examples all show that the efficiency gains can be substantial rel-
ative to standard methods and to the maximum likelihood estimators from the envelope model
introduced recently by Cook et al. (2010). Compared to the envelope model, the inner envelope
model is based on a different construction and it can produce substantial efficiency gains in situ-
ations where the envelope model offers no gains. In effect, inner envelopes open a new frontier to
the way in which reducing subspaces can be used to improve efficiency in multivariate problems.

Some key words: Dimension reduction; Envelope model; Grassmann manifold; Reducing subspace.

1. INTRODUCTION

The classical multivariate linear regression model is formulated as follows:

Y = α + β X + ε, (1)

where Y ∈ R
r is a random response vector, X ∈ R

p is a nonstochastic vector of predictors
centred to have sample mean zero, the errors ε ∈ R

r are normally distributed with mean zero
and unknown covariance matrix � > 0, and errors from different samples are independent. The
coefficient matrix β ∈ R

r×p has rank p and is unknown, and α ∈ R
r is an unknown intercept. Our

interest lies in the estimation of β. We use n to denote the sample size and assume that p < r < n.
An important step forward in efficient estimation of β comes from the work of Cook et al.

(2010), in which a new class of models, called envelope models, was proposed. Envelope models
are based on the idea that a projection of the response vector Y may be immaterial to the goal
of estimating β, while still contributing extraneous variation that causes the estimator of β to
be more variable than otherwise. Envelope estimation accounts for such extraneous variation,
making the estimator of β potentially much more efficient. The partial envelope model proposed
by Su & Cook (2011) is a generalization of the envelope model. It allows for a projection of Y
that is immaterial to the goal of estimating a subset β1 of the columns of β. Because they can
be tailored, partial envelopes can lead to greater efficiency gains than envelope models for the
purpose of estimating β1.

The efficiency gains offered by envelopes and partial envelopes depend on the presence
of immaterial projections of Y . We offer another route to pursue efficiency gains based on
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688 ZHIHUA SU AND R. DENNIS COOK

envelopes, so that gains might still be achieved when the entire vector Y is material to the
estimation of β. In particular, we (a) propose a new inner envelope model and demonstrate the-
oretically and by simulation that its maximum likelihood estimator of β can increase efficiency
well beyond that available from standard methods and from envelope estimators; and (b) estab-
lish consistency results to show that the inner envelope estimators are robust to deviations from
normality, which has not been studied previously for envelope models.

The following notation and definitions will be used in our discussion. For positive integers p
and q, R

p×q denotes the class of all p × q matrices, and S
p×p denotes the class of all symmetric

p × p matrices. We use PA to indicate a projection operator onto A or span(A) if A is a space or a
matrix, and Q A = I − PA. The symbol ∼ means identically distributed, and U V | X indicates
the conditional independence of U and V given X . For a subspace V , V⊥ stands for its orthogonal
complement relative to the usual inner product. A basis matrix for V is any matrix whose columns
form a basis for V . The sum of spaces is defined as V1 + V2 = {v1 + v2; v1 ∈ V1, v2 ∈ V2}, and
with a matrix A ∈ R

p×p and a subspace V ⊆ R
p, AV = {Av : v ∈ V}. For matrices A ∈ R

r×r

and B ∈ R
r×r , the subspace Sd(A, B) is the span of A−1/2 times the first d eigenvectors of

A−1/2 B A−1/2. The spectral norm of a matrix A is denoted by ‖A‖ and the Moore–Penrose
inverse of A is denoted as A†. The notation G

r×d is reserved for the Grassmann manifold of
dimension d in R

r , which is the set of all d dimensional subspaces in R
r . A matrix A ∈ R

p×q

is semi-orthogonal when it is column orthogonal, AT A = Iq , and we call A0 its completion if
(A, A0) ∈ R

p×p is an orthogonal matrix. The vector operator, vec, stacks the columns of a matrix
into a vector and the vector half operator, vech, stacks elements from the upper triangular or lower
triangular part of a symmetric matrix into a vector columnwise.

2. ENVELOPES

Suppose there is a subspace S ⊆ R
p that has the following two properties,

(2a) QSY | X ∼ QSY, (2b) QSY PSY | X. (2)

Property (2a) means that the distribution of QSY does not depend on X , so marginally QSY
carries no information about β. Property (2b) means that QSY is conditionally independent of
PSY given X and thus QSY cannot convey information about β through an association with
PSY . The properties given at (2) are equivalent to the single condition QSY | (PS, X) ∼ QSY .
This structure then implies that the projection QSY is immaterial to the estimation of β. All of
the immaterial information in Y can be obtained by finding the smallest subspace S that satisfies
the requirements in (2).

Let B = span(β). Cook et al. (2010) showed that the pair of conditions (2) is equivalent to the
pair of conditions

(3a)B ⊆ S, (3b) � = PS�PS + QS�QS . (3)

Condition (3b) holds if and only if PSY and QSY are uncorrelated given X , and it is equivalent to
requiring that S be a reducing subspace of �. Together these conditions imply that we can obtain
all of the immaterial information by selecting S to be the intersection of all reducing subspaces of
� that contain B, which is called the �-envelope of B and denoted by E�(B); E�(B) is shortened
to E when used as a subscript. The projection of Y that is immaterial to the estimation of β is
then given uniquely by QEY , while PEY is material to the same purpose.

Let u = dim{E�(B)}, and let � ∈ R
r×u and �0 ∈ R

r×(r−u) denote semi-orthogonal basis
matrices for E�(B) and E⊥

� (B). The coordinate form of the envelope model can now be obtained
by imposing conditions (3) on the standard model (1):

Y = α + �ηX + ε, � = ���T + �0�0�
T
0, (4)
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Inner envelopes for efficient estimation 689

where η ∈ R
u×p holds the coordinates of β relative to �, and � ∈ R

u×u and �0 ∈ R
(r−u)×(r−u)

are positive definite matrices. As can be seen in model (4), E�(B) links the mean and covari-
ance structures and it is this link that provides the efficiency gains. The gains can be great when
variation of the immaterial data �T

0Y is substantially larger than that of the material data �TY ;
for instance, when ‖�‖ � ‖�0‖ (Cook et al., 2010). A schematic showing how an envelope
increases efficiency was given by Su & Cook (2011).

The partial envelope model (Su & Cook, 2011) is a generalization of the envelope model
that was designed for regressions in which the coefficients of some predictors are of special
interest. Partition X into X1 ∈ R

p1 and X2 ∈ R
p2 , p1 + p2 = p, with corresponding partition of

β = (β1, β2), where β1 ∈ R
r×p1 and β2 ∈ R

r×p2 , and suppose that the goal is to estimate the
coefficients β1 of X1. With this change of objective, the logic underlying the development of
the partial envelope model parallels that for the envelope model. Let E�(B1) denote the smallest
reducing subspace of � that contains B1 = span(β1), let u1 = dim{E�(B1)}, and let � ∈ R

r×u1

and �0 ∈ R
r×(r−u1) be semi-orthogonal basis matrices for E�(B1) and E⊥

� (B1). Then the partial
envelope model is

Y = α + �ηX1 + β2 X2 + ε, � = ���T + �0�0�
T
0, (5)

where η ∈ R
u1×p1 , � ∈ R

u1×u1 and �0 ∈ R
(r−u1)×(r−u1). If X1 = X , then B1 =B, E�(B1) =

E�(B) and model (5) is the same as model (4). This partial envelope model focuses on the rela-
tively narrow goal of estimating β1 and consequently has the potential to achieve efficiency gains
beyond those available by using the envelope model (4). This happens because E�(B1) is often a
proper subset of E�(B), so more immaterial information is ruled out by partial envelopes which
makes them more efficient.

The envelope model relies on the presence of immaterial data to achieve efficiency gains.
However, if E�(B) = R

r then there is no immaterial information and enveloping offers no gains.
The inner envelope model introduced in § 3 has the potential to achieve efficiency gains when
envelopes offer no benefits.

3. INNER ENVELOPES

3·1. Motivation

In the absence of immaterial information E�(B) = R
r , the envelope model (4) reduces to the

standard model (1) and no efficiency gains are achieved. However, in some regressions we may
still be able to improve efficiency by relaxing the base requirements (2). Consider a multivariate
regression in which the response can be decomposed into its projections onto three orthogonal
subspaces S1, S2 and S3 of R

r , Y = P1Y + P2Y + P3Y , with the properties that

(6a) P3Y | X ∼ P3Y, (6b) P1Y (P2Y, P3Y ) | X, (6)

where Pj = PS j ( j = 1, 2, 3). The distribution of P3Y | X is independent of X , while the distribu-
tions of P1Y | X and P2Y | X are allowed to depend on X . If we could find such a decomposition
with P2Y = 0 then (6) would reduce to (2) with PS = P1 and QS = P3, and we could employ an
envelope model (4). Otherwise, P2Y represents a confounder whose distribution depends on X
and is correlated with P3Y .

Nevertheless, the structure in (6) still allows for efficiency gains. Condition (6a) implies that
β = P1β + P2β. If we can estimate P1β with greater precision than possible with the standard
model and estimate P2β with about the same precision, then overall, we may get better efficiency
in estimating β. This is the basic idea for the inner envelope model. To ensure that there is no
projection of P1Y whose distribution is independent of X , we require that S1 ⊆B. Condition
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690 ZHIHUA SU AND R. DENNIS COOK

(6b) holds if and only if S1 is a reducing subspace of �. Consequently, we obtain the following
constraints, which parallel those in (3):

(7a) S1 ⊆B, (7b) � = P1�P1 + Q1�Q1. (7)

To achieve the most gains subject to this structure, we maximize dim{span(S1)} so that the
greatest part of β can be estimated efficiently. We call the largest reducing subspace of � con-
tained within B the inner �-envelope, as formally defined in § 3·2.

3·2. Definitions

DEFINITION 1. Let M ∈ S
r×r . The inner M-envelope of the subspace V ⊆ R

r , denoted by
IEM(V), is the reducing subspace of M with maximal dimension that is contained within V .

The existence of inner envelopes is ensured because the space with only one element span(0)

is a reducing subspace of M that is contained within V . We next state two characterizing propo-
sitions.

PROPOSITION 1. Let M ∈ S
r×r . Then IEM(V) =∑i Vi , where the sum is over all reducing

subspaces Vi of M that are contained in V .

PROPOSITION 2. Let M ∈ S
r×r . Then IEM(V) = E⊥

M(V⊥).

Proposition 1 is a natural consequence of the definition, which states that the inner envelope
contains all the reducing subspaces of � that are contained inB. Proposition 2 builds a connection
between inner envelopes and envelopes; that is, an inner M-envelope of a subspace is the same
as the orthogonal complement of the M-envelope of its orthogonal complement. Propositions 1
and 2 ensure that the inner envelope is uniquely defined as the largest subspace S1 that satisfies
(7). Proofs of these propositions are in the Appendix.

Like the envelope model, the coordinate form of the inner envelope model is expressed in
terms of semi-orthogonal basis matrices �1 ∈ R

r×d and �0 ∈ R
r×(r−d) for IE�(B) and IE⊥

�(B).
We shorten IE�(B) to IE for subscripts and let d = dim{IE�(B)}. Then we can write β =
PIEβ + QIEβ = �1η

T
1 + �0 BηT

2, where B ∈ R
(r−d)×(p−d) is a semi-orthogonal matrix so that

�0 B is a semi-orthogonal basis matrix for QIEB, ηT
1 ∈ R

d×p and ηT
2 ∈ R

(p−d)×p. Written in terms
of the motivating conditions (6) and (7), S1 = IE�(B) = span(�1), S2 = span(�0 B) and S3 =
span⊥(�1, �0 B) with dimensions d, p − d and r − p. Condition (7a) implies that (η1, η2) ∈
R

p×p has full rank. The inner envelope model can now be stated in full as

Y = α + (�1η
T
1 + �0 BηT

2)X + ε, � = �1�1�
T
1 + �0�0�

T
0, (8)

where �1 ∈ R
d×d and �0 ∈ R

(r−d)×(r−d) are positive definite matrices. If d = 0, then IE�(B) =
span(0) and (8) reduces to the standard model. If d = p, then IE�(B) =B and (8) reduces to the
envelope model IE�(B) = E�(B).

For example, suppose we are comparing group means for three multivariate normal popula-
tions on r = 3 characteristics Y1, Y2 and Y3. The predictor X ∈ R

2 is composed of two group
indicators xi (i = 1, 2), each taking value 1 for the i th group, and 0 otherwise. The coefficient
matrix β = (β1, β2) is a 3 × 2 matrix, with β1 = E(Y | x1 = 1, x2 = 0) − E(Y | x1 = 0, x2 = 0)

and β2 = E(Y | x1 = 0, x2 = 1) − E(Y | x1 = 0, x2 = 0). Let λ1 < λ2 < λ3 be the three distinct
eigenvalues of � with corresponding eigenvectors v1, v2 and v3. Then � = λ1v1v

T
1 + λ2v2v

T
2 +

λ3v3v
T
3. If β1 aligns with v1 and if β2 = av2 + bv3, where a |= 0 and b |= 0, then IE�(B) =

span(v1) and IE⊥
�(B) = span(v2, v3). The envelope model (4) reduces to the standard model

in this illustration since E�(B) = R
3. However, the partial envelope E�(B1) coincides with the

inner envelope IE�(B).
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Inner envelopes for efficient estimation 691

3·3. Maximum likelihood estimators

We assume that the data (Yi , Xi ) are independent observations on Y | X = Xi (i = 1, . . . , n).
The derivation of the maximum likelihood estimators is based on the coordinate version of the
inner envelope model (8). As X is centred, the maximum likelihood estimator of α is Ȳ , the
sample mean of the Yi s. As shown in the Appendix, given a fixed dimension d, a semi-orthogonal
basis matrix �̂1 for the maximum likelihood estimator of IE�(B) can be obtained by minimizing
the following function of G1 over the Grassmann manifold G

r×d ,

log |GT
1�̂resG1| + log |GT

1�̂
−1
res G1| +

r−d∑
i=p−d+1

log{1 + λ̃i (G0)}, (9)

where G1 ∈ R
r×d is a semi-orthogonal matrix, (G1, G0) ∈ R

r×r is an orthogonal matrix, and
�̂fit and �̂res are the sample covariance matrices of the fitted vectors and residual vectors from
the ordinary least squares fit of Y on X . The λ̃i (G0)s are the ordered, descending eigenval-
ues of (GT

0�̂resG0)
−1/2(GT

0�̂fitG0)(GT
0�̂resG0)

−1/2. For later use, we denote its matrices of
ordered eigenvectors and eigenvalues as Ṽ (G0) and 
̃(G0) = diag{λ̃1(G0), · · · , λ̃r−d(G0)}, and
let K̃ (G0) = diag{0, · · · , 0, λ̃p−d+1(G0), · · · , λ̃r−d(G0)}. After obtaining �̂1, �̂0 is constructed
as any semi-orthogonal basis matrix for span⊥(�̂1). The maximum likelihood estimators of the
remaining parameters are as given in the following list. In preparation, let F denote the n × p
matrix with i th row X T

i , let U be the n × r matrix with i th row (Yi − Ȳ )T, and let β̂sm denote the
maximum likelihood estimator of β under the standard model. Then

η̂T
1 = �̂T

1β̂sm,

�̂1 = (U �̂1 − F η̂1)
T(U �̂1 − F η̂1)/n,

�̂0 = �̂T
0�̂res�̂0 + (�̂T

0�̂res�̂0)
1/2Ṽ (�̂0)K̃ (�̂0)Ṽ (�̂0)

T(�̂T
0�̂res�̂0)

1/2,

span(B̂) = �̂0Sp−d(�̂0, �̂
T
0�̂fit�̂0),

η̂T
2 = (B̂T�̂−1

0 B̂)−1 B̂T�̂−1
0 �̂T

0β̂sm,

β̂ = �̂1η̂
T
1 + �̂0 B̂η̂T

2 = P
�̂1

β̂sm + �̂0 P
B̂(�̂

−1
0 )

�̂T
0β̂sm,

�̂ = �̂1�̂1�̂
T
1 + �̂0�̂0�̂

T
0.

Details of the development are provided in the Appendix. The structure of β̂ is consistent
with the discussion in § 3·1. It has two terms, the first obtained by projecting β̂sm onto the esti-
mated inner envelope span(�̂1). For the second term, if we multiply both sides of model (8) by
�T

0, we have a reduced rank regression with coefficient BηT
2 and covariance matrix �0. By a

result of Cook & Forzani (2008), and with �0 replaced by its estimator �̂0, the estimator of the
coefficients in this reduced rank regression has the form P

B̂(�̂
−1
0 )

�̂T
0β̂sm. Then �̂0 B̂η̂T

2 has the

form �̂0 P
B̂(�̂

−1
0 )

�̂T
0β̂sm. When d = 0, we have β̂ = β̂sm.

3·4. Consistency of the maximum likelihood estimators without normality

Recalling the discussion in § 2, the definition of an envelope does not require normality. While
the maximum likelihood estimators were derived under the normality assumption, a natural con-
cern is for the robustness of the estimators when this assumption fails. In this section, we will
show that β̂ and �̂ are Fisher consistent and also

√
n consistent with minimal constraints on the

error distribution.
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692 ZHIHUA SU AND R. DENNIS COOK

PROPOSITION 3. Under the inner envelope model (8), assume that the errors are indepen-
dent but not necessarily normal and have finite second moments. Then the following quantities
converge in probability:

�̂Y → �Y = �1�1�
T
1 + �0�0�

T
0 + (�1η

T
1 + �0 BηT

2)�X (�1η
T
1 + �0 BηT

2)
T,

�̂fit → �fit = (�1η
T
1 + �0 BηT

2)�X (�1η
T
1 + �0 BηT

2)
T,

�̂res → �res = �1�1�
T
1 + �0�0�

T
0,

where �fit, �res and �Y are the population versions of �̂fit, �̂res, and the sample covariance
matrix of Y �̂Y and �X is the limit as n → ∞ of the sample covariance matrix of X.

The objective function (9) is equivalent to

L inner(G1) = log |GT
1�̂resG1| + log |GT

0�̂resG0| +
r−d∑

i=p−d+1

log{1 + λ̃i (G0)}.

As n increases, L inner(G1) converges in probability to

L̃ inner(G1) = log |GT
1�resG1| + log |GT

0�resG0| +
r−d∑

i=p−d+1

log{1 + λ̆i (G0)},

which is the population version of L inner(G1), and λ̆i denotes the i th eigenvalue of
(GT

0�resG0)
−1/2(GT

0�fitG0)(GT
0�resG0)

−1/2.

PROPOSITION 4. Assume that the conditions in Proposition 3 hold, and further assume that
the subspace which minimizes L̃ inner is unique. Then �1 = arg minG1 L̃ inner(G1), where �1 is any
semi-orthogonal basis matrix for IE�(B).

The preceding proposition says that even when the errors are not normally distributed, the
maximum likelihood estimator of IE�(B) is Fisher consistent. This proposition lays the foun-
dation for the Fisher consistency of β̂ and �̂, which is stated in Theorem 1.

THEOREM 1. Assume that the conditions in Proposition 4 hold. Then β̂ and �̂ are Fisher
consistent estimators of β and �.

In the next theorem we describe asymptotic properties of β̂ and �̂. In preparation, we denote
the i th diagonal element of the projection matrix PF = F(FT F)−1 FT as pii , and we require that

max
i�n

pii → 0, n → ∞ (10)

for establishing consistency (Huber, 1973). Condition (10) is a condition on the explanatory
design and it means that maximum leverage tends to zero as n → ∞.

THEOREM 2. If the errors ε have finite fourth moments and that (10) holds, then

√
n[{vec(β̂)T, vech(�̂)T}T − {vec(β)T, vech(�)T}T]

is asymptotically normally distributed, and β̂ and �̂ are n1/2 consistent estimators of β and �.
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Inner envelopes for efficient estimation 693

Theorem 2 justifies the consistency of β̂ and �̂ without assuming any error distribution and
points out that the convergence rate is

√
n. Proofs of Propositions 3, 4 and Theorems 1, 2 are in

the Appendix.

3·5. Asymptotic distributions with normality

In this section, we give the asymptotic distribution for {vecT(β̂), vechT(�̂)}T assuming normal
errors and, as the general form of the asymptotic variance of β̂ seems too complicated to interpret
directly, we will look at a special case to provide some intuition.

In preparation for stating the limiting distribution, we use avar to denote an asymp-
totic covariance matrix; that is, if

√
n(θ̂ − θ) → N (0, A), then avar(

√
nθ̂ ) = A. Following

Henderson & Searle (1979), Cr ∈ R
r(r+1)/2×r2

and Er ∈ R
r2×r(r+1)/2 provide the contraction

and expansion matrices for the vec and vech operators: for any symmetric r × r matrix A,
vech(A) = Cr vec(A) and vec(A) = Er vech(A), Kst ∈ R

st×st is the commutation matrix and for
matrix A ∈ R

s×t , vec(AT) = Kst vec(A).
We use Proposition 4.1 of Shapiro (1986) to account for the overparameterization in �1 and to

obtain the asymptotic distribution for {vecT(β̂), vechT(�̂)}T. Although the details are different,
the proof parallels Theorem 5.1 of Cook et al. (2010) and so is omitted.

THEOREM 3. Under model (8),

√
n

(
vec(β̂) − vec(β)

vech(�̂) − vech(�)

)
→ Nr p+r(r+1)/2(0, V0)

in distribution, where V0 = H(H T J H)†H T, J is the Fisher information under the standard
model (1)

J =
(

�X ⊗ �−1 0
0 2−1 ET

r (�−1 ⊗ �−1)Er

)

and H is the gradient matrix ∂{vecT(β̂), vechT(�̂)}T/∂φT, where

φ = {vec(η1)
T, vec(η2)

T, vec(B)T, vec(�1)
T, vech(�1)

T, vech(�0)
T}T,

and H equals

(
Ip ⊗ �1 Ip ⊗ �0 B η2 ⊗ �0 η1 ⊗ Ir − (η2 BT�T

0 ⊗ �1)Krd 0 0
0 0 0 2Cr (�1�1 ⊗ Ir − �1 ⊗ �0�0�

T
0) Cr (�1 ⊗ �1)Ed Cr (�0 ⊗ �0)Er−d

)
.

As H(H T J H)†H T � J−1, the inner envelope estimators are always asymptotically less vari-
able than the standard estimators.

Let V be the asymptotic variance of the standard estimators, V = J−1. Then V −1/2(V − V0)

V −1/2 = Q J 1/2 H � 0, and this indicates that the inner envelope estimators reduce the asymptotic
variance by a fraction of Q J 1/2 H .

The asymptotic variance of β̂ is the upper r p × r p block of V0. We were unable to simplify
the expression to a ponderable form. So instead, we look into a special case that gives a rel-
atively simpler form to interpret. Assume that �1 = σ 2 Id , �0 = σ 2

0 Ir−d , where σ and σ0 are
scalars, and that η1, η2 are in different reducing subspaces of �X , which means ηT

2�Xη1 = 0 and
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694 ZHIHUA SU AND R. DENNIS COOK

ηT
1�Xη1 = Id . Substituting these conditions into V0, avar{√nvec(β̂)} has the form

σ 2�−1
X ⊗ �1�

T
1 + σ 2

0 {�−1
X ⊗ �0 B BT�T

0 + η2(η
T
2�Xη2)

−1ηT
2 ⊗ �0 B0 BT

0�T
0}

+ k−1(4η2η
T
2 ⊗ �1�

T
1 + η1η

T
1 ⊗ �0 B0 BT

0�T
0) − cη1η

T
1 ⊗ �0 B0 BT

0�T
0, (11)

where k = σ 2/σ 2
0 + σ 2

0 /σ 2 − 2, c = 1/(k2σ 2
0 + k) and (B, B0) is an orthogonal matrix.

When d = p, based on the discussion in § 3·1, the inner envelope model is an envelope model
with u = p. Then we have η2 = 0 and B = 0, B0 = Ir−d , and (11) reduces to σ 2�−1

X ⊗ �1�
T
1 +

(k−1 − c)η1η
T
1 ⊗ �0�

T
0, which is exactly the same as avar{√nvec(β̂)} under the envelope model;

see equation (5.7) in Cook et al. (2010). When d = 0, the inner envelope model reduces to the
standard model. Then �1 = 0, �0 = Ir , η1 = 0, B0 = 0, B = Ir , and (11) has the form σ 2

0 �−1
X ⊗

Ir , which is the same as the asymptotic variance under the standard model.
A comparison of the asymptotic variance given in (11) to the asymptotic variance of the stan-

dard estimator indicates that we might expect efficiency gains when d is close to p, so the dimen-
sion of the inner envelope is relatively large, or when r is large relative to d.

3·6. Selection of d

Many parameter selection methods can be used to select d, the dimension of IE�(B). In this
section, we describe methods which worked well in numerical experiments. The first methods
are based on information criteria.

To use information criteria, we need the number of parameters in the model. For an inner enve-
lope model with dimension d, there are N (d) = p2 + (p − d)(r − p) + r(r + 1)/2 parameters
to be estimated. This is because we need pd parameters for η1, p(p − d) for η2, d(d + 1)/2,

and (r − d)(r − d + 1)/2 parameters for � and �0 as they are symmetric matrices. We can-
not estimate �1 but only its span, so we are estimating span(�1) on a r × d Grassmann mani-
fold. Therefore d(r − d) parameters are needed for �1. It is the same with estimating B. If we
fix an orthogonal basis (�1, �0), only the span of B can be estimated, so B is estimated on a
(r − d) × (p − d) Grassmann manifold and (p − d)(r − p) parameters are needed.

The maximized loglikelihood function L̂(d) under the inner envelope model with dimension
d is

−nr

2
{1 + log(2π)} − n

2
log |�̂T

1�̂res�̂1| − n

2
log |�̂T

0�̂res�̂0| − n

2

r−d∑
i=p−d+1

log{1 + λ̃i (�̂0)}.

Then for a fixed d, Akaike’s information criterion is A(d) = −2L̂(d) + 2N (d). We search d
from 0 to p and choose d at the value that minimizes A(d).

The Bayes information criterion for a fixed d is B(d) = −2L̂(d) + N (d) log(n). Similarly, we
select d by searching from 0 to p and choose d at the value that minimizes B(d).

The dimension of the inner envelope model can also be determined by likelihood ratio
testing. To test the hypothesis d = d0 (d0 � p), the test statistic 
(d0) can be constructed as

(d0) = 2{L̂(0) − L̂(d0)}. Here L̂(0) is the maximized value of the loglikelihood for the standard
model and L̂(0) = −(nr/2){1 + log(2π)} − (n/2) log |�̂res|. Under the null hypothesis, 
(d0)

is asymptotically distributed as a chi-square random variable with d0(r − p) degrees of freedom,
where d0(r − p) is the difference of the number of parameters between the full model and the
inner envelope model with dimension d0. The testing procedure can be started at d = p with a
common significance level, and we choose d at the first hypothesized value that is not rejected.
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Our numerical experiments showed that the Bayes criterion tends to be preferred over Akaike’s
criterion and likelihood ratio testing, although all of them can perform well. For illustration we
will use both Bayes and Akaike’s criteria in our simulations and data analysis. The asymptotic
behaviour of these criteria is similar to that in the multiple regression case discussed by Shao
(1997). In the inner envelope model context, it can also be justified that the Bayes criterion
will select the true model with probability tending to 1, and Akaike’s will select a model that
asymptotically contains the true model.

4. SIMULATION AND DATA ANALYSIS RESULTS

4·1. Simulation results

In this section, we report results from simulation studies to provide insights into the behaviour
of the inner envelope estimators. The computing of inner envelopes involves a Grassmann opti-
mization of (9), and it can be performed numerically using MATLAB package sg min 2.4.1
by Lippert which offers several optimization methods including Newton–Raphson iterations on
a Grassmann manifold with an analytic first derivative and numerical second derivative of the
objective function.

We simulated the data from (8) with r = 10, p = 8 and α = 0. The bases of the inner envelope
and its complement (�1, �0), and B were constructed by orthogonalizing r × r and (r − d) ×
(p − d) matrices of independent uniform (0, 1) random variables. The eigenvalues of � were
chosen at 1, 5, 10, 50, 100, 500, 1000, 5000, 10 000 and 50 000, and d was fixed at 1, 4 and 7, with
the inner envelope basis �1 associated with the first d eigenvalues. The first d columns of β were
�1, and the other p − d columns were outside the inner envelope, with η1 and η2 generated with
independent standard normal variables. We expect notable efficiency gains from this construction
since var(PIEY ) is relatively small and thus we can estimate PIEβ with relative greater precision.
The elements in X took value 0 or 100 with probability 0·5 for each. Under this construction,
E�(B) = R

r , and envelope models offer no gains in efficiency. We estimated the actual variance
of β̂ by computing the sample variance of β̂( j), j = 1, . . . , 200, from 200 replications for sample
sizes 100, 200, 300, 500, 800 and 1200. The asymptotic variance of β̂ is given by Theorem 3.
We also estimated the actual variance of β̂ by using 200 residual bootstrap samples.

The results for d = 7 are summarized in Fig. 1. In each panel, the vertical axis is the standard
deviation for one element of β̂ and the horizontal axis is the sample size. In Fig. 1(a), which is
for an element of β̂ inside the inner envelope, the two lines for the actual standard deviations of
the standard and inner envelope estimators are well separated for all sample sizes and the actual
standard deviation of the inner envelope estimator drops below the asymptotic standard devia-
tion of the standard model estimator at a small sample size. The efficiency gains are predicted
by Theorem 3. The bootstrap estimation of the actual standard deviations is quite reliable. In
Fig. 1(b), which is for an element outside of the inner envelope, the performances of the standard
model and inner envelope model are almost the same. The lines for the two models are entangled
for both the asymptotic and actual standard deviations. The results for d = 4 were quite similar
to those for d = 7, while the difference between the inner envelope and standard estimators of
the element inside the inner envelope was notably less for d = 1, as expected.

We did another simulation with everything the same except p = 2. Then there is only one
nontrivial choice for d, which is d = 1. Here the inner envelope model shows a greater advantage
over the standard model than in Fig. 1, the actual and asymptotic standard deviations of inner
envelope estimators being about 0·01 times the asymptotic standard deviation of the standard
model estimator. This agrees with the discussion at the end of § 3·5: when the ratio of d/p is
large and d/r is small, we expect to get larger gains.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/99/3/687/359659 by U
niversity of Florida user on 05 D

ecem
ber 2019



696 ZHIHUA SU AND R. DENNIS COOK

0 200 400 600 800 1000 1200
0

0·05

0·10

0·15

0·20

0·25

Sample size

St
an

da
rd

 d
ev

ia
tio

n

0 200 400 600 800 1000 1200
0

0·05

0·10

0·15

0·20

0·25

Sample size

St
an

da
rd

 d
ev

ia
tio

n

(a) An element inside the inner envelope (b) An element outside the inner envelope

Fig. 1. Simulation results with d = 7, p = 8 on the asymptotic and actual standard deviations for
elements of β̂ inside and outside the inner envelope. Solid lines, the actual standard deviations
of the inner envelope estimator; lines with circles, the actual standard deviations of the inner
envelope estimator estimated by bootstrapping; lines with stars, the actual standard deviations
of the standard model estimator; dashed lines, the asymptotic standard deviations of the inner
envelope estimator; dot dash lines, the asymptotic standard deviations of the standard model

estimator.

The next simulation tests the robustness of the inner envelope estimators with nonnormal
errors. The scenario was the same as the simulation with d = 7 in Fig. 1, except that ε was gen-
erated as �1/2ε, where the elements of ε were independent and identically distributed standard
normal, t6(3/2)1/2, 121/2{U (0, 1) − 0 · 5}, (χ2

4 − 4)/
√

8 random variables. Figure 2 confirms
the consistency stated in Theorem 2, and also shows that a moderate departure from normality
does not affect the estimator much even with small sample sizes.

4·2. Data analysis

In this section, we present three examples which demonstrate that inner envelopes can result in
moderate to massive efficiency gains. We begin with the classical iris data which were analysed
by Fisher (1936). Four characteristics, sepal length, sepal width, pedal length and pedal width,
were measured for each specimen from three species of iris: Iris setosa, Iris versicolor and Iris
virginica. Fisher analysed these data as an example for discriminant analysis; that is, to identify
the species from the characteristics. We studied the relationship between the species and the char-
acteristics from a different view, by fitting the data into the multivariate linear regression frame-
work, taking the species as predictors and characteristics as responses to compare the species
characteristics. Then each column of β ∈ R

4×2 corresponds to the difference in the character-
istic means for two species. The first column of β represents the group difference between Iris
setosa and Iris virginica, while the second column represents the group difference between Iris
versicolor and Iris virginica. We applied the envelope model to the data and u = 4 was inferred,
which means that E�(B) = R

r and that the envelope model offers no gains over the standard
model. Then we fitted the inner envelope model to the data, and d = 1 was suggested by Bayes’
criterion. Compared to the standard model, the standard deviations of the elements in β̂ were
reduced by 0·04% to 21·2%. Roughly speaking, to reduce a standard deviation by 21% in a stan-
dard analysis, the sample size should to be increased by about 61% and we expect that this gain
would be worthwhile in many analyses.

The second dataset, on wine recognition, comprises 178 samples of wines made from three
different cultivars in Italy taken for a chemical analysis. We used six variables for the charac-
teristics of the wines: alcohol, malic acid, ash, alkalinity of ash, magnesium and flavanoids. The
regression of characteristics on cultivars was performed to study how different cultivars influence
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Fig. 2. Simulation results for different error types. The standard deviations are for an element inside
the inner envelope. The line marks are the same as those in Fig. 1, but we omit the lines for the
standard model estimator. The simulation scenario is the same as that for the d = 7 case in Fig. 1.

the aspects of the wines. Although not required by theory, for accuracy we did a log transforma-
tion to all the variables as the scatter-plot of the original variables showed an obvious departure
from normality. The envelope model offered no gains as u = 6 was inferred. With d = 1, the inner
envelope model reduced the standard deviations of elements in β̂ by 0·2% to 30%. And to reduce
the standard deviation by 30% in a standard analysis, we need to double the original sample size,
which is an obvious gain.

The China climate data, obtained from the website of the National Center for Atmospheric
Research, contain monthly measurements of average temperature and precipitation at 160 land
stations in China from 1951 to 2000. Following Li et al. (2003), we took the monthly measure-
ments of precipitation or temperature as responses, and the longitude, latitude of the stations and
year as predictors, giving r = 12 and p = 3. First we applied the envelope model to the tempera-
ture data and u = 12 was inferred, indicating that the envelope model is equivalent to the standard
model in this case. Then we fitted the data with the inner envelope model, and the Akaike criterion
selected d = 1. The standard deviations of the elements in β̂ were reduced by 0·02% to 65·9%.
The sample size should be more than eight times the original sample size to gain a reduction
of 65·9% in a standard analysis. With the precipitation data, results are similar and the standard
deviations were reduced by 0·1% to 50·6%.
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APPENDIX

Maximum likelihood estimators

Given the data Y1, . . . , Yn , the likelihood function L has the form

L = {det(�)}−n/2 × etr{−2−1(U − FβT)�−1(U − FβT)T},
where etr(·) denotes the composite function exp ◦ tr(·). As β = �1η

T
1 + �0 BηT

2, we follow Lemma 4.2 in
Cook et al. (2010) and write L = L1L2, where

L1 = {det(�1)}−n/2 × etr{−2−1(U�1 − Fη1)�
−1
1 (U�1 − Fη1)

T},
L2 = {det(�0)}−n/2 × etr{−2−1(U�0 − Fη2 BT)�−1

0 (U�0 − Fη2 BT)T}.
Maximizing L1 first while keeping �1 fixed, the maximum likelihood estimator of ηT

1 is η̂T
1 =

(U�1)
T F(F T F)−1. We use a hat on a parameter to denote both its intermediate estimator with unknown

quantities and its final estimators. Substitute η̂T
1 back to L1, then

L11 = {det(�1)}−n/2 × etr(−2−1 QFU�1�
−1
1 �T

1U T QF ).

To maximize on �1, we have �̂1 = �T
1�̂res�1. According to Lemma 4.3 in Cook et al. (2010), the maximum

value of log(L1) is a constant plus −2−1 log |�T
1�̂res�1|.

Fixing �0, the maximization of −L2 over span(B), η2 and �0 follows Theorem 3.1 in Cook & Forzani
(2008): �̂0 = �T

0�̂res�0 + (�T
0�̂res�0)

1/2Ṽ (�0)K̃ (�0)Ṽ (�0)
T(�T

0�̂res�0)
1/2, B̂ is the orthogonal basis of

ŜB = �̂0Sp−d(�̂0, �
T
0�̂fit�0), and η̂T

2 = (B̂T�̂−1
0 B̂)−1 B̂T�̂−1

0 �T
0U T F(F T F)−1. The maximum value of L2

is then a constant plus

−n

2
log |�T

0�̂res�0| − n

2

r−d∑
i=p−d+1

log{1 + λ̃i (�0)} − n(r − d)

2
,

where �̂res = U T QFU/n and �̂fit = U T PFU/n. Using the fact that, for a nonsingular matrix A, |�T
0 A�0| =

|A||�T A−1�|, and adding the partially maximized log(L1) and log(L2), the objective function to maxi-
mize is

log |GT�̂resG| + log |GT�̂−1
res G| +

r−d∑
i=p−d+1

log{1 + λ̃i (G0)},

where the optimization is taken over the Grassmann manifold G
r×d . A value of G that maximizes the

function is the maximum likelihood estimator of �1.

Proofs

Here the limits of all stochastic quantities refer to either convergence in probability or convergence in
distribution. The type of convergence should be clear from context.

Proof of Proposition 1. Because IEM(V) itself is a reducing subspace of M that is contained in V , we
have IEM(V) ⊆∑i Vi .

Now we need only to show IEM(V) ⊇∑i Vi . If there is an element v in
∑

i Vi but not in IEM(V), then
there exists a Vi0 so that v ∈ Vi0 . Let T = Vi0 + IEM(V). Then T is a reducing subspace in V that has a
bigger dimension than IEM(V), which is a contradiction since IEM(V) has maximal dimension. �

Proof of Proposition 2. Let R= EM(S⊥). For the equality to hold, we need to show that (a) R⊥ is a
reducing subspace of M , (b) R⊥ is contained in S, and (c) R⊥ is the space with maximum dimension that
satisfies (a) and (b).

For (a), since R is a reducing subspace of M , we have MR⊆R and MR⊥ ⊆R⊥; this indicates that
R⊥ is also a reducing subspace of M . For (b), as R⊇ S⊥, we have R⊥ ⊆ S. For (c), if R⊥ does not have
maximum dimension, then we can find R0 ⊃R⊥, and R0 satisfies (a) and (b). Then R⊥

0 will be a reducing
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subspace of M and R⊥
0 ⊇ S⊥; also R⊥

0 has a smaller dimension than R, which contradicts that R is the
smallest reducing subspace of M that contains S⊥. So (c) is also satisfied. �

Proof of Proposition 3. Since the errors are independent, �̂Y → �Y . We have

�Y = var(Y ) = E{var(Y | X)} + var{E(Y | X)}
= �1�1�

T
1 + �0�0�

T
0 + (�1η

T
1 + �0 BηT

2)�X (�1η
T
1 + �0 BηT

2)
T,

�̂fit = U T PFU/n, U = F(�1η
T
1 + �0 BηT

2)
T + e − 1n ε̄

T, where 1n is an n × 1 vector of 1s and the i th row
of e ∈ R

n×r is εT
i , i = 1, . . . , n. Then

�̂fit = U T PFU/n

= (�1η
T
1 + �0 BηT

2)F T F(�1η
T
1 + �0 BηT

2)
T/n + (e − 1n ε̄

T)T F(�1η
T
1 + �0 BηT

2)
T/n

+ (�1η
T
1 + �0 BηT

2)F T(e − 1n ε̄
T)/n + (e − 1n ε̄

T)T PF (e − 1n ε̄
T)/n.

As FT F/n→�X , the first term converges in probability to (�1η
T
1 + �0 BηT

2)�X (�1η
T
1 + �0 BηT

2)
T. Since the

errors are independent of the predictors, eT F/n → 0. As 1T
n F = 0, (e − 1n ε̄

T)T F = 0. By Slutsky’s theorem,

(e − 1n ε̄
T)T PF (e − 1n ε̄

T)/n = {(e − 1n ε̄
T)F/n}(F T F/n)†{F T(e − 1n ε̄

T)/n} → 0.

So �̂fit → �fit = (�1η
T
1 + �0 BηT

2)�X (�1η
T
1 + �0 BηT

2)
T. Since �̂Y = �̂fit + �̂res, �̂res → �res =

�1�1�
T
1 + �0�0�

T
0. �

Proof of Proposition 4. As λ̆i (G0) is the i th eigenvalue of the positive semi-definite matrix A(G0) ≡
(GT

0�resG0)
−1/2(GT

0�fitG0)(GT
0�resG0)

−1/2, we have λ̆i (G0) � 0. When G0 = �0,

A(�0) = (�T
0�res�0)

−1/2{�T
0(�1η

T
1 + �0 BηT

2)�X (�1η
T
1 + �0 BηT

2)
T�0}(�T

0�res�0)
−1/2

= �
−1/2
0 BηT

2�Xη2 BT�
−1/2
0 .

Because B is an (r − d) × (p − d) matrix, the rank of A(�0) is at most p − d, then the (p − d +
1)th to the (r − d)th eigenvalues are all 0, and λ̆i (�0) = 0 for i = p − d + 1, . . . , r − d. So the term∑r−d

i=p−d+1 log{1 + λ̆i (G0)} is minimized at G0 = �0.
By Appendix A.6 of Cook (2007), for any semi-orthogonal matrix G1 ∈ R

r×d , and its comple-
tion G0, log |GT

1�̂resG1| + log |GT
0�̂resG0| � log |�T

1�̂res�1| + log |�T
0�̂res�0| for all G. So we have �1 =

argminG1
L̃ inner(G1). �

Proof of Theorem 1. In the proof below, we use the notation RA to represent a possible value for a
parameter A. Objective functions for estimation of A are then to be optimized over RA.

Since β = �1η
T
1 + �0 BηT

2 and � = �1�1�
T
1 + �0�0�

T
0, the Fisher consistency of β and � follows if

the estimators of all parameters �1, B, η1, η2, �1 and �0 are Fisher consistent. The Fisher consistency of
�1 is given in Proposition 4.

Estimators of η1 and �1 are Fisher consistent because the sample objective function to minimize is
log |R�1 | + tr{(U�1 − F Rη1)R−1

�1
(U�1 − F Rη1)

T/n}. It is known that Rη1 = η1 and R�1 = �1 minimize
the population version of this objective function, and therefore the estimators of η1 and �1 obtained in § 3
are Fisher consistent.

The estimator of �0 is also Fisher consistent as the sample version of its objective function to minimize
is log |R�0 | + tr(R−1

�0
�T

0�̂res�0) +∑r−d
i=p−d+1 λ̃i , where λ̃i is the i th eigenvalue of the matrix R�0�

T
0�̂fit�0.

The population version of this objective function is log |R�0 | + tr(R−1
�0

�T
0�res�0) +∑r−d

i=p−d+1 λ̆i , where

λ̆i is the i th eigenvalue of the matrix R�0�
T
0�fit�0. Since R�0�

T
0�fit�0 = R�0 BηT

2�Xη2 BT, η2 is a p × (p −
d) matrix and thus the rank of R�0�

T
0�fit�0 is at most p − d, so we have

∑r−d
i=p−d+1 λ̆i = 0. As �T

0�res�0 =
�0, let W = �

1/2
0 R−1

�0
�

1/2
0 , it is then equivalent to maximize log |W | − tr(W ). Denoting the eigenvalues

of W as a1, a2, . . . , ar−d , then we need to maximize log(a1) + · · · + log(ar−d) − (a1 + · · · + ar−d). The
maximum can be obtained at ai = 1, for i = 1, . . . , r − d. As W is positive definite, by the spectral theorem
W can be only Ir−d . So R�0 = �0 maximizes the objective function.
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The estimator of B is Fisher consistent since the population version of the objective function to maxi-
mize is tr(P

�
−1/2
0 RB

�
−1/2
0 �T

0�fit�0�
−1/2
0 ). This is maximized when span(�

−1/2
0 RB) equals the span of the

first p − d eigenvectors of �
−1/2
0 �T

0�fit�0�
−1/2
0 = �

−1/2
0 BηT

2�Xη2 B�
−1/2
0 . Then the objective function

is maximized at RB = B.
The estimator of η2 is Fisher consistent since the population version of the objective func-

tion to minimize is g(Rη2) = tr{�†
2var(Y − �0 B RT

η2
X)}, where �2 = �0�0�

T
0. This is because the

part of the likelihood function related to η2 is tr{(U − Fη2 BT�T
0)�

†
2(U − Fη2 BT�T

0)}T, we can

rewrite this part as tr{�†
2var(Y − �0 BηT

2 X)}, g(η2) − g(Rη2) = tr{�†
2var(Y − �0 BηT

2 X) − �
†
2var(Y −

�0 B RT
η2

X)} = − tr[�†
2var{�0 B(η2 − Rη2)

T X}] � 0. Hence g(Rη2) is minimized at η2. �

Proof of Theorem 2. Since the inner envelope model is overparameterized, we will apply Proposition
4.1 of Shapiro (1986) to prove Theorem 2. To apply the proposition, we will check the assumptions first.
Along the discussion, we will match Shapiro’s notations in our context.

Shapiro’s x in our context has the form xT = {vecT(β̂sm), vechT(�̂sm)}, where β̂sm and �̂sm denote the
estimators of β and � using the standard model. We need to show first that x is asymptotically normally
distributed when the errors have finite fourth moments. Although the proof of asymptotic normality of
β̂sm is known, we were unable to find in the literature a proof of the asymptotic normality of x .

Define R = U − F β̂T
sm. Then �̂sm = n−1(U − F β̂T

sm)T(U − F β̂T
sm) = n−1 RT R. Since R = U − PFU =

QFU ≡ QF (FβT + e − 1n ε̄
T) = QF e − 1n ε̄

T, we have RT R = eTe − nε̄ε̄T − eT PF e. Let ei j and σi j denote
the elements of e ∈ R

n×r and � ∈ R
r×r , and let ek· and e·k denote the kth row and column of e. Then, noting

that
√

nε̄ε̄T converges to zero in probability,
√

n{vech(�̂sm) − vech(�)} = √
nvech

(
n−1eTe − ε̄ε̄T − � − n−1eT PF e

)
≡ n−1/2

n∑
i=1

Bi − n−1/2vech(eT PF e) + op(1),

where
∑n

i=1 Bi = vech(eT
i ·ei · − �) and the Bi s are independent and identically distributed random vec-

tors with mean zero, length r(r + 1)/2 and typical element ei j eik − σ jk (k = 1, . . . , r ; j = k, . . . , r ).
The (i, j)th element in eT PF e/

√
n is eT

·i PF e· j/
√

n and we denote the elements of PF ∈ R
n×n by pi j . Let

Bn = n−1/2E(eT
·i PF e· j ). Then

Bn = n−1/2
n∑

a=1

n∑
b=1

E(eai pabebj ) = n−1/2
n∑

a=1

paaE(eai eaj ) = p√
n

E(e1i e1 j ) → 0.

The penultimate equality holds since the observations from different samples are independent. For each
(i, j) the eai eaj s are independent and identically distributed random variables with common finite variance.
The final equality holds since PF is a rank p projection matrix,

∑n
a=1 paa = tr(PF ) = p.

Let An = var
(
n−1/2eT

·i PF e· j

)= n−1var
(∑n

a=1

∑n
b=1 eai pabebj

)
. Then

An = n−1
n∑

a=1

n∑
b=1

p2
abvar(eai )var(ebj ) + n−1

n∑
a=1

n∑
b=1

p2
abcov(eai , eaj )cov(ebi , ebj )

+ n−1
n∑

a=1

p2
aa{var(eai eaj ) − var(eai )var(eaj ) − cov(eai , eaj )

2}

= n−1{var(e1i )var(e1 j ) + cov(e1i , e1 j )cov(e1i , e1 j )}
n∑

a=1

n∑
b=1

p2
ab

+ n−1{var(e1i e1 j ) − var(e1i )var(e1 j ) − cov(e1i , e1 j )
2}

n∑
a=1

p2
aa .
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As PF is a projection matrix,
∑n

a=1

∑n
b=1 p2

ab = p, and the first summand will go to zero as n → 0.

Because all paas are nonnegative,
∑n

a=1 p2
aa �

(∑n
a=1 paa

)2 = p2, the second summand will also go to
zero as n → 0. So n−1/2var

(
eT
·i PF e· j

)→ 0. Then by the Chebyshev inequality, n−1/2eT
·i PF e· j converges

in probability to zero. Since i and j are arbitrary, each element in eT PF e converges to zero in probability.
Consequently,

√
n{vech(�̂sm) − vech(�)} = n−1/2

∑n
i=1 Bi + op(1).

Now apply Theorem B on page 30 of Serfling (1980) to prove the asymptotic nor-
mality for {vec(β̂ f m)T, vech(�̂ f m)}T. For simplicity, we study the asymptotic normality for
{vec(β̂ f m)T, vec(�̂ f m)}T ≡∑n

i=1 Vi/n instead. Let f T
i denote the i th row of F(F T F/n)−1 (i = 1, . . . , n).

Then vec(β̂ f m − β) = n−1
∑n

i=1 fi ⊗ εi ≡ n−1
∑n

i=1 Ai . And Vi can be written as

Vi =
(

Ai

B∗
i

)
=
(

fi ⊗ εi

εi ⊗ εi − vec(�)

)
.

Let vT
i be a 1 × n row vector whose i th element is 1 and 0 otherwise, then f T

i = vT
i F(F T F/n)−1, and

we have ‖Vi‖2 = ‖Ai‖2 + ‖B∗
i ‖2 = ‖εi‖2‖ fi‖2 + ‖B∗

i ‖2 = ‖εi‖2vT
i F(F T F/n)−2 F Tvi + ‖B∗

i ‖2.

Let ai = ‖ fi‖2/n = vT
i F(F T F/n)−2 F Tvi/n, and notice that

n∑
i=1

ai =
n∑

i=1

tr{(F T F/n)−1 F Tviv
T
i F(F T F)−1}

= tr{(F T F/n)−1} → tr(�−1
X ), n → ∞.

Then for any ε > 0,

1

n

n∑
i=1

E{‖Vi‖2 I (‖Vi‖ > ε
√

n)}

=
n∑

i=1

E[(‖εi‖2ai + ‖B∗
i ‖2/n)I {(‖εi‖2ai + ‖B∗

i ‖2/n) � ε2}]

� E[{‖εi‖2 tr(F T F/n)−1 + ‖B∗
i ‖}I {(‖εi‖2 max

i�n
ai + ‖B∗

i ‖2/n) � ε2}] → 0.

The convergence in the last step is because the error has finite fourth moments, E{‖εi‖2 tr(F T F/n)−1 +
‖B∗

i ‖} < ∞, and maxi�n pii → 0 leads to maxi�n ai → 0, making the indicator function converge to
zero. The justification for maxi�n ai → 0 is as follows. For any matrix A ∈ R

q×p, symmetric matrix
B ∈ R

q×q , the maximum and minimum eigenvalue of B, λmax(B), λmin(B), we have AT Aλmin(B) �
AT B A � AT Aλmax(B). In our case

max
i�n

ai = max
i�n

vT
i F(F T F/n)−2 F Tvi/n

= max
i�n

vT
i F(F T F/n)−1/2(F T F/n)−1(F T F/n)−1/2 F Tvi

� max
i�n

piiλmax{(F T F/n)−1} → 0.

Now the covariance matrix for Vi has the form

Wi =
(

fi f T
i ⊗ � E( fiε

T
i ⊗ εiε

T
i )

E( fiε
T
i ⊗ εiε

T
i )

T E{εi ⊗ εi − vec(�)}2

)
.

Since
∑n

i=1 fi/n =∑n
i=1 vT

i F(F T F/n)−1/n = 1T
n F(F T F)−1/n = 0, and

n∑
i=1

fi f T
i /n =

n∑
i=1

(F T F/n)−1 F Tviv
T
i F(F T F/n)−1/n

= (FT F/n)−1 → �−1
X , n → ∞,
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(W1 + · · · + Wn)/n will converge to(
�−1

X ⊗ � 0
0 E{εi ⊗ εi − vec(�)}2

)
.

By Serfling (1980),
∑n

i=1 Vi/n is asymptotically normal. As Bi is part of B∗
i , we have

1√
n

(
Ai

Bi

)
→ Nrp+r(r+1)/2(0, C2),

where C2 is some constant matrix. In other words,
√

n(x − ξ) → Nrp+r(r+1)/2(0, C2).

Shapiro’s ξ in our context is ξ T = {vecT(β), vechT(�)}. Now we give the minimum discrepancy func-
tion fMDF. Given Y1, Y2, . . . , Yn , the likelihood function is L = {det(�)}−n/2 × etr{−2−1(U − FβT)�−1

(U − FβT)T}. We have

tr{(U − FβT)�−1(U − FβT)T}
= tr{(U − F β̂T

sm + F β̂T
sm − FβT)�−1(U − F β̂T

sm + F β̂T
sm − FβT)T}

= tr{�−1(U − F β̂T
sm + F β̂T

sm − FβT)T(U − F β̂T
sm + F β̂T

sm − FβT)}
= tr[�−1{n�̂sm + (F β̂T

sm − FβT)T(F β̂T
sm − FβT)}].

The last equality follows because QF F = 0 and that makes the cross product terms 0. Now the likeli-
hood function is L = {det(�)}−n/2 × etr[−2−1�−1{n�̂sm + (F β̂T

sm − FβT)T(F β̂T
sm − FβT)}]. The maxi-

mum value of L , denoted as Lmax, is reached when x = ξ , and Lmax = {det(�̂sm)}−n/2 × exp(−2−1nr).

Then fMDF is formed as fMDF = Lmax − L .
Although fMDF is written in terms of β, �, βsm and �sm, there must be one-to-one functions f1

from the product space of β and � to ξ , f2 from the product space of β̂sm and �̂sm to x so that
ξ = f1(β,�) and x = f2(β̂sm, �̂sm). As fMDF is constructed under normal likelihood function, it satis-
fies the four conditions for fMDF in § 3 in Shapiro (1986). Also, the function g defined by Shapiro in (2.1)
is twice continuous differentiable, where ξ is defined before and θ are parameters in the inner envelope
model {vec(η1)

T, vec(η2)
T, vec(B)T, vec(�1)

T, vech(�1)
T, vech(�0)

T}T. Therefore all the assumptions of
Shapiro’s Proposition 4.1 are satisfied, and β̂ and �̂, obtained by minimizing fMDF, are consistent
estimators of β and �, with the rate of

√
n. �
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