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Abstract

Envelope models and methods represent new constructions that can lead to substantial
increases in estimation efficiency in multivariate analyses. The envlp toolbox implements
a variety of envelope estimators under the framework of multivariate linear regression,
including the envelope model, partial envelope model, heteroscedastic envelope model,
inner envelope model, scaled envelope model, and envelope model in the predictor space.
The toolbox also implements the envelope model for estimating a multivariate mean.
The capabilities of this toolbox include estimation of the model parameters, as well as
performing standard multivariate inference in the context of envelope models; for example,
prediction and prediction errors, F test for two nested models, the standard errors for
contrasts or linear combinations of coefficients, and more. Examples and datasets are
contained in the toolbox to illustrate the use of each model. All functions and datasets
are documented.

Keywords: multivariate linear regression, envelope models, dimension reduction, Grassmann
manifold, MATLAB.

1. Introduction

The envelope model is a new construction originally introduced by Cook, Li, and Chiaromonte
(2010) in the context of multivariate linear regression

Y = α+ βX + ε, (1)

where Y ∈ Rr is the multivariate response vector, X ∈ Rp is the non-stochastic predictor
vector centered at 0 in the sample, the error vectors ε ∈ Rr are identically and independently
distributed across observations with mean 0 and positive definite covariance matrix Σ ∈ Rr×r,
and α ∈ Rr is the unknown intercept. The key parameters are the elements of the coefficient
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matrix β ∈ Rr×p. Compared to the standard ordinary least squares estimator β̂ols, the
envelope estimator β̂em is potentially less variable and thus more efficient. This is achieved
by allowing for the possibility that the distribution of some linear combinations of Y is
invariant to changes in X, and we call this the immaterial part of Y. The immaterial part of
Y provides no worthwhile information on β, and yet it increases the variation in β̂ols. The
envelope model identifies and accounts for the immaterial information and therefore reduces
the variation in estimation. This reduction can be substantial, especially when the immaterial
part of Y introduces large variation.

Several extensions have been developed following Cook et al. (2010). The partial envelope
model (Su and Cook 2011) focuses on the estimation of the coefficients for a selected subset
of the predictors, and is therefore more efficient in estimating those coefficients. The inner
envelope model (Su and Cook 2012) applies the enveloping idea in a novel way, which re-
sults in new methodology that is able to gain efficiency even when there is no immaterial
information in the data. The heteroscedastic envelope model (Su and Cook 2013) removes
the constant variance assumption in the envelope model, making it more flexible and more
widely applicable. The scaled envelope model (Cook and Su 2013) is a scale invariant version
of the envelope model, which can offer efficiency gains beyond those from the envelope model
itself. The envelope model in the predictor space (Cook, Helland, and Su 2013) focuses on
dimension reduction for the predictors. It is equivalent to the partial least squares (PLS) in
the population and yet performs better than PLS with finite samples. The envelope model
that estimates a multivariate mean can be viewed as an alternative to Stein estimation. Like
the other methods it is particularly effective and can perform better than Stein estimation
when there is immaterial information present in the data.

The only software that now performs envelope estimation is MATLAB (The MathWorks, Inc.
2012b) package LDR (Cook, Forzani, and Tomassi 2009). This package is mainly focused
on likelihood-based sufficient dimension reduction, not envelope estimation. It implements
the basic envelope model in Cook et al. (2010), but not any of its extension or any inference
methods in the envelope model context. This article describes the toolbox envlp, which im-
plements all the existing envelope methods. It also contains functions for dimension selection,
bootstrap estimation, prediction and hypothesis testing. Examples are provided to illustrate
the use of the toolbox. All the documentation, as well as updates can be checked at the
website http://code.google.com/p/envlp/.

The rest of this paper is organized as follows. The envelope models are discussed in Section
2. Section 3 is an overview of the toolbox. Section 4 provides some examples on using the
package. Discussion on future developments is in Section 5.

2. Envelope models

2.1. The basic envelope model

Let (Γ,Γ0) ∈ Rr×r be an orthogonal matrix. If

Γ>0 Y | X ∼ Γ>0 Y, and Γ>Y Γ>0 Y | X,

then Γ>0 Y carries no information on β and it represents the immaterial part of Y, while
Γ>Y is the material part. Let B = span(β). Cook et al. (2010) showed that the previous two
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conditions are equivalent to the following two conditions

(2a) B ⊆ span(Γ), (2b) Σ = PΓΣPΓ + QΓΣQΓ, (2)

where P(·) is a projection matrix onto the subspace indicated by its argument and Q(·) =
I − P(·). If we have (2b), span(Γ) is called a reducing subspace of Σ (Conway 1990). An
envelope subspace is defined as the smallest reducing subspace of Σ containing B (Cook et al.
2010), and is denoted by EΣ(B). In the context of (1), let Γ ∈ Rr×u span the envelope
subspace EΣ(B). The envelope model is then written as follows

Y = α+ ΓηX + ε, Σ = Σ1 + Σ2 = ΓΩΓ> + Γ0Ω0Γ
>
0 ,

where β = Γη, η ∈ Ru×p, Ω ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u) are unknown positive definite
matrices, u is the dimension of the envelope subspace. From this model, the two conditions
in (2) are satisfied: B is contained in span(Γ), and Σ is the sum of Σ1 = VAR(PΓY), the
variance related to the material part of Y, and Σ2 = VAR(QΓY), the variance related to
the immaterial part. It is seen from the envelope model that β and Σ are linked by Γ and
it is this link that results in more efficient estimation of β. In effect, the estimation process
accounts for the variation in the immaterial information Γ>0 Y. Let ‖ · ‖ denote the spectral
norm of a matrix. When ‖Σ1‖ � ‖Σ2‖, the immaterial part has relatively large variation
and the envelope model will offer substantial efficiency gains over the standard model (1).

When u = r, there is no immaterial information in Y, and the envelope model is equivalent
to the standard model (1). This will happen when the rank of β is equal to r.

2.2. Partial envelope model

The partial envelope model (Su and Cook 2011) is appropriate when part of the predictors
are of special interest. It is often more efficient than the envelope model for the purpose of
estimating the regression coefficients for those predictors.

Suppose we can partition X to (X>1 ,X
>
2 )>, where X1 ∈ Rp1 are the predictors of special

interest and X2 ∈ Rp2 are covariates, p1 + p2 = p. Then β can be partitioned accordingly
into (β1,β2), and (1) can be written as

Y = α+ β1X1 + β2X2 + ε,

where β1 ∈ Rr×p1 is the key parameter.

The partial envelope model applies the enveloping idea on β1: Let B1 = span(β1). A partial
Σ-envelope of B1, denoted by EΣ(B1), is the smallest reducing subspace of Σ containing B1.
The coordinate form of the partial envelope model is

Y = α+ ΓηX1 + β2X2 + ε, Σ = Σ1 + Σ2 = ΓΩΓ> + Γ0Ω0Γ
>
0 ,

where Γ ∈ Rr×u1 spans EΣ(B1), Γ0 spans E⊥Σ(B1), the subspace orthogonal to EΣ(B1), u1 is
the dimension of EΣ(B1), η = Γ>β1 ∈ Ru1×p, Ω ∈ Ru1×u1 and Ω0 ∈ R(r−u1)×(r−u1) are both
positive definite matrices. Compared to the envelope model, EΣ(B1) ⊆ EΣ(B) and u1 ≤ u.
Intuitively, more information is immaterial relative to β1, so the partial envelope model is
typically more efficient than the envelope model for the purpose of estimating β1.

The partial envelope model degenerates to the standard model when u1 = r, which means
no information is immaterial to β1. This happens when the rank of β1 is equal to r. So
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in a regression problem where rank(β) = r, the envelope model degenerates to the standard
model; while as long as p1 < r, the partial envelope model is still applicable. In this sense,
the partial envelope model is more flexible than the envelope model.

2.3. Heteroscedastic envelope model

The envelope model in Section 2.1 assumes homogeneity of the error variance. The het-
eroscedastic envelope model (Su and Cook 2013) removes this assumption and allows for
non-constant covariance structure. The heteroscedastic envelope model was developed in
the context of estimating multivariate means for different populations. This problem can be
formulated as

Y(i)j = µ+ β(i) + ε(i)j , i = 1, · · · , p, j = 1, · · · , n(i), (3)

where the subscripts with parentheses denote groups and subscripts without parentheses de-
note observations within a group, Y(i)j ∈ Rr is the jth observation in the ith group, µ ∈ Rr

is the grand mean over all the observations, β(i) ∈ Rr is the main effect of the ith group and
we assume that

∑p
i=1 n(i)β(i) = 0, n(i) is the sample size for the ith group, ε(i)j ∈ Rr follows

a distribution with mean 0 and covariance matrix Σ(i) ∈ Rr×r. From this formulation, the
errors have heteroscedastic covariance structure.

The heteroscedastic envelope model applies the enveloping idea on all the β(i)’s, and at the
same time accommodates the heteroscedastic covariance structure. Let M = {Σ(i) : i =
1, · · · , p} be the collection of covariance matrices and let B = span(β(1), · · · ,β(p)). The M-
envelope of B, denoted by EM(B), is the intersection of all subspaces that contain B and
reduce each member of M. The coordinate form of this model is

Y(i)j = µ+ Γη(i) + ε(i)j , Σ(i) = Σ1(i) + Σ2 = ΓΩ1(i)Γ
> + Γ0Ω0Γ

>
0 ,

where β(i) = Γη(i), Γ ∈ Rr×u is a semi-orthogonal matrix that spans EM(B), Γ0 ∈ Rr×(r−u)

spans its orthogonal complement, η(i) = Γ>β(i) ∈ Ru, Ω1(i) ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u)

are both positive definite matrices, and u is the dimension of EM(B). When u = r, the
heteroscedastic envelope model degenerates to the standard model (3).

Compared with the envelope model in Section 2.1, recognizing the heteroscedastic error struc-
ture leads to more reliable estimators and greater efficiency gains. To test homogeneity of the
covariance matrices, Box’s M test (Johnson and Wichern 2007) can be used.

2.4. Inner envelope model

The inner envelope model (Su and Cook 2012) provides an envelope method that can achieve
efficiency gains even when all of Y is material. It has a different mechanism in utilizing the
tool of reducing subspaces. Under the standard model (1), an inner Σ-envelope of B, denoted
by IEΣ(B), is the reducing subspace of Σ with maximal dimension that is contained in B.
Let Γ1 ∈ Rr×u be an orthogonal basis that spans IEΣ(B). The coordinate form of the inner
envelope model is then

Y = α+ (Γ1η
>
1 + Γ0Bη

>
2 )X + ε, Σ = Γ1Ω1Γ

>
1 + Γ0Ω0Γ

>
0 ,

where β = Γ1η
>
1 +Γ0Bη

>
2 , Γ0 ∈ Rr×(r−u) spans IEΣ(B)⊥, B ∈ R(r−u)×(p−u) is an orthogonal

matrix such that span(Γ1,Γ0B) = B, η1 ∈ Rp×u, η2 ∈ Rp×(p−u), Ω1 ∈ Ru×u and Ω0 ∈
R(r−u)×(r−u) are positive definite matrices, u is the dimension of IEΣ(B).
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The inner envelope model divides β into two parts by IEΣ(B). If the part Γ1η
>
1 is estimated

with greater precision than the standard model (particularly when ‖Σ1‖ � ‖Σ2‖), and the
part Γ0Bη

>
2 is estimated with about the same precision, then overall we get better efficiency

in estimating β. The possible values of u are from 0 to p. When u = 0, the inner envelope
model reduces to the standard model and when u = p, the inner envelope model is equivalent
to the envelope model in Section 2.1.

2.5. Scaled envelope model

The scaled envelope model (Cook and Su 2013) is a scale invariant version of the envelope
model in Section 2.1. It is invariant under scale transformation of the responses and can
achieve efficiency gains beyond those offered by the envelope model. It is an alternative
choice to the envelope model especially when u = r is inferred via the envelope model.

Let Λ ∈ Rr×r be a diagonal matrix to represent the scale transformation of the responses. Its
diagonal elements are λi > 0, i = 1, · · · , r, with λ1 = 1 and the rest to be estimated. Under
the framework of (1), the coordinate form of a scaled envelope model is

Y = α+ ΛΓηX + ε, Σ = ΛΓΩΓ>Λ + ΛΓ0Ω0Γ
>
0 Λ,

where Γ ∈ Rr×u is a semi-orthogonal matrix that spans the Λ−1ΣΛ−1-envelope of Λ−1B,
Γ0 ∈ Rr×(r−u) is the completion of Γ, η ∈ Ru×p, Ω ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u) are
positive definite matrices, and u is the dimension of the Λ−1ΣΛ−1-envelope of Λ−1B. The
scaled envelope model reduces to the standard model (1) when u = r. Like the other envelope
methods, the goal of the scaled envelope is to improve estimation efficiency in the estimation
of β = ΛΓη. When u < r, the scaled envelope model is not nested within the standard model
or any scaled envelope model with a large dimension, so likelihood ratio testing cannot be
applied for selection of u.

2.6. Envelope model in the predictor space

The envelope model in the predictor space (Cook et al. 2013) is based on the possibility
that the distribution of the full response vector Y is invariant to changes in some linear
combinations of the predictors X. It can be applied under the context of (1) with the response
being univariate or multivariate. In terms of prediction, the performance of this estimator
is asymptotically as good as or better than the least squares estimator. In population, it
is equivalent to the partial least squares estimator obtained from the SIMPLS algorithm
(de Jong 1993), but it typically has better performance with finite samples.

In contrast to the previous envelope models, we now assume that the predictors are random
so (Y,X) has a joint distribution. Let ΣX = VAR(X) and let B∗ = span(β>). Then the ΣX-
envelope of B∗, denoted by EΣX

(B∗), is the smallest reducing subspace of ΣX that contains
B∗. Letting Γ ∈ Rp×u be an orthogonal basis of EΣX

(B∗), the coordinate form of the envelope
model in the predictor space is

Y = µ+ η>Ω−1Γ>X + ε, ΣX = ΓΩΓ> + Γ0Ω0Γ
>
0 , (4)

where β = η>Ω−1Γ>, Γ0 ∈ Rp×(p−u) is an orthogonal basis for E⊥ΣX
(B∗), η ∈ Ru×r, Ω ∈

Ru×u, Ω0 ∈ R(p−u)×(p−u), and u is the dimension of the envelope EΣX
(B∗). When u = p, this

envelope model reduces to the standard model (1).
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Under model (4), let E denote EΣX
(B∗) for subscripts, then Y is conditionally uncorrelated

with QEX given PEX, and QEX is uncorrelated with PEX. Then QEX is immaterial to the
regression. By recognizing and accounting for the immaterial part, the envelope model (4)
has a better prediction performance than the standard model or even the partial least squares
estimator.

2.7. Envelope model with small sample size

When the sample size is smaller than r in the envelope model (Section 2.1) or p in the envelope
model in the predictor space (Section 2.6), the usual envelope estimators cannot be computed.
In these cases, a sequential algorithm (Cook 2012) can be used to obtain estimators that are
(i) equivalent to the usual envelope estimators in the population, (ii) not generally as efficient
when n > r or n > p, but (iii) can still provide useful results in small samples.

The usual estimators of an envelope subspace are obtained by optimizing an objective function
over a Grassmann manifold. For example, to estimate EΣ(B) (cf. Section 2.1), we minimize
the following objective function over a Grassmann manifold G(r, u):

Γ̂ = arg min
Γ∈G(r,u)

log |Γ>Σ̂resΓ|+ log |Γ>Σ̂
−1
Y Γ|,

where Σ̂Y ∈ Rr×r is the sample covariance matrix of Y, Σ̂res ∈ Rr×r is the sample covariance
matrix of the residuals from the least squares regression of Y given X, and | · | is the determi-
nant. The matrix Σ̂Y is singular when the sample size is smaller than r and consequently the
objective fuction is not well-defined. However, a sequential algorithm can be used to obtain
an alternative estimator of Γ. This estimator then allows straightforward computation of the
other parameters in the envelope model, including β.

Let u ∈ Ra×b have rank(u) ≤ b, let S = span(u) ⊆ span(M), where M ∈ Ra×a is a semi
positive-definite matrix. Suppose that the M-envelope of S, EM(S), has dimension d. Set
w0 = 0, W = w0, and U = uu>. Then, for k = 0, 1, · · · , d− 1, construct

Ek = span(MWk)

wk+1 = l1(QEkUQEk)

Wk+1 = span(w0, · · · ,wk,wk+1),

where l1(A) means the eigenvector corresponding to the largest eigenvalue of A. At termi-
nation, EM(S) = span(Wd). The sample version of this algorithm is obtained by simply
substituting sample versions of U and M.

This sequential algorithm can be used for estimating a general envelope subspace. In this
toolbox, it is implemented for the envelope model and the envelope model in the predictor
space. With envelope model in the predictor space, Cook et al. (2013) showed that in the
population the envelope subspace provided by this algorithm is the same as that provided by
the SIMPLS algorithm.

The sequential algorithm described above can also be used for large sample size cases, and
it is much faster than performing the Grassmann manifold optimization. It also provides
a
√
n consistent estimator of the envelope subspace, although with large sample size, this

estimator’s performance may not be as good as that of the estimator based on Grassmann
optimization.
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2.8. Envelope estimator for multivariate mean

The context for the envelope methodology in this section is a bit different from that in previous
sections, as now we consider estimating the multivariate mean, not fitting multivariate linear
regression. Assuming that the sample Y1, · · · ,Yn is independent and identically distributed
with mean µ and covariance matrix Σ ∈ Rp×p, the sample mean Ȳ =

∑n
i=1 Yi is a natural

estimator of µ. James and Stein proved that this estimator is not admissible and is dominated
by the James-Stein estimator for p ≥ 3. Preliminary investigations have indicated that the
envelope estimator for multivariate mean has a smaller mean square error than Ȳ, and it
often has a smaller mean square error than the James-Stein estimator.

The envelope estimator for the multivariate mean is based on the assumption that µ is
orthogonal to some eigenvectors of Σ. Diaconis and Freedman (1984) showed that as the
dimension tends to infinity, two random vectors are orthogonal to each other with probability
1. In the envelope model for estimating the multivariate mean, it is assumed that µ lies
within the space spanned by a subset of the eigenvectors of Σ, and we call the space S. By
a result in Cook et al. (2010), S is the Σ-envelope of M, where M = span(µ).

Let Γ ∈ Rp×u be a semi-orthogonal matrix that spans EΣ(M), then the envelope model is

µ = Γη, Σ = ΓΩΓ> + Γ0Ω0Γ
>
0 ,

where u is the dimension of EΣ(M), Γ0 ∈ Rp×(p−u) is the completion of Γ, η ∈ Ru, Ω ∈ Ru×u

and Ω0 ∈ R(p−u)×(p−u) carry the coordinates. The envelope estimator has the form µ̂em =
P

Γ̂
Ȳ.

The difference between the James-Stein estimator and the envelope estimator can be visualized
in Figure 1. In the figure, the ellipse represents the distribution of Ȳ. The James-Stein
estimator of µ is denoted as µ̂JS , and it shrinks Ȳ towards the origin. In contrast to µ̂JS ,
the envelope estimator µ̂em is the projection of Ȳ onto the estimated envelope ÊΣ(M). In
this figure, EΣ(M) aligns with the eigenvector corresponding to the smaller eigenvalue of Σ.
Then the envelope estimator µ̂em is much less variant than Ȳ, and it is expected to have a
smaller mean squared error than Ȳ, or even µ̂JS .

2.9. Role of normality

None of the envelope models discussed in Sections 2.1–2.8 require constraints on the distribu-
tion of the errors ε beyond those listed previously. Adding the assumption that the errors are
normally distributed facilitates an analysis by providing a well-defined likelihood and asymp-
totic standard errors. Excluding the sequential methods, all fitting in the envlp toolbox is
based on normal likelihoods, along with their corresponding inference methods. Those like-
lihoods also provide

√
n-consistent estimators without normality and experience has shown

that they perform well in non-normal settings. However, inference methods may be impacted
by clear deviations from normality and then it is recommended that the bootstrap methods
available in the envlp toolbox be used for standard errors and inference. The bootstrap is the
only method provided for computing standard errors for the sequential estimators, as listed
in Table 1.

3. Toolbox overview
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Figure 1: Graphical illustration of James-Stein estimator µ̂JS and envelope estimator µ̂em.

The toolbox envlp implements all the envelope methods discussed in Section 2. It is mod-
ularized, with nine modules, each written for a model: env for the basic envelope model,
henv for the heteroscedastic envelope model, ienv for the inner envelope model, penv for the
partial envelope model, senv for the scaled envelope model, xenv for the envelope model in
the predictor space, envmean for the envelope estimator of the multivariate mean, envseq and
xenvpls are counterparts of env and xenv in small sample size cases. Each module has three
parts: the core function that fits the model, dimension selection functions, and inference tools.
In this toolbox, the core function always has the same name as the module. The dimension
selection functions and inference tools available are different from module to module, as the
nature of the models is different. All modules will be described in details later in this section.
The structure of this toolbox is summarized in Table 1.

This toolbox relies on MATLAB toolbox sg min 2.4.3 (Lippert 2004) for Grassmann manifold
optimization. sg min 2.4.3 uses the analytical first derivative and numerical second deriva-
tive of the objective function to perform the optimization, and we find it is stable. Some
modifications are made to it for the envelope model context. A few auxiliary functions in the
toolbox envlp rely on MATLAB Statistics toolbox (The MathWorks, Inc. 2012a), LDR toolbox
(Cook et al. 2009), Tcodes toolbox (Strang 2000) and function MBoxtest (Trujillo-Ortiz and
Hernandez-Walls 2002).

To install the toolbox, direct the MATLAB working directory to the folder “envlp”, and type
the command install_envlp. If a previous version is present, simply replace the folder by
that of the latest version and type install_envlp. The installation will be completed if
you agree with the license agreement. You do not need to load the auxiliary functions or
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Module Dimension selection Inference tools Section

env

AIC Estimation and prediction

2.1
BIC Bootstrap for estimating standard errors
LRT Hypothesis test on coefficients
m-fold CV

envseq m-fold CV Bootstrap for estimating standard errors 2.7

henv

AIC Estimation and prediction

2.3
BIC Bootstrap for estimating standard errors
LRT Hypothesis test on coefficients
m-fold CV

ienv

AIC Estimation and prediction

2.4
BIC Bootstrap for estimating standard errors
LRT Hypothesis test on coefficients
m-fold CV

penv

AIC Estimation and prediction

2.2
BIC Bootstrap for estimating standard errors
LRT Hypothesis test on coefficients
m-fold CV

senv

AIC Estimation and prediction
2.5BIC Bootstrap for estimating standard errors

m-fold CV Hypothesis test on coefficients

xenv

AIC Estimation and prediction

2.6
BIC Bootstrap for estimating standard errors
LRT Hypothesis test on coefficients
m-fold CV

xenvpls m-fold CV Bootstrap for estimating standard errors 2.7

envmean

AIC Estimation and prediction

2.8
BIC Bootstrap for Estimating Standard Errors
LRT Hypothesis test
m-fold CV

Table 1: Structure of toolbox envlp.
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toolboxes mentioned before. Once the toolbox is installed, you can call functions or datasets
in the toolbox from any current working directory.

The toolbox contains three types of functions: the core functions, functions for dimension
selection and functions for inference tools. Section 3.1 to 3.3 are devoted to the description
of these three types.

3.1. Core functions

The functions that fit the envelope models are the core functions of this package. There are
nine of them, one in each module, and they share the same names as the module names.
For example, the function env fits the envelope model, and the function envmean finds the
envelope estimator for the multivariate mean. The envelope models in the regression context
are env, henv, ienv, penv, senv, xenv, envseq and xenvpls. The inputs for these models
are X, Y and u, where X and Y store the data matrices for the predictors and the responses,
and u is the dimension of the envelope, which can be obtained by the functions discussed in
Section 3.2. The inputs for envmean are the data matrix Y and the dimension of the envelope
u, as this context does not involve any predictors. The output of these nine functions is a list
containing the envelope estimators of model parameters, and important statistics calculated
from the models like the value of the maximized log-likelihood function, asymptotic covariance
matrix of the estimators, number of parameters in the model and many others.

We present an example by applying the envelope model to the wheat protein data in Cook
et al. (2010). The wheat protein data contains seven variables, the logarithms of near infrared
reflectance measured at six wavelengths and a group indictor taking value 0 or 1 for wheat with
low or high protein content. In multivariate linear regression (1), we take the group indicator
as the predictor and the spectral measurements as responses. The regression coefficients are
then the mean differences between the two groups. For demonstration purpose, we take only
the third and fourth measurements as responses, so that we can visualize the data. First we
load the data and assign the predictor and responses.

load wheatprotein.txt

X = wheatprotein(:, 8);

Y = wheatprotein(:, 3 : 4);

Figure 2 displays the data with two axis assigned to the two responses. For better visu-
alization, we centered the data to have mean 0. Under the standard model, the estimated
coefficients in β are 7.52 and −2.06, with the associated standard errors for these two elements
being 8.64 and 9.49. The standard errors returned by Out.asySE are asymptotic, for actual
standard errors, we need to multiply by 1/

√
n, where n is the sample size.

Out1 = fit_OLS(X, Y);

Out1.betaOLS

ans =

7.5224

-2.0609
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Figure 2: Graphical illustration of the working mechanism of the envelope model. The solid
dots mark the wheat with high protein content and the open circles mark the wheat with low
protein content.

n = 50;

Out1.asySE / sqrt(n)

ans =

8.6372

9.4852

The standard errors are large relative to the absolute value of elements in β̂, so it is hard
to tell the difference between the two groups. The two curves in the left panel of Figure 2
present the projection distribution of the two groups onto the Y1 axis, with the solid line for
the high protein group and the dashed line for the low protein group. The projection path for
a sample point ‘x’ is marked as A in the plot. We notice that the two curves almost overlap
with each other, so it is hard to distinguish between the two groups. This is consistent with
the comparison of the absolute values of elements in β̂ and their associated standard errors.

To fit the envelope model to this data, we need the dimension of the envelope. Dimension
selection will be discussed in Section 3.2, for now we just fixed the dimension of the envelope
at 1.

ModelOutput = env(X, Y, 1);

ModelOutput

ModelOutput =
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beta: [2x1 double]

Sigma: [2x2 double]

Gamma: [2x1 double]

Gamma0: [2x1 double]

eta: -6.9506

Omega: 6.0042

Omega0: 2.0510e+03

alpha: [2x1 double]

l: -377.3568

covMatrix: [2x2 double]

asyEnv: [2x1 double]

ratio: [2x1 double]

paramNum: 6

n: 50

After fitting the envelope model, the output is a list containing the estimates of regression
coefficients β, error covariance matrix Σ, parameters in the envelope model including Γ, η,
Ω, and Ω0, as well as important statistics like the value of the maximized log-likelihood l, the
asymptotic covariance matrix of vectorized β̂, the asymptotic standard error for each element
in β̂, the number of parameters in the model and the sample size. To get the estimated
group difference, we call the respective component in the list ModelOutput.beta. Similar
to the standard model, we can get the standard errors for elements in β by dividing their
asymptotic standard errors by

√
n.

ModelOutput.beta

ans =

5.1405

-4.6782

ModelOutput.asySE / sqrt(n)

ans =

0.5142

0.4685

The envelope estimators of the two elements in β̂ are 5.14 and −4.68, with standard errors
0.51 and 0.47. Compared to the size of the elements in β̂, the standard errors are small
and it is easy to tell the difference between the two groups. The right panel of Figure 2
illustrates the envelope analysis: The envelope model identifies the variation in the direction
of Ê⊥Σ(B) as carrying no information on β, so a sample data point ‘x’ is projected first onto

the envelope subspace ÊΣ(B), and then onto the Y1 axis. The projection route is marked as B.
The uniqueness of the envelope model is reflected on the first segment of B, which accounts
for the immaterial information in the data. The two curves on the Y1 axis are projection
distributions of the two groups, with each data point following route similar to B. The two
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curves are well separated, indicating that we have obtained substantial efficiency gains. To
quantify the gains, we can compare the standard errors of the standard estimator and the
envelope estimator by taking their ratios. In this example, the ratios are 16.80 and 20.25 for
the two elements in β.

3.2. Dimension selection

Likelihood based methods including Akaike information criteria (AIC), Bayesian information
criteria (BIC) and likelihood ratio testing (LRT) are implemented for selecting the dimension
of an envelope. In small sample size cases where the likelihood is not well-determined, we
select the dimension by m-fold cross validation.

The functions modelselectaic, modelselectbic and modelselectlrt choose the dimension
for the envelope models in the regression context by AIC, BIC and LRT. The common inputs
for these three functions are data matrix X, Y, and modelType, while LRT has an additional
input alpha indicating the significance level. The choices for modelType are ’env’, ’henv’,
’ienv’, ’penv’, ’senv’ and ’xenv’.

The function mfoldcv chooses the dimension of the envelope models by m-fold cross validation.
It divides the data into m folds of about equal size, and then uses one fold in turn as testing
samples and the rest as training samples. The function returns the dimension that minimizes
the average squared prediction errors using the identity inner product. The inputs for mfoldcv
are data matrices X, Y, number of folds m and modelType. This method can be applied to any
model, so the choices for modelType are ’env’, ’envseq’, ’henv’, ’ienv’, ’penv’, ’senv’,
’xenv’, ’xenvpls’ and ’envmean’.

We write separate dimension selection functions for envelope estimator of multivariate means,
as they have different input variables. The input variable of aic_envmean, bic_envmean and
lrt_envmean is the data matrix Y only.

The output for all the dimension selection functions is an integer u for the dimension of the
envelope subspace.

Back to the wheat protein data example discussed in Section 3.1, we applied AIC, BIC and
LRT with significance level 0.01 to select the dimension.

u1 = modelselectaic(X, Y, 'env');
u1

u1 =

1

u2 = modelselectbic(X, Y, 'env');
u2

u2 =

1

u3 = modelselectlrt(X, Y, 0.01, 'env');
u3
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u3 =

1

We notice that all three criteria agree that the dimension of the envelope subspace is 1.
According to the right panel in Figure 2, u = 1 is well agreed by the data, and the estimated
envelope subspace ÊΣ(B) is marked in the plot.

3.3. Inference tools

The inference tools provided by toolbox envlp include bootstrap estimation of standard errors,
estimation and prediction at a new observation, and hypothesis testing.

The function bootstrapse computes the standard errors for elements in the estimated re-
gression coefficients by bootstrapping the residuals. Its inputs are data matrices X, Y, the
dimension of the envelope u, number of bootstrap sample B, and modelType, which can be
env, envseq, henv, ienv, penv, senv, xenv or xenvpls. The output bootse is a matrix hav-
ing the same dimension as β with each element being the standard error of the corresponding
element in β̂. The function btrsp_envmean computes the standard errors for elements in
µ̂em. Its inputs and output are similar to bootstrapse, except that it does not need X and
modelType for input.

The function predict performs estimation or prediction for envelope models in the regression
context. It returns a list PredictOutput which includes the estimated or predicted value, its
standard errors and covariance matrix. The input ModelOutput is the output list from the
core functions, Xnew is a column vector containing the value of X at which to estimate or
predict Y, infType can be chosen from ‘estimation’ or ‘prediction’, and modelType can be
env, henv, ienv, penv, senv or xenv. In the context of estimating a multivariate mean, the
prediction function is called predict_envmean. It has similar structure as predict except
that it does not have inputs Xnew and modelType.

The function testcoefficient tests if certain linear combination of the rows or columns of
the regression coefficients are equal to some pre-specified values. More specifically, letting
L, R and A be a × r, p × b and a × b matrices of constants, testcoefficient tests H0 :
LβR = A versus Ha : LβR 6= A. The inputs are ModelOutput which is the output from the
core functions, TestInput which is a list that specifies L, R and A in the hypotheses and
modelType which can be chosen from env, henv, ienv, penv, senv and xenv. The output
TestOutput is a list that contains test statistic, degrees of freedom, p value and the covariance
matrix of vectorized Lβ̂R. At the same time, a table is printed out to display the test results.
The function testcoefficient_envmean is for testing H0 : Lµ = A versus Ha : Lµ 6= A,
where µ is the multivariate mean, L is an a× r matrix and A is an a× 1 vector. The output
of testcoefficient_envmean has the same form as testcoefficient, but its input does
not include modelType.

Continuing with the wheat protein example, the standard error of each element in β̂ can
also be estimated by residual bootstrap, which be obtained by the command bootstrapse.
The inputs for bootstrapse are the predictors X, the responses Y, the dimension of the
envelope model u, the number of bootstrap samples B, and a string that represents the model
modelType. We took u = 1 as discussed in Section 3.2, and we put ’env’ for modelType.

B = 100;
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bootse = bootstrapse(X, Y, 1, B, 'env')

bootse =

0.5213

0.4767

Recall that the standard errors calculated using asymptotic standard errors are 0.5142 and
0.4685, which are quite close to the bootstrap standard errors. We do not set seeds for the
function bootstrapse, so the user can get different results each time he runs the function.
But when B is large, the results should be close to each other.

Now to test if β = 0, we use the function testcoefficient. If we do not input L, R and A
and leave the input TestInput as blank, then by default it is testing if β = 0.

TestOutput = testcoefficient(ModelOutput, 'env');

Test Hypothesis Chisq Statistic DF P-value

-------------------------------------------------------

L * beta * R = A 100.416 2 0.0000

-------------------------------------------------------

The output table shows a highly significant p value, which is strong evidence that the two
wheat groups are different.

3.4. Monitoring and controlling the convergence speed

The running time for most examples in the package is in the order of seconds, some are in
the order of minutes. It can take longer for larger data sets. Envelope estimation relies on
Grassmann manifold optimization, which uses an iterative algorithm. The running time of
the functions depends on the nature of the methods, tolerance levels for convergence and the
starting value. For example, using AIC or BIC for dimension selection takes longer than using
LRT because of different stopping criteria; senv runs longer than env because of its method
of estimation; setting the tolerance level at 10−7 can reduce running time than setting the
tolerance level at 10−9. For this purpose, we add an optional argument Opts to each function
so that the user can monitor the iteration process and adjust the tolerance level. Opts is a
list, and it provides the user the option to display the current number of iteration, specify a
starting value, control the maximum number of iteration and set the tolerance levels. If the
user does not define any of the components, default values will be used. For more details,
please refer to the user’s guide.

4. Example

In this section, we provide one more example which uses the module henv. We hope the
users can get an idea of the similarity and difference in the usage of different modules. The
water strider data was analyzed by Su and Cook (2013). It has 30 measurements of eight
characteristics for each of the three species of water striders: L. esakii, L. dissortis and L.
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rufoscutellatus. In the datafile “waterstrider.mat”, X contains the two group indicators and Y

contains the eight characteristics. The coding of the group indicators is a little different from
the usual, the first group indicator takes value 1, 0 and −1 for L. esakii, L. dissortis and L.
rufoscutellatus, and the second group indicator takes value 1, 0 and −1 for L. dissortis, L.
esakii and L. rufoscutellatus. The interest lies in comparison of the three species. First we
test if the covariance matrices of the different species are the same. Box’s M test (Johnson
and Wichern 2007) is implemented in the toolbox for this purpose.

load waterstrider.mat

alpha = 0.01;

TestOutput = mtest(X, Y, alpha);

------------------------------------------------

MBox Chi-sqr. df P

------------------------------------------------

157.5977 137.3361 72 0.0000

------------------------------------------------

Covariance matrices are significantly different.

The highly significant p-value suggests that the covariance matrices for the three species are
different. Therefore, it is not appropriate to use the basic envelope model which assumes
constant covariance matrix across the species. Instead we use the heteroscedastic envelope
model to fit this data.

u1 = modelselectaic(X, Y, 'henv');
u1

u1 =

6

u2 = modelselectbic(X, Y, 'henv');
u2

u2 =

4

u3 = modelselectlrt(X, Y, 0.01, 'henv');
u3

u3 =

6

AIC and LRT with significance level 0.01 both yield u = 6 while BIC selects u = 4. To be
more conservative, we fit the heteroscedastic envelope model with u = 6.
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ModelOutput = henv(X, Y, 6);

ModelOutput

ModelOutput =

mu: [8x1 double]

mug: [8x3 double]

Yfit: [90x8 double]

Gamma: [8x6 double]

Gamma0: [8x2 double]

beta: [8x3 double]

groupInd: [3x2 double]

Sigma: [8x8x3 double]

eta: [6x3 double]

Omega: [6x6x3 double]

Omega0: [2x2 double]

paramNum: 98

l: 1.0051e+03

covMatrix: [32x32 double]

asySE: [8x3 double]

ratio: [8x3 double]

ng: [3x1 double]

As we are in the context of comparing multivariate mean for different populations, the output
list for the heteroscedastic envelope model contains the estimates of the grand mean µ, the
group means µ(i), and the error covariance matrices for each group Σ(i). The output list also
has the constituent parameters and important statistics just as in the output list of env. To
get the estimated group mean, we call ModelOutput.mug.

ModelOutput.mug

ans =

-1.1417 -1.1267 -1.0845

-1.4063 -1.4067 -1.3132

-1.3314 -1.3336 -1.2152

-0.3113 -0.1839 -0.1736

0.4003 0.3847 0.3072

0.4107 0.3753 0.3735

0.3467 0.3271 0.3179

-0.1954 -0.2100 -0.3488

If there are p groups, ModelOutput.mug will have p columns, each for one group. We can find
the corresponding group indicators by calling

ModelOutput.groupInd
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ans =

-1 -1

0 1

1 0

The ith row in ModelOutput.groupInd corresponds to the ith column in ModelOutput.mug.
For example, the estimated mean vector of the eight characteristics for L. rufoscutellatus is
in the first column of ModelOutput.mug. To predict a new observation, we input its group
indicator. Suppose we want to predict a new observation of L. dissortis.

Xnew = [0 1]';
PredictOutput = prediction(ModelOutput, Xnew, 'prediction', 'henv');
[PredictOutput.value, PredictOutput.SE]

ans =

-1.1267 0.3716

-1.4067 0.3784

-1.3336 0.3539

-0.1839 0.2376

0.3847 0.4596

0.3753 0.3519

0.3271 0.4700

-0.2100 0.3849

The first column gives the predicted value, which is the estimated group mean, and the
prediction errors are in the second column.

The usage of other modules is similar, it is just the inputs and outputs of the functions are
tailored for different models. For details on the syntax and semantics of the functions, the
user can refer to the Reference Manual.

5. Conclusion

The MATLAB toolbox envlp implements a variety of envelope models in the context of mul-
tivariate linear regression and estimating multivariate means. Complete documentation is
provided for each function and a user’s guide to the toolbox is also available. Description for
all datasets is also included. Scripts are provided to reproduce all published results of these
methods. The package is modularized and it is easy for the user to follow the structure of the
package if they want to add new methods to the toolbox. Our aim for the future is to extent
the package and add more methods to the toolbox as well as providing more inference tools.
Updates can be checked on the toolbox website.
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