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Abstract

The envelope model aims to increase efficiency in multivariate analysis by uti-
lizing dimension reduction techniques. It has been used in many contexts including
linear regression, generalized linear models, matrix/tensor variate regression, reduced
rank regression, and quantile regression, and has shown the potential to provide sub-
stantial efficiency gains. Virtually all of these advances, however, have been made
from a frequentist perspective, and the literature addressing envelope models from a
Bayesian point of view is sparse. The objective of this paper is to propose a Bayesian
framework that is applicable across various envelope model contexts. The proposed
framework aids straightforward interpretation of model parameters and allows easy
incorporation of prior information. We provide a simple block Metropolis-within-
Gibbs MCMC sampler for practical implementations of our method. Simulations
and data examples are included for illustration.

Keywords: Envelope model, sufficient dimension reduction, Metropolis-within-Gibbs MCMC
sampler, Bayesian partial least squares, Harris ergodicity
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1 Introduction

Enveloping (Cook, 2018) is a dimension reduction technique that aims to gain estimation

efficiency in multivariate analysis. In the era of high-throughput technology, many con-

temporary datasets are high-dimensional and contain information that is immaterial to

established analyses. The envelope model seeks to identify and remove such immaterial

information, making the subsequent analysis more efficient, sometimes equivalent to taking

thousands of additional observations. Because of its proven ability to gain efficiency, enve-

lope models have been an active area of research over the past decade. Initially derived for

multivariate linear regression model (Cook et al., 2010), envelope models have since been

developed in many different contexts including generalized linear models (Cook and Zhang,

2015), partial least squares (PLS) (Cook et al., 2013), matrix or tensor variate regression

(Ding and Cook, 2018; Li and Zhang, 2017), quantile regression (Ding et al., 2021), spatial

regression (Rekabdarkolaee et al., 2019) and variable selection (Su et al., 2016).

Virtually all of these advances, however, have been made from a frequentist perspective,

and the literature addressing envelope models from a Bayesian perspective is still sparse.

This is due to the fact that a key parameter in envelope models resides on a Grassmann

manifold. Prior elicitation on such a restricted topological space is extremely difficult. The

only Bayesian approach proposed so far is due to Khare et al. (2017). There the authors

first reparameterize the model to define the key parameter on a Stiefel manifold and then

put a matrix Bingham prior (Bingham, 1974) on the parameter. An appealing feature of

this approach is that prior information on the key parameter can be incorporated through

the specification of the hyperparameters in the matrix Bingham distribution. However, the

approach crucially depends on the specific form of the response envelope model to achieve

conjugacy, which makes extension to other contexts difficult. Moreover, the Gibbs sam-
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pler proposed therein for implementation of the model requires sampling from generalized

matrix Bingham distributions and truncated inverse gamma distributions which make the

algorithm computationally expensive, and thus slow in sizable problems.

The purpose of this paper is to formulate a Bayesian framework that is easy to im-

plement and is applicable to envelope models arising in diverse contexts. The proposed

approach is completely different from the approach of Khare et al. (2017) in that it is free

of any manifold structure. Consequently, prior constructions and practical implementation

are more straightforward. We demonstrate our approach through the response envelope

model, predictor envelope model, and probit model as examples, each of which has its own

distinct modeling flavor. It is of note that the proposed Bayesian predictor envelope model

leads to a Bayesian development of partial least squares (PLS), owing to a connection be-

tween the predictor envelope model and PLS (Cook et al., 2013). For implementation we

propose a simple block Metropolis-within-Gibbs MCMC samplers to draw samples from

the target posteriors. The proposed samplers are shown to be Harris ergodic, which pro-

vides theoretical guarantees on the quality of the MCMC samples with sufficient number

of iterations. The general techniques used in this paper could potentially be utilized in

other problems with parameters defined on manifolds, including envelope models in other

contexts and Bayesian sufficient dimension reduction.

2 Review of the Envelope Model

This section reviews the envelope model from a frequentist perspective. The envelope

model was first developed for the multivariate linear regression model (Cook et al., 2010)

Y = µ + βX + ε, (1)
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where Y ∈ Rr is the multivariate response vector, X ∈ Rp is the vector of predictors,

µ ∈ Rr and β ∈ Rr×p are unknown intercept and regression coefficients, and ε ∈ Rr are

errors with zero mean and a positive definite covariance matrix Σ.

The goal of the envelope model is to improve the efficiency in the estimation of β by

utilizing the relationships among the response variables. It is based on the assumption that

some linear combinations of the response variables do not depend on X and are immaterial

to the estimation of β. Specifically, let PE denote the projection onto a subspace E ⊆ Rr

and QE = Ir − PE , where Ir is the r-dimensional identity matrix. Then we can decompose

the response vector Y into two parts, PEY and QEY . Suppose that these two parts satisfy

the following two conditions: (a) QEY | X ∼ QEY , where ∼ means equal in distribution;

(b) cor(PEY ,QEY | X) = 0. Then the distribution of QEY is not affected directly by X or

indirectly via its correlation with PEY . We call PEY the material part of Y and QEY the

immaterial part of Y . Conditions (a) and (b) are equivalent to the following two conditions

on the parameters in (1): (I) span(β) ⊆ E , and (II) Σ = Σ1 +Σ2 = PEΣPE +QEΣQE , i.e.,

E is a reducing subspace of Σ (Conway, 1990). The Σ-envelope of β, denoted by EΣ(β),

is defined formally as the smallest reducing subspace of Σ that contains span(β). We use

u (0 ≤ u ≤ r) to denote the dimension of the envelope subspace EΣ(β). Let Γ ∈ Rr×u

and Γ0 ∈ Rr×(r−u) be orthonormal bases for EΣ(β) and EΣ(β)⊥ respectively, where EΣ(β)⊥

denotes the orthogonal complement of EΣ(β). Then by (I), β can be written as β = Γη,

where η ∈ Ru×p carries the coordinates of β with respect to Γ. By (II), Σ has the structure:

Σ = Σ1 + Σ2 = ΓΩΓT + Γ0Ω0Γ
T
0 , where Ω ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u) are positive

definite matrices carrying the coordinates of Σ with respect to Γ and Γ0 respectively. The

matrix Σ1 carries the variation of the material part and Σ2 carries the variation of the
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immaterial part. Thus, the coordinate form of the envelope model can be written as

Y = µ + ΓηX + ε, Σ = Σ1 + Σ2 = ΓΩΓT + Γ0Ω0Γ
T
0 . (2)

When u = r, the envelope model reduces to the standard linear regression model (1).

Cook et al. (2010) estimates the parameters by optimizing a normal likelihood. Note

that Γ is not identifiable, and only span(Γ) = EΣ(β) is identifiable. So the estimation

entails optimization on an r × u Grassmann manifold, which is defined as the set of all

u-dimensional subspaces in an r-dimensional space. Once we have an estimator of the

envelope subspace Ê = ÊΣ(β), the envelope estimator of β is β̂ = PÊ β̂OLS, i.e., the

projection of the OLS estimator β̂OLS onto the estimated envelope subspace Ê .

The formulation of the envelope model (2) is based on dimension reduction of the

response vector Y . Therefore we call (2) the response envelope model henceforth. The

construction of envelope subspaces is flexible and can be based on the dimension reduction

of predictor vector X or other objects as well. It can also be extended beyond linear

regression. As examples, we will discuss the predictor envelope model in Section 4, and the

envelope model in generalized linear regression in Section 5.

3 A New Bayesian Response Envelope Model

3.1 Formulation

To derive the new Bayesian response envelope model, we first consider a reparameterization

of (2) that identifies the envelope subspace via a parameter defined on a Euclidean space

(Ma and Zhu, 2013; Cook et al., 2016). Let Γ ∈ Rr×u be an arbitrary orthonormal basis of

EΣ(β). Let Γ1 and Γ2 denote the matrices formed with the top u and the bottom r−u rows
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of Γ, respectively. Without loss of generality, we assume that Γ1 is non-singular; otherwise

we can permute the order of the elements in Y to achieve that. Then

Γ =

 Γ1

Γ2

 =

 Iu

Γ2Γ
−1
1

Γ1 ≡

 Iu

A

Γ1. (3)

It can be shown that A ∈ R(r−u)×u depends on Γ only through span(Γ), and there is a

one-to-one correspondence between EΣ(β) and A (Su et al., 2016).

Remark 3.1. The permutation of the elements of Y can be determined from any consistent

estimator of the basis Γ, for example, the maximum likelihood estimator of Γ or any of the

four staring values discussed in Cook et al. (2016). Given a consistent estimator, say Γ̂,

we can apply the Gaussian elimination with partial pivoting to find the u rows in Γ̂ that

constitute a non-singular matrix, say rows i1, . . . , iu. The elements in Y are then permuted

such that rows i1, . . . , iu become new rows 1, . . . , u.

The key advantage of the above reparameterization lies in the identification of EΣ(β)

and EΣ(β)⊥ with the Euclidean parameter A described as follows. Let

CA =

 Iu

A

 ∈ Rr×u, and DA =

 −AT

Ir−u

 ∈ Rr×(r−u). (4)

Chen et al. (2020) show that if CA is a basis of EΣ(β) then DA is a basis of EΣ(β)⊥.

Consequently Γ(A) = CA(CT
ACA)−1/2 and Γ0(A) = DA(DT

ADA)−1/2 form orthonormal

bases of EΣ(β) and EΣ(β)⊥ respectively. With this parameterization and letting β =

Γ(A)η, we can reformulate the response envelope model (2) as

Y = µ + Γ(A)ηX + ε, Σ = Σ1 + Σ2 = Γ(A)ΩΓT (A) + Γ0(A)Ω0Γ
T
0 (A). (5)

Here, the uniqueness of the basis matrix CA ensures identifiability of η, Ω and Ω0.
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A justification of the model identifiability is discussed in Section C.1 of the Supplement

and the difference between the reparameterization in (4) and the one used in Khare et al.

(2017) is included in Section C.2 of the Supplement.

Remark 3.2. When u = 0, EΣ(β) is the trivial space {0}, Y is uncorrelated to X, Γ0(A) =

Ir and Σ = Ω0. On the other hand, when u = r, then EΣ(β) = Rr, Γ(A) = Ir,Σ = Ω,

and model (5) degenerates to a standard linear regression model.

Let Nd(µ,Σ) denote the d−variate normal distribution with mean µ ∈ Rd and positive

definite covariance matrix Σ. A parametric representation of model (5) is given by

Y | X ∼ Nr

(
µ + Γ(A)ηX,Γ(A)ΩΓT (A) + Γ0(A)Ω0Γ

T
0 (A)

)
, (6)

Here X can be either deterministic, or stochastic with a distribution free of parame-

ters µ,η,Ω,Ω0 and A. Suppose that we have n independent observations {(Xi,Yi),

i = 1, . . . , n} from model (6). For notational convenience, we define Y ∈ Rn×r and X ∈ Rn×p

as YT = (Y1, . . . ,Yn) and XT = (X1, . . . ,Xn), and 1n to denote the n-dimensional vector

of 1’s. Further, we let Y = 1T
nY/n, X = 1T

nX/n, Xc = X − 1nX
T and Yc = Y − 1nY

T .

3.2 Prior and Posterior Distributions

To assign prior distributions for the model parameters µ,η,Ω,Ω0, and A, we consider

standard conjugate priors for analytical and computational tractability. Such priors in-

volve the inverse Wishart and matrix normal distributions, which are briefly reviewed in

Section A of the Supplementary document. We use Sm×m
+ to denote the set of all m × m

symmetric positive definite matrices. The proposed prior density is assumed to be of the

form π(µ,η,Ω,Ω0,A) = π(µ)π(η | A,Ω)π(Ω)π(Ω0)π(A), where

7



(i) π(µ) ∝ 1 is an improper flat density (with respect to the Lebesgue measure on Rr).

(ii) π(Ω) and π(Ω0) are the inverse Wishart IWu(Ψ, ν) and IWr−u(Ψ0, ν0) densities, re-

spectively, where Ψ ∈ Su×u
+ and Ψ0 ∈ S(r−u)×(r−u)

+ are fixed positive definite matrices,

ν > u − 1 and ν0 > r − u − 1.

(iii) Conditional on A and Ω, π(η | A,Ω) is the matrix normal MNu,p

(
Γ(A)Te, Ω, M−1

)
density, where M ∈ Sp×p

+ and e ∈ Rr×p are fixed hyper-parameters.

(iv) π(A) is the matrix normal MNr−u,u (A0,K,L) density, where A0 ∈ R(r−u)×u and

positive definite matrices K ∈ S(r−u)×(r−u)
+ and L ∈ Su×u

+ are fixed hyper-parameters.

If we have prior information on the most likely envelope subspace (i.e., the prior mode)

Êprior, we can find the corresponding prior mode of A, say Âprior, via the process in (3),

and set A0 = Âprior. If only partial prior information is available on Êprior, it can still

be incorporated in the current framework. For example, suppose u = 4 and we know

that the unit vectors v1 and v2 are contained in Êprior, and that v1 and v2 are linearly

independent. We then generate two random vectors v3 and v4 from span(v1,v2)⊥ as follows.

Let G0 ∈ Rr×(r−2) be an orthonormal basis of span(v1,v2)⊥, and let C be an (r − 2) × 2

matrix with each element independently generated from the standard normal distribution.

Let (v3,v4) = G0C(CTC)−1/2, and construct Γ̂prior = (v1,v2,v3,v4). Then we can obtain

Âprior via the process in (3) from Γ̂prior. The matrices K and L in the prior distribution of

A represent our confidence about the prior: the variance matrix of column i of A is liiK,

where lii is the ith diagonal element of L and the variance matrix of row j of A is kjjL,

where kjj is the jth diagonal element of K. If we are confident about some specific row(s)

or column(s) of Aprior, we can make the corresponding kjj’s and lii’s small.
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Theorem 3.1 establishes the propriety of the posterior density (explicit form given in (S4)

of the Supplement) associated with the above prior. A proof is provided in Supplement C.4.

Theorem 3.1. The posterior density for (µ,η,Ω,Ω0,A) is proper with respect to Lebesgue

measure on Rr × Ru×p × Su×u
+ × S(r−u)×(r−u)

+ × R(r−u)×u.

3.3 Sampling from the Posterior Density

Direct generation of independent random samples from the intractable posterior distri-

bution is infeasible. As an alternative, we provide a Metropolis-within-Gibbs sampler to

generate MCMC draws from the posterior. Starting from some initial value, Algorithm 3.1

produces a set of MCMC samples, which can then used to approximate the posterior.

Derivations of the conditional distributions used in Algorithm 3.1 are in Supplement C.6.

Algorithm 3.1. One iteration of the Metropolis-within-Gibbs MCMC sampler for updat-

ing (µ,η,Ω,Ω0,A) with envelope dimension u ∈ {1, . . . , r − 1}.

S.1 Generate a Metropolis-Hastings realization for A from the target conditional posterior

density π(A | Ω,Ω0,X,Y) specified in (S13). Subsequently obtain Γ(A) and Γ0(A)

through (4). A detailed note on the Metropolis-Hastings scheme is in Supplement C.7.

S.2 Generate Ω from IWu

(
Ψ + Γ(A)T G̃ Γ(A), n − 1 + ν

)
, where G̃ = YT

c Yc+eMeT −

ě
(
XT

c Xc + M
)
ěT with ě =

(
YT

c Xc + eM
) (

XT
c Xc + M

)−1
.

S.3 Generate Ω0 from IWr−u

(
Ψ0 + Γ(A)TYT

c YcΓ(A), n − 1 + ν0
)
.

S.4 Generate η from MNu,p

(
Γ(A)T ě, Ω,

(
XT

c Xc + M
)−1

)
, with ě defined in Step S.2.

S.5 Generate µ from Nr

(
Y + Γ(A)ηX,

1
n

(
Γ(A)ΩΓ(A)T + Γ0(A)Ω0Γ0(A)T

))
.
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Remark 3.3. Algorithm 3.1 can be easily modified to account for the cases u = 0 and

u = r, by discarding the steps that involve generations of parameters that are not present

in the model. In particular, A is not present in the model when u = 0 or u = r; hence the

Metropolis step S.1 is not needed in such cases. This means that Algorithm 3.1 turns into

a Gibbs sampler when u = 0 or u = r. In addition, when u = 0, then η = 0,Γ0(A) = Ir

and Σ = Ω0, then steps S.4 and S.2 are not needed. On the other hand, when u = r ,

Γ(A) = Ir and Σ = Ω, and step S.3 is to be skipped.

Theorem 3.2 establishes the Harris ergodicity of Algorithm 3.1. This provides theoretical

guarantees against the existence of pathological initial values from which the chain may

fail to converge. While such pathological initial points have collective measure zero for a

Metropolis-within-Gibbs chain, in practice they may arise naturally, as demonstrated in

(Roberts and Rosenthal, 2006). Theorem 3.2 ensures that the resulting MCMC samples

are asymptotically (i.e., when run long enough) from the correct target posterior density

for all starting points (not just almost all). Thus the MCMC samples will provide strongly

consistent estimators of various posterior quantities, such as the posterior mean, posterior

variance and posterior quantiles (see, e.g., Tierney, 1994; Chan and Geyer, 1994). A proof

of Theorem 3.2 is provided in Supplement C.5.

Theorem 3.2. The MCMC sampler in Algorithm 3.1 and its extension to the cases u = 0

and u = r described in Remark 3.3 is Harris ergodic, i.e., (a) ϕ-irreducible for some measure

ϕ, (b) aperiodic and (c) Harris recurrent.

Remark 3.4. If interest lies in a computationally fast point estimator of the model pa-

rameters, one may consider the maximum a posteriori (MAP) estimator. We provide an

algorithm for MAP estimation along with some numerical results in Supplement C.11.
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4 Bayesian Predictor Envelope / Partial Least Squares

In this section, we first review the predictor envelope model and its connection with par-

tial least square (PLS) from the frequentist perspective. Then we demonstrate how the

proposed Bayesian framework (Section 3) applies to the predictor envelope model.

4.1 Review of the Predictor Envelope Model

The predictor envelope model aims to achieve efficiency gains in the estimation of β by

performing dimension reduction on the predictors. We slightly reparameterize (1) to

Y = µY + βT (X − µX) + ε, (7)

because we need to utilize the marginal distribution of X to facilitate the discussion. The

predictor X ∈ Rp is assumed to be stochastic having mean µX and covariance matrix ΣX .

The response Y ∈ Rr can be univariate (r = 1) or multivariate (r > 1). For the sake of

notational clarity we denote the covariance matrix of ε by ΣY |X instead of Σ hereafter.

The predictor envelope model imposes the envelope structure on β and ΣX by con-

structing the ΣX-envelope of span(β), denoted by EΣX
(β). It can be shown that (PEX,Y )

is uncorrelated with QEX (Cook, 2018), so the immaterial part QEX does not carry any

information on Y directly or indirectly via its correlation with PEX. All the information

on β is encapsulated in PEX. Hence the predictor envelope model is formulated as

Y = µY + ηTΓT (X − µX) + ε, ΣX = ΓΩΓT + Γ0Ω0Γ
T
0 , (8)

where βT = Γη, Γ ∈ Rp×m is an orthonormal basis for EΣX
(β) and m (0 ≤ m ≤ p) is the

dimension of EΣX
(β). The matrix η carries the coordinates of βT with respect to Γ. The

matrices ΓΩΓT = var(PEX) and Γ0Ω0Γ
T
0 = var(QEX) respectively quantify the variations
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in the material and immaterial parts of X, where Γ0 is an orthonormal basis of EΣX
(β)⊥,

and Ω and Ω0 are positive definite matrices.

PLS originated in econometrics (Wold, 1966), and is widely used in various applied

scientific disciplines, such as chemometrics, behavioral science, genetics, and social sci-

ences as a method to improve the prediction performance of OLS. Despite its popularity,

its Bayesian development has been limited, primarily because PLS has been historically

defined in terms of iterative algorithms and not as a model-based approach. Similar to

the predictor envelope model, PLS also aims a dimension reduction of X in the linear

regression model (7). It operates by reducing X to a few linear combinations GTX, where

G ∈ Rp×m has full column rank, and m(≤ p) is called the number of components. There

exist multiple PLS algorithms to estimate G; a popular algorithm is SIMPLS (De Jong,

1993) which uses a sequential moment-based procedure to obtain ĜPLS.

Cook et al. (2013) showed that span(ĜPLS) is a
√

n-consistent estimator of the envelope

subspace EΣX
(β). This implies that the predictor envelope estimator of β and the SIMPLS

estimator of β both estimate the same dimension reduction subspace EΣX
(β), and the

SIMPLS estimator can be studied through the predictor envelope model.

4.2 Formulation of the Bayesian Predictor Envelope Model

To construct a Bayesian framework for the predictor envelope model, we follow the parametriza-

tion in (3) and construct CA and DA as:

CA =

Im

A

 ∈ Rp×m, and DA =

−AT

Ip−m

 ∈ Rp×(p−m), (9)

where A ∈ R(p−m)×m is an unconstrained matrix. Then we can express Γ and Γ0 as explicit

functions of A: Γ(A) = CA

(
CT

ACA

)−1/2
and Γ0(A) = DA

(
DT

ADA

)−1/2
.
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A parametric representation of the predictor envelope model (8) is formulated as

Y | X ∼ Nr

(
µY + ηTΓT (A)(X − µX),ΣY |X

)
X ∼ Np

(
µX ,Γ(A)ΩΓT (A) + Γ0(A)Ω0Γ

T
0 (A)

)
. (10)

Notice that the marginal distribution of X is included in (10) because β is linked with

ΣX . More precisely, the marginal distribution of X aids identification of the material and

immaterial parts in (8). An expression for the log-likelihood with n data points {(Xi,Yi) :

i = 1, . . . , n} from model (10) is given in (S16) in the Supplement.

4.3 Prior and Posterior distributions

The joint prior density for the model parameters in (10), viz., µX ,µY ,η,ΣY |X ,Ω,Ω0 and

A is assumed to be of the form π(µX ,µY ,η,ΣY |X ,Ω,Ω0,A) = π(µX)π(µY )π(Ω)π(Ω0)

π(A)π(η | A,ΣY |X)π(ΣY |X). Here

(i) π(µX) ∝ 1 and π(µY ) ∝ 1 are improper flat densities (with respect to Lebesgue

measures on Rp and Rr respectively).

(ii) π(ΣY |X), π(Ω) and π(Ω0) are inverse Wishart IWr(ΨY , νY ), IWm(ΨX , νX) and

IWp−m(Ψ0,X , ν0,X) densities respectively, where ΨY ∈ Sr×r
+ , ΨX ∈ Sm×m

+ , Ψ0,X ∈

S(p−m)×(p−m)
+ , νY > r−1, νX > m−1 and ν0,X > p−m−1 are fixed hyper-parameters.

(iii) π(A) is the matrix normal MNp−m,m (A0,K,L) density, where K ∈ S(p−m)×(p−m)
+ ,

L ∈ Sm×m
+ , and A0 ∈ R(p−m)×m are fixed hyper-parameters.

(iv) Conditional on A and ΣY |X , π(η) is the matrix normal MNm,r

(
M−1ΓT (A)e,M−1,ΣY |X

)
density, where M ∈ Sm×m

+ , and e ∈ Rp×r are fixed hyper-parameters.
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Prior information on EΣX
(β) can be incorporated in a similar way as discussed in

Section 3.2. The form of the resulting posterior density is given in (S17). Theorem 4.1 es-

tablishes propriety of the posterior distribution. A proof is provided in the Supplement D.2.

Theorem 4.1. The posterior density for (µY ,µX ,ΣY |X ,η,Ω,Ω0,A) is proper with re-

spect to the Lebesgue measure on Rr ×Rp ×Sr×r
+ ×Rm×r ×Sm×m

+ ×S(p−m)×(p−m)
+ ×R(p−m)×m.

4.4 Sampling from the Posterior Density

Similar to the response envelope model, generating i.i.d. samples directly from the posterior

distribution for the predictor envelope model is not feasible. A Metropolis-within-Gibbs

MCMC sampler for generating approximate samples from the target posterior density is

provided in Algorithm D.1 in Supplement D.1. The proposed MCMC sampler for the

predictor envelope model is similar to that for the response envelope model except that here

we have a couple of extra parameters to sample. The following theorem establishes Harris

ergodicity of the sampler. A proof is provided in Section D.3 of the Supplement. A note

on the MAP estimation under a predictor envelope model is provided in Supplement D.4.

Theorem 4.2. The Metropolis-within-Gibbs sampler in Algorithm D.1 (Supplement), and

its extension to the cases with m = 0 or m = p, is Harris ergodic, i.e., (a) ϕ-irreducible

for some measure ϕ, (b) aperiodic and (c) Harris recurrent.

Because of the connection between the predictor envelope model and PLS (more specif-

ically, SIMPLS), the proposed approach also serves as a Bayesian framework for PLS. Note

that all the parameters in model (10) are well defined and identifiable, which avoids the

identification issue present in the Bayesian PLS model of Vidaurre et al. (2013). The

current framework also makes it easy to incorporate prior information on the dimension
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reduction subspace. If we know a priori the most likely dimension reduction subspace, we

can find a matrix Âprior such that the corresponding CA is a basis of this subspace. Then

we can set the mode of the prior A0, to be Âprior. The Bayesian approach for other PLS

variants, such as NIPALS, can also be developed using this framework.

5 Bayesian Envelope Model for Generalized Linear

Regression

This section demonstrates how our Bayesian envelope approach can be applied to a gener-

alized linear regression model. We consider the probit model as an example for illustration

purposes; other generalized linear regression models can be studied using similar techniques.

5.1 Formulation

The probit model is formulated as P (Y = 1 | X) = Φ(µY + βT (X − µX)), where Y is

a binary response, X ∈ Rp is the stochastic predictor vector, µY ∈ R, β ∈ Rp and Φ(·)

denotes the cumulative distribution function for the standard normal distribution.

We impose the envelope structure on β and ΣX as follows. Consider the ΣX-envelope of

span(β), i.e., EΣX
(β), then we have span(β) ⊆ EΣX

(β), and that ΣX can be decomposed

into the sum of the variation of the material part var(PEX), and the variation of the

immaterial part var(QEX). Let m (0 ≤ m ≤ p) be the dimension of EΣX
(β), and Γ ∈ Rp×m

be an orthonormal basis of EΣX
(β). Then the envelope probit model is formulated as

P (Y = 1 | X) = Φ(µY + ηTΓT (X − µX)), ΣX = ΓΩΓT + Γ0Ω0Γ
T
0 ,

where Γ0 ∈ Rp×(p−m) is an orthonormal basis of EΣX
(β)⊥, η ∈ Rm contains the coordinates
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of β with respect to Γ, and Ω ∈ Rm×m and Ω0 ∈ R(p−m)×(p−m) are positive definite matrices

that contain the coordinates of ΣX with respect to Γ and Γ0.

Again we use the parameterization in (3), so that Γ and Γ0 can be expressed as functions

of A, i.e. Γ(A) = CA(CT
ACA)−1/2 and Γ0(A) = DA(DT

ADA)−1/2, where CA and DA are

as defined in (9). Under this parameterization, the envelope probit model is formulated as

P (Y = 1 | X) = Φ
(
µY + ηTΓT (A)(X − µX)

)
X ∼ Np

(
µX ,Γ(A)ΩΓT (A) + Γ0(A)Ω0Γ

T
0 (A)

)
. (11)

Note that the marginal distribution of X also appears in the envelope probit model as

it is utilized in the estimation and inference of β. The interpretations of the parameters

µX ,Ω,Ω0 and A are analogous to the interpretations of the corresponding parameters

in the predictor envelope model (Section 4). However, the intercept parameter µY now

represents the unconditional mean of Y on a probit scale.

5.2 Prior and Posterior Distributions

The joint prior density of the parameters µY ,µX ,η,Ω,Ω0, and A in model (11) is assumed

to be of the form π(µY ,µX ,η,Ω,Ω0,A) = π(µY )π(µX)π(η | A)π(Ω)π(Ω0)π(A), where

(i) π(µY ) and π(µX) are the univariate normal N(αY , ΞY ) and p-variate normal Np(αX ,ΞX)

densities respectively, where αY ∈ R, ΞY > 0, αX ∈ Rp and ΞX ∈ Sp×p
+ are fixed

hyper-parameters.

(ii) π(Ω) and π(Ω0) are inverse Wishart IWm(ΨX , νX) and IWp−m(Ψ0,X , ν0,X) densities

respectively, where ΨX ∈ Sm×m
+ , Ψ0,X ∈ S(p−m)×(p−m)

+ , νX > m − 1, and ν0,X >

p − m − 1 are fixed hyper-parameters.
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(iii) π(A) is the matrix normal MNp−m,m (A0,K,L) density, where A0 ∈ R(p−m)×m, K ∈

S(p−m)×(p−m)
+ and L ∈ Sm×m

+ are fixed hyper-parameters.

(iv) Conditional on A, π(η | A) is the m-variate normal Nm

(
M−1ΓT (A)e,M−1

)
density,

where M ∈ Sm×m
+ and e ∈ Rp are fixed hyper-parameters.

The explicit form of the posterior density is given in (S27) of the Supplement.

Remark 5.1. It is known that improper flat priors on the parameters in a standard

Bayesian probit regression model can lead to an improper posterior distribution. Chen

and Shao (2001) provide sufficient conditions on the non-stochastic design matrix to ensure

posterior propriety under improper flat prior. In the current settings, however, posterior

propriety is guaranteed almost surely as the joint prior distribution is proper.

5.3 Data Augmentation MCMC Sampler

The posterior density (S27) is more complicated than (S4) or (S17) in the supplement

due to the log Φ(·) term in the full conditional posterior of µY ,µX ,η,Ω and Ω0. This

precludes direct formulation of Metropolis-within-Gibbs algorithms similar to Algorithm 3.1

or Algorithm D.1 (supplement). Fortunately, the data augmentation technique for Bayesian

probit regression models (Albert and Chib, 1993) can be adopted here. For each Yi, one

introduces a latent Gaussian random variable Ui with E(Ui | Xi) = µY + ηTΓT (A)(Xi −

µX), var(Ui | Xi) = 1 and Yi = 1{Ui ≥ 0}, where 1(·) is the indicator function.

Straightforward derivations reveal that the full conditional distribution of Ui given Yi,Xi

and the parameters {µY ,µX ,η,Ω,Ω0,A} is TN(µY + ηTΓT (A)(Xi − µX), 1, Yi), where

TN(µ, σ2, ω) denotes the truncated normal distribution, which is a normal N(µ, σ2) distri-

bution truncated to be non-negative or negative depending on ω = 1 or 0. There exist
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multiple efficient algorithms for random generation from truncated normal distribution

(Robert, 1995; Marsaglia, 1964), implemented in various softwares including R. The advan-

tage of defining the latent variable Ui lies in the simplification of the posterior distribution

of the model parameters. In particular, given Ui, the information on Yi is superfluous, and

the data (Xi, Ui), i = 1, . . . , n follow a predictor envelope model considered in Section 4,

with fixed variance var(Ui | Xi) = 1. Let U = (U1, . . . , Un)T , then the posterior density

π(µY ,µX ,η,Ω,Ω0,A | U,X) has the same form as the posterior density for predictor en-

velope model (S17), except for the following differences: r is restricted to be equal to 1,

µX and µY now have proper normal priors, Y is replaced by U, and the ΣY |X term is

not present (var(Ui | Xi) is 1). A data augmentation Metropolis-within-Gibbs sampler

(Algorithm E.1 in Supplement E.1) is derived to draw samples from the posterior den-

sity (S27). Theorem 5.1 establishes Harris ergodicity of the Markov chain generated using

Algorithm E.1. The proof is provided in Supplement E.3.

Theorem 5.1. The Metropolis-within-Gibbs sampler in Algorithm E.1 and its extension

to the cases m = 0 and m = p described in Remark E.1 is Harris ergodic.

An expectation conditional maximization (ECM) algorithm (Meng and Rubin, 1993)

for the MAP estimation of the parameters is provided in Section E.2 of the Supplement.

We have demonstrated the incorporation of the Probit model in the proposed envelope

framework via the Albert and Chib (1993) data-augmentation approach. The framework is

quite flexible and can incorporate other generalized linear regression models. For example,

with the logistic regression or multinomial regression, the data-augmentation scheme in

Polson et al. (2013) and Holmes and Held (2006) can be applied in a similar way as in the

Probit model.
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6 Bayesian Inference on the Envelope Dimension

The envelope dimension (“u” in the response envelope; “m” in the predictor and probit

envelope models) is an unknown parameter that requires specification. Optimal selection

of this parameter can be viewed as a model selection problem as considered in Khare

et al. (2017); however, the Bayesian paradigm permits a coherent approach to infer this

parameter via posterior probabilities obtained after eliciting a prior distribution. For ex-

pository purposes, below we consider the response envelope model; analogous methods can

be obtained for predictor and probit envelope models.

Given a prior distribution π(u) on u elicited independently of the other model parame-

ters, our interest lies in the posterior Pr(u | data). However, computation of this posterior

requires evaluation of the marginal likelihood, which is an extremely challenging problem

for a complicated model like ours. In Supplement B we discuss some potential approaches

for this computation along with their challenges. Here we consider a simple BIC-based

approximation of Pr(u | data) from Kass and Raftery (1995):

Pr(u = k | data) ≈ exp(−BIC(k)/2) π(u = k)∑r
k′=0 exp(−BIC(k′)/2) π(u = k′) ; k = 0, 1, . . . , r (12)

where BIC(u) = −2 log L̃(u) + ρ(u) log n, with L̃(u) denoting the maximized value of the

likelihood function, and ρ(u) = r(r+1)/2+r+pu being the effective number of parameters

in the response envelope model. Given Pr(u | data), one may consider, e.g., the posterior

mode û = arg maxk=0,...,r Pr(u = k | data) as a point estimate of u, and then estimate the

other parameters {µ,η,Ω,Ω0,A} conditional on u = û. A more coherent Bayesian model

averaging (BMA) approach acknowledges the estimation uncertainty in u and considers the

BMA posterior for the model parameters:

π(µ,η,Ω,Ω,A | data) =
r∑

k=0
π(µ,η,Ω,Ω,A | u = k, data) Pr(u = k | data). (13)
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The associated marginal posterior mean for β is

E(β | data) =
r∑

k=0
E(β | u = k, data) Pr(u = k | data) (14)

which is a weighted average of posterior means of β obtained from u = k specific models.

Supplement B contains more details on estimation and inference. The form of the point

estimator (14) resembles the frequentist weighted envelope estimator (Eck and Cook, 2017),

which is a weighted average of the estimator of β under envelope models with various

u’s. We note here that (13) permits coherent Bayesian inference on β. Furthermore,

Pr(u = k | data) can incorporate prior information on u, unlike the frequentist approach.

7 Illustration

This section demonstrates efficiency gains achieved by the Bayesian envelope models via

simulations and data examples. Vague priors are considered for all model parameters. In

particular, for any univariate, multivariate or matrix normal prior, the mean is set to be

zero, and the covariance matrix is set to be 106 times the identity matrix. In the inverse

Wishart prior IWd(Ψ, ν), Ψ and ν are taken to be 10−6Id and d respectively. We estimate

the model parameters using the posterior means. The tuning parameters in the Metropolis

steps, if present, are tuned during burn-in. They are adaptively increased/decreased at

every fifth iteration to ensure an acceptance rate of 30–50%. For inference on the envelope

dimension, we use the BIC-approximated posterior probabilities.

7.1 Simulation Study

We consider the response envelope model (6) for illustration. Analogous simulation results

on predictor envelope model and envelope probit model are provided in Supplement D.6
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and E.4. We fixed r = 20, p = 7 and utrue = 2, where the subscript “true” denotes the

value of a parameter in the data generation process. The elements of µtrue,ηtrue and Atrue

were independently generated from Uniform(0, 10), Uniform(0, 10) and Uniform(−1, 1) re-

spectively. The matrices Ωtrue and Ω0,true were diagonal, with diagonal elements being

independent Uniform(0, 1) and Uniform(5, 10) variates. The sample size n was varied from

50, 100, 200, 500 and 1000. For each sample size, 200 replicated datasets were generated.

On each dataset, we ran Algorithm 3.1 to generate 13,333 MCMC draws (after a burn-in

of 6,667 draws) for each u in {0, 1, . . . , r}. A uniform prior is consider for u. The median

running times for the MCMC algorithms were 7.55, 5.43, 7.53, 6.02, and 7.94 minutes for

n = 50, 100, 200, 500, and 1000 respectively under u = utrue. Computations were done on

SLURM HPC parallel computing clusters, with computing nodes having 16 GB of allocated

memory each, and clock speeds ranging between 2.10 – 2.40 GHz.

n 0 ≤ u ≤ 1 u = 2 u = 3 u = 4 5 ≤ u ≤ 7

50 0.000 0.239 0.427 0.280 0.003

100 0.000 0.701 0.275 0.024 0.000

200 0.000 0.929 0.071 0.000 0.000

500 0.000 0.988 0.012 0.000 0.000

1000 0.000 1.000 0.000 0.000 0.000

Table 1: Posterior probabilities of envelope dimension u.

Table 1 contains the posterior probabilities Pr(u | data) averaged across replicates. As

n grows, we notice that Pr(u | data) concentrates more at utrue = 2. With smaller n’s Pr(u |

data) tends to put nontrivial masses on {u > utrue} but not on {u < utrue}, effectuating
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overestimation of u rather than underestimation. In general, the cost of overestimation of

u is lower than underestimation, since underestimation induces bias while overestimation

usually does not induce bias but loses some efficiency gains.

We next focused on the estimation of β. On each replicate, we considered four estima-

tors of β from (a) the envelope model with û = arg max0≤u≤r Pr(u | data) (model Mû), (b)

the envelope model with utrue = 2 (model Mutrue), (c) envelope model with BMA approach

using (14) (model MBMA), and (d) the standard Bayesian regression model (model Mstd).

We adopt a “frequentist evaluation” of the estimators using mean squared errors (MSE) and

estimation variances. (Bayesian evaluations through posterior standard deviations are pro-

vided in Supplement C.10.) For each model M ∈ {Mû, Mutrue , MBMA, Mstd} and element

(i, j) in β (denoted by βi,j), we calculated the MSE Mi,j,M = ∑200
k=1

(
β̂k

i,j,M − βi,j,true
)2

/200

and the estimation variance Vi,j,M = ∑200
k=1

(
β̂k

i,j,M − βi,j,M

)2
/200. Here β̂k

i,j,M denotes the

estimator of βi,j obtained from model M in the k-th replicate, and βi,j,M = ∑200
k=1 β̂k

i,j,M/200.

The ratios of these MSEs and variances for the envelope estimators to the standard Bayesian

n Mi,j,Mstd/Mi,j,Mû
Mi,j,Mstd/Mi,j,MBMA Mi,j,Mstd/Mi,j,Mutrue

50 4.89 (2.72, 8.69) 5.03 (2.74, 9.29) 7.68 (3.54, 17.29)

100 6.48 (3.73, 17.09) 6.63 (3.75, 17.29) 7.58 (3.98, 20.98)

200 7.12 (3.47, 17.03) 7.20 (3.49, 16.99) 7.56 (3.58, 18.69)

500 7.62 (3.66, 21.41) 7.66 (3.66, 21.72) 7.81 (3.66, 22.68)

1000 7.65 (3.73, 23.39) 7.65 (3.73, 23.39) 7.65 (3.73, 23.39)

Table 2: Medians (ranges) of the component-wise MSE ratios.

regression estimators are summarized Table 2 and Supplementary Table S11 respectively.
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These ratios are all well above 1, which demonstrates the envelope model is able to

achieve efficiency gains in the estimation of every element in β. When n = 1000, the ratios

for all three envelope estimators become nearly identical as Pr(u | data) concentrates at

utrue. For smaller n, the estimator from Mû loses some efficiency due to overestimated u in

some cases. The estimator from MBMA is more efficient as it still incorporates information

from Mutrue with positive probability. However, the efficiency losses in Mû and MBMA are

mild, and the resulting estimators are still considerably more efficient than the estimator of

Mstd. Figure 1 takes a closer look at β1,1 for visual assessments of the competing estimators.

The figure shows the MSEs and estimation variance of the estimators under various sample

sizes. Throughout, the Mutrue estimator enjoys the most efficiency gain, followed by MBMA

and Mû. The Mstd estimator has the largest MSE, mainly due to its estimation variance.

When n ≥ 100, the estimators from MBMA and Mû are very close to the Mutrue estimator.

Figure 1: MSE and estimation variances of competing estimators of β1,1 at different n.

In addition, we performed a range of simulations investigating the performance of the

proposed approaches under various scenarios. First, under the above simulation settings,
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we compared the MSE and prediction errors of the proposed approaches with a few more

competing methods including (a) manifold Bayesian envelope model (Khare et al., 2017) (b)

frequentist envelope model (Cook et al., 2010), (c) frequentist weighted envelope estimator

(Eck and Cook, 2017), (d) approximate mean-field variational Bayes envelope estimator, (e)

frequentist reduced rank regression, (f) Bayesian reduced rank regression, and (g) remMap

estimator (Peng et al., 2010). (Supplement C.13). Second, we varied the signal-to-noise

ratios, and compared estimation and prediction performances of the proposed approaches

with the competitors (Supplement C.15). Third, we assessed the proposed MCMC algo-

rithm under larger sample sizes and dimensions (Supplement C.14). We also discovered

that although the variational Bayes implementation is much faster to compute, it induces

bias in estimation and produces unreliable uncertainty quantification. Finally, we com-

pared posterior standard deviations of the proposed Bayesian estimators with bootstrap

standard errors of the frequentist envelope estimators in Supplement C.10.

7.2 Real Data Analyses

7.2.1 Response Envelope Model

We apply the Bayesian response envelope model to the Arabidopsis thaliana dataset from

the genetic association study in Wille et al. (2004). This dataset was analyzed in Mukher-

jee et al. (2015) in the context of multivariate linear regression to understand how the

gene expression levels of downstream pathways, carotenoid, and phytosterol are affected by

the gene expression levels of two isoprenoid biosynthesis pathways, mevalonate and non-

mevalonate. The predictors correspond to 39 genes from mevalonate and non-mevalonate,

and the responses correspond to 36 genes from carotenoid and phytosterol. The dataset
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consists of a total of 118 samples collected from GeneChip microarray experiments. We

ran Algorithm 3.1 to generate 10,000 MCMC samples after discarding a burn-in of 5,000

iterations with u = 0, 1, . . . , 36 and subsequently computed the marginal posterior proba-

bilities for u. Up to three decimal places, the posterior probabilities were non-zero for only

two u’s viz., Pr(u = 1 | data) = 0.998 and Pr(u = 2 | data) = 0.002. With these posterior

probabilities, the BMA model would produce a posterior essentially identical to the pos-

terior of an envelope model with u = 1. Hence for subsequent analysis, we focused on the

envelope model with u = 1. We compared the posterior mean and standard deviation of β

from the Bayesian envelope model and the Bayesian standard model. The results are in the

left panel of Figure 2. The horizontal axis indicates the coordinates of vec(β), where vec(·)

is the vector operation that stacks a matrix to a vector columnwise. As depicted through

the posterior standard deviations, the Bayesian envelope estimators enjoy substantially less

estimation uncertainty than the Bayesian standard linear regression estimator.

We now compare the prediction performance of the proposed Bayesian envelope esti-

mator with the Bayesian standard estimator, frequentist envelope estimator, reduced rank

regression (RRR) estimator, and remMap estimator. We performed cross-validations with

100 random 80% − 20% training-test splits. The predictor performance is evaluated by

the unit average prediction error (defined in Supplement C.13.2). For the two Bayesian

approaches, we also used the test-set log posterior predictive density (LPPD) as a measure

of Bayesian predictive accuracy (Gelman et al., 2013, Section 7.1), with a higher LPDD

indicating a better fit. The prediction errors and LPPD are plotted in panels B and C of

Figure 2. In panel B, the prediction performance of the Bayesian envelope model appears

to be quite similar to those of the frequentist envelope and RRR models. RemMap turns

out to have a poorer prediction performance, comparable to the Bayesian standard model.
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Figure 2: Panel A: Posterior means and standard deviations for all elements in β. Panel

B: Cross validation prediction errors (replication mean ± SD) for five competing models.

Panel C: Cross-validation LPPDs for the Bayesian envelope and standard models.

In panel C, the LPPDs show uniform superiority of the Bayesian envelope model over the

Bayesian standard model.

Finally, we looked into the posterior distributions of β to investigate the associations

between isoprenoid biosynthesis pathway genes (predictors) and downstream pathway genes

(responses). For this purpose, we computed a 95% posterior credible interval (based on

2.5th and 97.5th percentile) for each element in β under both the envelope and standard

model. We labeled an element as “significant” if the corresponding credible interval ex-

cluded zero, and “non-significant” otherwise. The results are displayed in Figure 3 as

heatmaps. The figure depicts a noticeably more regular pattern for the significant asso-

ciations obtained from the envelope model compared to the standard model. This is a

consequence of the reduced dimensionality (recall that Pr(u = 1 | data) ≈ 0.998), which

aids noise reduction. The envelope analysis suggests that only a handful of isoprenoid
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Figure 3: Significance of regression coefficients under Bayesian envelope model and Bayesian

standard model.

biosynthesis pathway genes, such as CMK, DXPS2, FPPS1, and HDS, are primarily as-

sociated with the downstream pathway genes. Our findings are consistent with existing

scientific knowledge. In particular, the association of DXPS2 and HDS with downstream

pathway carotenoid, and the association of FPPS1 and downstream pathway phytosterol

has been demonstrated in Wille et al. (2004). In contrast, the signals detected in the stan-

dard model are noticeably noisier and more sporadic, due to the presence of immaterial

variability in the estimates. This is also consistent with the larger posterior standard de-

viations presented in panel A of Figure 2. By appropriately identifying and discarding the

immaterial variability, the envelope model enhances signal detection. The signal detection

performance of the frequentist envelope and RRR models is included in Supplement C.17.
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7.2.2 Predictor Envelope Model

The yeast cell cycle dataset was analyzed in Chun and Keleş (2010) under the context

of sparse PLS. It contains the mRNA levels measured at 18 evenly spaced time points

and the binding information of 106 transcription factors for 542 genes. It is known that

transcription factors control the rate at which DNA is transcribed into mRNA. So we took

the measurements of mRNA levels as responses and the binding information of transcription

factors as predictors. We ran Algorithm D.1 to generate 10,000 MCMC samples after

discarding a burn-in of 5,000 iterations for every m = 0, 1, . . . , 106. Up to 3 decimal places,

the marginal posterior of m had Pr(m = 2 | data) = 1. We subsequently focused on the

predictor envelope model with m = 2, which is equivalent to the envelope BMA model. We

compared the posterior mean and standard deviation of the Bayesian predictor envelope

model and the Bayesian standard model for each element in β, and the results are in the

left panel Figure 4. The posterior standard deviations of the standard model are noticeably

larger than those of the envelope model, which confirms the efficiency gains obtained by

the envelope estimator.

We also investigate the prediction performance via LPPD values. We followed the

same procedure as in Section 7.2.1 and obtained the test-set LPPD values for Bayesian

envelope and standard models based on 100 random 80 − 20% partitions of the data. The

right panel of Figure 4 shows that for each random partition, the LPPD for the Bayesian

predictor envelope model is higher than that of the standard model, thus confirming a

better prediction performance for the envelope model.
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Figure 4: Left panel: Comparison on posterior means and standard deviations for all

elements in β. Right panel: Comparison on LPPD.

7.2.3 Envelope Probit Model

The wine dataset (Aeberhard et al., 1992) contains measurements on 13 characteristics of

wines from two different cultivars in the same region of Italy. There are 48 and 71 samples

from the first and second cultivars respectively. A binary response takes value 1 if the wine

is from the second cultivar and 0 otherwise. For demonstration purposes, we only keep

p = 8 predictors, which are malic acid, ash, alkalinity of ash, magnesium, total phenols,

flavanoids, nonflavanoid phenols and color intensity. This is because having all characteris-

tics in the model creates a perfect linear separation in the data, making estimation of β an

ill-posed problem. We ran Algorithm E.1 (supplement) to generate 20,000 MCMC samples

after discarding a burn-in of 80,000 iterations. The posterior probabilities Pr(m | data)

were obtained to be 0.053, 0.568, 0.302, 0.04, 0.018, and 0.019 for m = 3, 4, 5, 6, 7, and 8

respectively. If we take a point estimator, then m̂ = arg maxk Pr(m = k | data) = 4.

29



Table 3 compares the MCMC posterior mean and standard deviation for each element in

β from the Bayesian envelope probit model with m̂ = 4, envelope BMA, and the Bayesian

standard probit model. We note that the posterior standard deviations of the standard

probit estimator are about twice as large as their envelope model counterparts, again

exhibiting the efficiency gains achieved by the envelope model.

Model Measure β1 β2 β3 β4 β5 β6 β7 β8

mean -0.86 -0.16 -0.09 -0.04 2.51 -0.22 2.89 -1.72
Envelope m̂

sd 0.45 0.13 0.21 0.04 1.05 0.11 1.15 0.47

mean -1.21 -0.24 0.11 -0.05 1.38 0.21 1.26 -1.89
Envelope BMA

sd 0.59 1.34 0.23 0.04 1.77 2.95 1.48 0.74

mean -1.56 -8.00 0.17 0.06 7.87 17.73 3.51 -4.84
Standard

sd 0.78 5.40 0.32 0.08 4.05 12.26 1.97 2.22

Table 3: Posterior means and standard deviations of each element in β from the envelope

probit model with m̂ = 4, envelope BMA and the Bayesian standard probit model.

8 Discussion

This paper proposes a Bayesian framework for envelope models aiding a unified approach

for multiple different contexts. Our framework can potentially be further extended to

derive novel Bayesian envelope methodologies for several other contexts, such as the quan-

tile/expectile envelope model, envelope models in matrix/tensor variate regression, and

envelope models in reduced rank regression, to name a few. Variable selection, either on

predictor variables or response variables, can be accommodated in this framework through
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sparsity-inducing priors such as the spike and slab priors (Mitchell and Beauchamp, 1988),

global-local priors (Polson and Scott, 2010) or beta-prime priors (Bai and Ghosh, 2021).

The Bayesian sparse predictor envelope model may give rise to a Bayesian sparse PLS; such

a model is currently under investigation.
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