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Summary

The envelope model was first introduced as a parsimonious version of multivariate linear regres-

sion. It uses dimension reduction techniques to remove immaterial variation in the data and has the

potential to gain efficiency in estimation and improve prediction. Many advances have taken place

since its introduction, and the envelope model has been applied to many contexts in multivari-

ate analysis, including partial least squares, generalized linear models, Bayesian analysis, variable

selection, and quantile regression, among others. This article serves as a review of the envelope

model and its developments for those who are new to the area.
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1 Introduction

The envelope model aims to achieve efficient estimation in multivariate analysis. It was first in-

troduced in the context of multivariate linear regression (Cook et al., 2010), and has been applied

to many other contexts including partial least squares, matrix-variate or tensor-variate regression,

variable selection, Bayesian linear regression, generalized linear regression, and quantile regres-

sion, among others. The structure of the envelope model has been extended and enriched to remove

constraints on the data structure and further improve the efficiency in estimation (e.g. partial en-

velope model, inner envelope model, scaled envelope model, heteroscedastic envelope model and

groupwise envelope model). All these developments are scattered in a number of research papers

in different journals. Cook (2018) is a textbook that gives a comprehensive review of the envelope

model. However, there is currently no short review of the envelope model designed for people

who have little or no acquaintance with the area of envelope models. The goal of this article is to

provide a quick introduction to the envelope model and a brief overview of the developments in

the area aimed at non-experts. This article also include some important new developments, such

as the envelope quantile regression, that appeared after the publication of Cook (2018).

The goal of the envelope model is to improve the estimation efficiency of standard multivariate

analysis methods, sometimes equivalent to taking many more observations. It achieves efficiency

gains by using sufficient dimension reduction techniques to remove immaterial information. With

the development of measurement technologies, the volume of data has increased rapidly, and many

datasets contain information that is immaterial to the goal at hand. For example, to assess the

effectiveness and side effects of a new drug in clinical trials, many clinical variables of patients

are recorded before and after taking the drug. While some clinical variables respond to the effect
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of the drug, other clinical variables, or more generally, some linear combinations of all clinical

variables do not change after taking the drug. These linear combinations are called the immaterial

part of the data. The immaterial part provides no information on the estimation of the parameter

of interest, e.g. the effect of the drug; however, it brings extraneous variation in the estimation.

The envelope model identifies and removes the immaterial part, so that the subsequent analysis is

based on the material part only, and is therefore more efficient.

We first use an example to illustrate the estimation efficiency gains obtained by the envelope

model and its working mechanism in the context of multivariate linear regression. The Berkeley

guidance data (Tuddenham and Snyder, 1953) include height measurements for 39 boys and 54

girls born in 1928–1929 in Berkeley, CA. For illustration purposes, the heights at ages 13 and

14 are taken to be the bivariate responses (Y1, Y2)
T . The predictor X is the sex indicator, which

takes value 0 or 1 to denote girls or boys, respectively. Then β = (β1, β2)
T = E(Y | X =

1)−E(Y | X = 0) describes the height difference between boys and girls. We first fit the standard

multivariate linear regression model to the data. The left panel of Figure 1 shows the standard

inference on β1. The projection path for a representative point ‘X’ is marked as A. The two curves

at the bottom present the projection distribution of the two groups (boys and girls) onto the Y1 axis.

The two curves are barely distinguishable, which suggests that a large sample size is required to

detect the difference under the standard model. To estimate the standard deviation of the estimator

of β, the bootstrap standard deviation based on the residual bootstrap (the bootstrap method that

involves resampling the residuals) with 200 replications is calculated. The bootstrap standard

deviations for the two elements in the standard estimator of β are 1.80 and 1.81. The inference

under the envelope model is described in the right panel of Figure 1. The envelope model exploits

the feature that the distribution of the linear combination of Y marked as ΓT
0 Y does not depend on
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X , where Γ0 ∈ R2 is a vector that indicates the direction of the linear combination. So a point ‘X’

is first projected onto the direction that is orthogonal to Γ0, marked as Γ, to remove the immaterial

information, and is then projected onto the horizontal axis. The two segments in the projection

path are marked as B1 and B2. The two distribution curves are well separated, which indicates

the efficiency gains from the envelope estimation. The bootstrap standard deviations for the two

elements in the envelope estimator of β are 0.19 and 0.19. In other words, under the standard

inference, we would need a sample size that is about (1.80/0.19)2 = 90 times the original sample

size to achieve the same accuracy as we have here. The direction Γ is estimated as (1,−1)T and the

direction Γ0 is estimated as (1, 1)T (estimation is discussed in Section 2.2), which means that the

average height at ages 13 and 14, i.e. (Y1 + Y2)/2, is immaterial (or independent) to the changes

in X , while the height difference Y1 − Y2 is material (or dependent) to the changes in X . This

example shows that the mechanism of the efficiency gains in the envelope model is to identify

the immaterial part of Y, and carry out the subsequent analysis only on the material part. From

the envelope inference (see the right panel of Figure 1), it is easy to tell that girls are taller than

boys on age 13, and the height difference is significant. However, standard inference suggests that

the height difference is insignificant. Because of the efficiency gains in estimation, the envelope

model can detect weak signals which the standard model fails to detect. A formal definition of the

envelope model and more details regarding this example are given in Section 2.1.

The rest of the article is organized as follows. Section 2 introduces the first envelope model

(Cook et al., 2010), and describes a general framework of model formulation, estimation, selec-

tion of envelope dimension and inference under the envelope model. Section 3 surveys the de-

velopments in the envelope model since its introduction. Its applications in partial least squares,

matrix-variate or tensor-variate regression, variable selection, Bayesian linear regression, general-
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Figure 1: Height of boys and girls at ages 13 and 14. Left panel: Illustration of inference under the
standard linear regression model. Right panel: Illustration of inference under the envelope model.

ized linear models, and quantile regression are elaborated in Sections 3.1 – 3.6. Envelope models

in other contexts of multivariate analysis are discussed in Section 3.7. Developments in the struc-

ture of the envelope model are reviewed in Section 3.8. Software for envelope models is presented

in Section 3.9. Further research directions are discussed in Section 4.

2 The First Envelope Model

2.1 Formulation

The envelope model was first introduced by (Cook et al., 2010) under the classical multivariate

linear regression model

Y = µ+ βX + ε, (1)
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where Y ∈ Rr is the response vector, X ∈ Rp is the predictor vector, which can be fixed or

random, and ε is the error vector that has mean 0 and positive definite covariance matrix Σ. The

intercept µ ∈ Rr, the regression coefficient matrix β ∈ Rr×p and the error covariance matrix Σ

are unknown parameters. The standard method to estimate β is to perform an independent linear

regression for each element in Y on X. The relationship among the response variables is not used.

The envelope model seeks to achieve efficient estimation of β by performing dimension reduc-

tion on Y. Let S be a d-dimensional subspace of Rr (d ≤ r). Let G ∈ Rr×d be an orthonormal

basis of S and G0 ∈ R(r−d)×d be an orthonormal basis of S⊥, the orthogonal complement of S.

Then GTY forms a reduction of Y. The envelope model imposes the following two conditions on

GTY and GT
0 Y: (i) GT

0 Y|X ∼ GT
0 Y and (ii) cov(GTY,GT

0 Y|X) = 0, where ∼ means equal in

distribution. Condition (i) indicates that the distribution of GT
0 Y does not depend on X and thus

does not carry information on β. Condition (ii) indicates that GT
0 Y does not carry information

about β indirectly through its correlation with GTY. Therefore, all the material information of β

is contained in the reduction GTY, and GT
0 Y only contains the immaterial information. Under

model (1), Cook et al. (2010) showed that (i) and (ii) hold if and only if (a) span(β) ⊆ S and (b)

Σ = PSΣPS + QSΣQS , where P represents a projection operator and Q = I−P. When S sat-

isfies (b), it is called a reducing subspace of Σ (Conway, 1990). The Σ-envelope of β is defined as

the smallest reducing subspace of Σ that contains span(β). It is denoted by EΣ(β), or E for short.

In other words, EΣ(β) is the smallest subspace that satisfies conditions (a) and (b) (or equivalently,

conditions (i) and (ii)). Let u (0 ≤ u ≤ r) denote the dimension of EΣ(β). Let Γ ∈ Rr×u and

Γ0 ∈ Rr×(r−u) denote orthonormal basis matrices for EΣ(β) and EΣ(β)⊥, respectively. Then ΓTY

represents the minimal reduction of Y that satisfies conditions (i) and (ii). When (a) and (b) hold
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with S = EΣ(β), model (1) can be written as

Y = µ+ ΓηX + ε, Σ = ΓΩΓT + Γ0Ω0Γ
T
0 , (2)

where β = Γη. The matrix η ∈ Ru×p carries the coordinates of β with respect to Γ. The matrices

Ω ∈ Ru×u and Ω0 ∈ R(r−u)×(r−u) are coordinates of Σ with respect to Γ and Γ0, respectively.

Typically, β is the parameter of main interest, and η, Ω, Ω0 and EΣ(β) are constituent param-

eters. We call (2) the envelope model, and call (1) the standard model hereafter. The response

Y can be decomposed to the material part PEY and immaterial part QEY. Under the envelope

model (2), β is only related to the material part, and the covariance matrix can be decomposed as

the sum of the variance of the material part var(PEY) = ΓΩΓT and the variance of the imma-

terial part var(QEY) = Γ0Ω0Γ
T
0 . Cook et al. (2010) showed that the envelope estimator of β is

asymptotically more efficient than or as efficient as the standard estimator. The efficiency gains

are substantial especially when the immaterial variation is larger than the material variation, or in

other words, ‖var(QEY)‖ = ‖Ω0‖ ≥ ‖Ω‖ = ‖var(PEY)‖, where ‖ · ‖ denotes the spectral norm

of a matrix. When u = r, EΣ(β) = Rr, and the envelope model reduces to the standard model.

In the height example in Section 1, we have ‖Ω̂‖ = 1.56 and ‖Ω̂0‖ = 118.7. Recall that

the bootstrap standard deviations for the two elements in the standard estimator of β are 1.80 and

1.81, and 0.19 and 0.19 for the two elements in the envelope estimator of β. This confirms that we

can achieve substantial efficiency gains when the immaterial variation is larger than the material

variation. On the other hand, if we take the height measurements at ages 17 and 18 as the bivariate

responses (Y1, Y2)
T and fit the envelope model, we have ‖Ω̂‖ = 79.5 and ‖Ω̂0‖ = 0.156. In this

case, the variation of the immaterial part is smaller than that of the material, as shown in Figure 2.
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The bootstrap standard deviations are 1.36 and 1.37 for the two elements in the standard estimator

of β, and 1.30 and 1.37 for the two elements in the envelope estimator of β. In this case, the

envelope model offers limited efficiency gains in the estimation of β. As indicated in the right

panel, the project of a point ‘X’ under the envelope model is very close to that under the standard

model, indicating that the envelope inference and the standard inference yield similar results.

More illustration examples can be found in Section 2 of Cook (2018).
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Figure 2: Height of boys and girls at ages 17 and 18. Left panel: Illustration of inference under the
standard model. Right panel: Illustration of inference under the envelope model.

2.2 Estimation

The parameters involved in the envelope model (2) include the dimension of the envelope subspace

u and the model parameters µ, η, Ω, Ω0 and EΣ(β). In this section, we assume that u is known

and will discuss the selection of u in Section 2.3. Cook et al. (2010) used the normal log likelihood
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(of Y given X) as the objective function for estimation, i.e.,

(µ̂, η̂, Ω̂, Ω̂0, ÊΣ(β)) = arg max
µ,η,Ω,Ω0,EΣ(β)

Lu(µ,η,Ω,Ω0, EΣ(β))

where

Lu = −nr
2

log(2π)− n

2
log |ΓΩΓT + Γ0Ω0Γ

T
0 |

−1

2

n∑
i=1

(Yi − µ− ΓηXi)
T (ΓΩΓT + Γ0Ω0Γ

T
0 )−1(Yi − µ− ΓηXi).

Since η, Ω and Ω0 all depend on EΣ(β), we first fix EΣ(β) and estimate the other parameters by

maximizing the normal likelihood. After some calculations, the estimators of the other parameters

can be written as explicit functions of Γ and Γ0:

µ̂ = Ȳ −PΓβ̂olsX̄, η̂ = ΓT β̂ols = ΓT Σ̂YXΣ̂
−1
X , Ω̂ = ΓT Σ̂Y|XΓ and Ω̂0 = ΓT

0 Σ̂YΓ0,

where X̄ and Ȳ are the sample means of X and Y respectively, Σ̂X and Σ̂Y are the sample covari-

ance matrices of X and Y respectively, Σ̂YX is the sample covariance matrix of Y and X, β̂ols =

Σ̂YXΣ̂
−1
X is the ordinary least squares (OLS) estimator of β, and Σ̂Y|X = Σ̂Y − Σ̂YXΣ̂

−1
X Σ̂

T

YX

is the sample covariance matrix of the conditional distribution of Y given X. Substituting these

estimators into Lu, we obtain the objective function for estimation of EΣ(β) as

ÊΣ(β) = arg min
span(H)∈G(r,u)

log |HT Σ̂Y|XH|+ log |HT Σ̂
−1
Y H|, (3)
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where G(r, u) denotes the r × u Grassmann manifold. An r × u Grassmann manifold G(r, u) is

the set of all u-dimensional subspaces of an r-dimensional space. Once ÊΣ(β) is obtained, Γ̂ and

Γ̂0 can be taken as any orthonormal bases of ÊΣ(β) and ÊΣ(β)⊥. Then the envelope estimators of

the constituent parameters are

µ̂ = Ȳ −PΓ̂β̂olsX̄, η̂ = Γ̂
T
β̂ols,

Ω̂ = Γ̂
T
Σ̂Y|XΓ̂, Ω̂0 = Γ̂

T

0 Σ̂YΓ̂0.

And the envelope estimators of β̂ and Σ̂ are

β̂ = Γ̂η̂ = PÊ β̂ols, and Σ̂ = Γ̂Ω̂Γ̂
T

+ Γ̂0Ω̂0Γ̂
T

0 .

Note that the envelope model (2) does not rely on normality. The normal log likelihood is used as

an objective function to obtain the envelope estimator. Section 1.9 of Cook (2018) points out that

if the errors have finite fourth moments, and the maximum leverage tends to 0 as n→∞, then the

envelope estimator is
√
n-consistent. Numerical experiments show that under a mild or moderate

departure from normality, the envelope estimator has about the same efficiency as under normal

errors (Su and Cook, 2011, 2013; Park et al., 2017). The
√
n-consistency of the inner envelope

estimator (c.f. Section 3.8) is established in Su and Cook (2012), and the
√
n-consistency for other

envelope extensions can be established similarly.

The optimization in (3) is discussed in several works. Cook and Zhang (2016) developed the

one-direction-at-a-time (1D) algorithm, which estimates the columns of the basis of EΣ(β) sequen-

tially. Under the 1D algorithm framework, the envelope coordinate descent (ECD) algorithm was
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recently derived in Cook and Zhang (2018). The ECD algorithm utilizes an approximation in esti-

mating each column and turns out to be faster than the 1D algorithm. Cook et al. (2016) proposed a

non-Grassmann estimation algorithm. The key idea is based on a reparametrization of (2). Instead

of taking Γ to be an arbitrary orthonormal basis of EΣ(β), it is required that u rows in Γ form

an identity matrix. The other (r − u)u parameters in Γ are unconstrained. Thus the Grassmann

manifold optimization in (3) can be converted to an unconstrained matrix optimization. All these

algorithms yield
√
n-consistent estimators. Since the optimization in (3) is non-convex, the choice

of starting values was investigated in Cook et al. (2016). When r is large, Cook and Zhang (2018)

proposed a screening algorithm, called envelope component screening (ECS), that can reduce the

dimension r to a manageable dimension d prior to the application of an optimization algorithm.

2.3 Selection of u

The dimension of the envelope subspace, u, is a model selection parameter. Likelihood ratio

testing (LRT) and information criteria are the most common tools for the selection of u. LRT is

based on sequential hypothesis testing, starting with u = 0 and using a common significance level

α. The estimate û of u is chosen as the first hypothesized value that is not rejected. Among the

information criteria, Akaike’s information criterion (AIC) and the Bayesian information criterion

(BIC) are the most prevalent. AIC or BIC values for all possible candidates of u are computed.

The candidate that corresponds to the smallest AIC or BIC is selected as the envelope dimension.

Su and Cook (2013) compared the numerical performance of model selection criteria, and found

that LRT is stable when the sample size is small, but asymptotically the error probability is equal

to the significance level. AIC is likely to overestimate u, and works well for larger u. BIC is
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consistent, and works well when the sample size is not too small. Under the normal error, Cook

and Su (2013) proves that BIC is selection consistent, while AIC selects a model that at least

contains the true model. However, theoretical properties for LRT, AIC and BIC under nonnormal

errors remain unknown. Nonparametric methods such as cross validation can also be used to

choose u. Recently Zhang and Mai (2018) proposed two non-likelihood based approaches, called

full Grassmannian (FG) and 1D selections. Their selection methods are based on Grassmann

optimization and 1D algorithms, and can be applied to many contexts that arise in envelope models.

They established consistency of both methods. To avoid the selection of u, Eck and Cook (2017)

constructed a weighted envelope estimator, which is a weighted average of all envelope estimators

with u = 1, . . . , r. The weights are calculated based on the BIC values for each model. Eck and

Cook (2017) showed that the bootstrap sample variance of the weighted envelope estimator is a

√
n-consistent estimator of the asymptotic variance of the envelope estimator when u is known.

2.4 Inference

The main issue in inference under the envelope model is the estimation of the variance of the

envelope estimator. The estimation procedure of the envelope model (2) takes two steps. The first is

to estimate u and the second step is to estimate the other parameters when u is fixed. Therefore the

variance of the envelope estimator comes from two sources, the variability in the model selection

and the variability in the estimation of parameters in the selected model. As mentioned earlier, if

u is known, the envelope estimator is asymptotically at least as efficient as the standard estimator

(the OLS estimator). In this case, the variance of the envelope estimator can be estimated through

its asymptotic variance or bootstrapping. The estimation of u adds additional variability to the
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estimator. When the variation of the immaterial part is small compared to that of the material part

and the dimension of the envelope model is large relative to r (i.e. u is close to r), the envelope

estimator could be less efficient than the standard estimator. However, if the immaterial part has

variation that is larger than that of the material part, the envelope estimator is still expected to

provide efficiency gains. Up to now, there are no theoretical results on the efficiency gains of the

envelope model considering both the variability due to the selection of u and the variability due to

estimation of the parameters in the selected model. An investigation on such theory would provide

a clearer guideline on when to use the envelope models.

3 Advances in Envelope Models

Although the formulation of the first envelope model is based on dimension reduction of the re-

sponse vector Y, the construction of envelope subspaces is flexible and can be based on dimension

reduction of the predictor vector X or other objects. It does not rely on the linear model or any

parametric model either. In this section, we describe developments and extensions of the envelope

model. Estimation and inference under the envelope models in this section are similar to those

described in Sections 2.2, 2.3 and 2.4 unless otherwise discussed.

3.1 Predictor Envelope Model and Partial Least Squares

Partial Least Squares (Wold, 1966, PLS) is an alternative to OLS for estimating the regression

coefficients in linear regression. It is the dominant method in chemometrics and is now widely

used in many applied scientific disciplines. It is known that PLS often has superior prediction

performances compared to OLS, especially in high-dimensional settings. Historically, PLS has
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been defined in terms of the iterative algorithms NIPALS and SIMPLS. As a result, knowledge

about its theoretical properties is limited. Cook et al. (2013) developed a link between the predictor

envelope and PLS, allowing PLS to be studied in a traditional likelihood-based framework.

The predictor envelope model is derived under the linear regression model (1), but Y can be

univariate or multivariate, and X is a random vector with meanµX and covariance matrix ΣX. The

predictor envelope model is constructed based on a dimension reduction of the predictor vector

X. It considers the ΣX-envelope of span(βT ), denoted by EΣX
(βT ). The envelope subspace

EΣX
(βT ) divides X into two parts, the material part PEX and the immaterial part QEX, such that

they satisfy two conditions (i) QEX is uncorrelated with PEX and (ii) Y is uncorrelated with QEX

given PEX. Conditions (i) and (ii) are equivalent to that (Y,PEX) is uncorrelated with QEX, and

therefore QEX is effectively linearly immaterial to the regression. Let u denote the dimension of

EΣX
(βT ), and Γ ∈ Rp×u denote an orthonormal basis of EΣX

(βT ). The predictor envelope model

is formulated as

Y = µ+ ηTΓTX + ε, ΣX = ΓΩΓT + Γ0Ω0Γ
T
0 , (4)

where βT = Γη and η ∈ Ru×r carries the coordinates of βT with respect to Γ. The matrix

ΓΩΓT = var(PEX) presents the variation of the material part, Γ0Ω0Γ
T
0 = var(QEX) presents

the variation of the immaterial part, where Γ0 ∈ Rp×(p−u) is an orthonormal basis of EΣX
(BT )⊥

and Ω ∈ Ru×u and Ω0 ∈ R(p−u)×(p−u) are positive definite matrices. Compared to the envelope

model (2), the predictor envelope model (4) seeks a dimension reduction on X instead of on Y.

Note that in the context of linear regression, the response envelope model (2) requires the material

part and immaterial part to be conditionally uncorrelated, which is also required by other envelope

models that perform dimension reduction on Y in regression setting, such as in matrix or tensor
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variate envelope model (c.f. Section 3.2). In contrast, marginal uncorrelation between the material

part and immaterial part is required by the predictor envelope model or other envelope models

that perform dimension reduction on X, such as envelope model in generalized linear model (c.f.

Section 3.5) or envelope quantile regression (c.f. Section 3.6).

On the other hand, PLS operates by first reducing the predictors to a few linear combinations,

X 7→ WTX, where W ∈ Rp×d is a semi-orthogonal matrix, d ≤ p and d is called number of

components. A popular algorithm is SIMPLS (De Jong, 1993), which constructs an estimator

ŴPLS of W sequentially as follows: Set ŵ1 to be the eigenvector of Σ̂XYΣ̂
T

XY corresponding to

its largest eigenvalue. Let Ŵk = (ŵ1, . . . , ŵk), k = 1, . . . , d− 1. Given Ŵk,

ŵk+1 = arg max
w

wT Σ̂XYΣ̂
T

XYw, subject to wT Σ̂XŴk = 0 and wTw = 1. (5)

Then ŴPLS = Ŵd. Once we have ŴPLS, we fit the reduced model Y = µ+ηT (ŴT
PLSX)+ε, and

obtain the OLS estimator of the coefficients η ∈ Rd×r: η̂ = (ŴT
PLSΣ̂XŴPLS)−1ŴT

PLSΣ̂XY. The

PLS estimator ofβ is β̂PLS = (ŴPLSη̂)T = Σ̂YXŴPLS(ŴT
PLSΣ̂XŴPLS)−1ŴT

PLS = β̂olsP
T
ŴPLS(Σ̂X)

,

where PT
ŴPLS(Σ̂X)

denotes the projection matrix onto span(ŴPLS) in the Σ̂X inner product. Other

variants use different inner products in the constraints or different objective function. For example,

NIPALS (Wold, 1975) modifies the length constraint wTw = 1 to wT (Ip − PŴk
)w = 1 (Cook,

2018, Section 4.2.1).

Cook et al. (2013) showed that span(ŴPLS) is also a
√
n-consistent estimator of EΣX

(βT )

when the number of PLS components d equals u, the dimension of EΣX
(βT ). Thus there is a

close connection between SIMPLS and the envelope model: The envelope and SIMPLS testi-

mators, β̂env and β̂PLS, are based on the same population construct EΣX
(βT ), but differ in their
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estimation methods. While SIMPLS uses the iterative algorithm (5), the predictor envelope model

uses the likelihood-based estimation procedure discussed in Section 2.2. As a result, β̂env typi-

cally dominates β̂PLS in both estimation and prediction accuracy, especially when the variation of

the immaterial part is large. While the envelope estimator typically dominates the PLS estima-

tor, there are scalable versions of the PLS algorithm available for big data applications (Schwartz

et al., 2010; Zeng and Li, 2014; Tabei et al., 2016; Cook and Forzani, 2018) and their theoretical

properties are explored in Cook and Forzani (2018, 2019). The development of scalable envelope

estimator serviceable to big data is an interesting future research direction.

The predictor envelope model provides an avenue to study PLS and extend the scope of PLS.

The PLS estimator is not invariant or equivariant to scale transformations of X, which tends to

limit its scope to applications where the predictors are measured in the same or similar units. Cook

and Su (2016) derived the scaled predictor envelope model that incorporates predictor scaling into

the model formulation. In addition to being a scale-invariant method, the scaled predictor enve-

lope model can offer efficiency gains beyond those given by PLS, and further reduce prediction

errors. Sparse PLS (Chun and Keleş, 2010; Chung and Keleş, 2010; Huang et al., 2004; Lê Cao

et al., 2008; Lee et al., 2011) has been derived and studied in statistics, chemometrics and genetics

to perform variable selection in PLS. Zhu and Su (2019) derived an envelope-based sparse PLS

estimator for both linear regression and generalized linear models, and showed that the envelope-

based sparse PLS estimator has better prediction performance than existing sparse PLS estimators

especially when the immaterial part has larger variation than the material part. They also estab-

lished the oracle property and asymptotic normality of the estimator and derived the convergence

rate in high-dimensional setting.
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3.2 Envelope Model with Matrix or Tensor Variate Response

In many applications such as neuroimaging, social networks or signal processing, the response

or predictor can be a matrix or a tensor instead of a vector. Li and Zhang (2017) and Ding and

Cook (2018) extended the envelope model (2) to matrix-valued and tensor-valued responses or /

and predictors.

Ding and Cook (2018) considered the linear regression model with both matrix-valued predic-

tor and matrix-valued response

Y = µ+ β1Xβ
T
2 + ε, (6)

where Y ∈ Rr1×r2 and X ∈ Rp1×p2 denote the response and predictor, µ ∈ Rr1×r2 is the intercept,

and β1 ∈ Rr1×p1 and β2 ∈ Rr2×p2 are the row and column coefficient matrices. For identifiability,

β2 is defined to have Frobenius norm 1. The error ε has mean 0 and a separable Kronecker

covariance structure (Hoff, 2011; Fosdick and Hoff, 2014), i.e. cov[ vec(ε)] = Σ2 ⊗ Σ1, where

⊗ denotes the Kronecker product, the vec operator stacks a matrix into a vector columnwise, and

Σ1 ∈ Rr1×r1 and Σ2 ∈ Rr2×r2 are positive definite matrices.

Under the matrix regression model (6), Ding and Cook (2018) assumed that the envelope struc-

ture can be assumed on both rows and columns of Y. More specifically, let S1 ⊆ Rr1 and

S2 ⊆ Rr2 be two subspaces such that they satisfies conditions (a) QS1Y | X ∼ QS1Y, (b)

covc(PS1Y,QS1Y | X) = 0, (c) YQS2 | X ∼ YQS2 and (d) covr(YPS2 ,YQS2 | X) = 0,

where covc and covr denote the row covariance and column covariance. For two matrix-value

variables U ∈ Rr1×r2 and V ∈ Rr1×r2 , covc(U,V) = E{[U − E(U)][V − E(V)]T} and

covr(U,V) = E{[U − E(U)]T [V − E(V)]}. The smallest subspace that satisfies conditions

(a) and (b) is the Σ1-envelope of span(β1), denoted by EΣ1(β1). Its dimension is denoted as u1
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(0 ≤ u1 ≤ r1), and Γ1 ∈ Rr1×u1 denotes an orthonormal basis of EΣ1(β1). Similarly, the smallest

subspace that satisfies conditions (c) and (d) is the Σ2-envelope of span(β2), denoted by EΣ2(β2).

We use u2 (0 ≤ u2 ≤ r2) to denote its dimension and Γ2 ∈ Rr2×u2 to denote an orthonormal basis

of EΣ2(β2). Then the matrix regression model (6) can be parametrized as

Y = µ+ Γ1η1Xη
T
2 ΓT

2 + ε, Σi = ΓiΩiΓ
T
i + Γi0Ωi0Γ

T
i0 for i = 1, 2, (7)

where βi = Γiηi, and ηi ∈ Rui×pi carries the coordinates of βi with respect to Γi. The matrix

Γi0 ∈ Rri×(ri−ui) is an orthonormal basis of EΣi
(βi)

⊥, and Ωi ∈ Rui×ui and Ωi0 ∈ R(ri−ui)×(ri−ui)

carry the coordinates of Σi with respect to Γi and Γi0. Ding and Cook (2018) proved that the

envelope estimators of βi and Σi derived from model (7) are at least as efficient as the standard

estimator from model (6) asymptotically. Furthermore, they developed the sparse matrix variate

regression that accommodates sparsity structures in β1 and β2 under the envelope model (7).

Li and Zhang (2017) adopted the envelope model to the tensor response linear model where

the response is an mth order tensor and the predictor is a vector,

Y = B×̄(m+1)X + ε, (8)

where Y ∈ Rr1×···×rm is an mth order tensor response, X ∈ Rp is a predictor vector, B ∈

Rr1×···×rm×p is an (m+1)th order tensor and ×̄(m+1) is the (m+1)-mode vector product. The error

ε ∈ Rr1×···×rm has mean zero and a separable Kronecker covariance structure, i.e. cov{vec(ε)} =

Σm ⊗ · · · ⊗ Σ1, where Σk ∈ Rrk×rk is a positive definite matrix, for k = 1, . . . ,m. For more

details on tensor notations and algebra, Kolda and Bader (2009) provided a complete review on
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tensor decomposition and applications.

Li and Zhang (2017) extended conditions (i) and (ii) in Section 2.1 to the tensor response Y.

Let Sk denote a subspace of Rrk , k = 1, . . . ,m, and ×k denote k-mode product. The tensor

response Y is assumed to satisfy the conditions (i*) Y ×k QSk | X ∼ Y ×k QSk and (ii*)

Y ×k QSk Y ×k PSk | X, where denotes independence. These two conditions imply that

Y×kQSk does not depend on X or is affected by Y×kPSk . Under tensor response linear model (8),

conditions (i*) and (ii*) are equivalent to conditions (a*) span(B(k)) ⊆ Sk, where B(k) denotes

mode-k matricization and (b*) Σk = PSkΣkPSk+QSkΣkQSk . For a fixed k, the intersection of all

subspaces that satisfy conditions (a*) and (b*) is the Σk-envelope of B(k), denoted by EΣk
(B(k)).

The tensor envelope TΣ(B) is defined as TΣ(B) = EΣm(B(m)) ⊗ · · · ⊗ EΣ1(B(1)). Here S1 ⊗

S2 means PS1⊗S2 = PS1 ⊗ PS2 for any subspaces S1 and S2. Let uk denote the dimension of

EΣk
(B(k)), and Γk ∈ Rrk×uk denote an orthonormal basis of EΣk

(B(k)), for k = 1, . . . ,m. Then

the coefficients B and the covariance matrices Σk in model (8) satisfies

B = Θ×1 Γ1 ×2 · · · ×m Γm for some Θ ∈ Ru1×···×um×p (9)

Σk = ΓkΩkΓ
T
k + Γ0kΩ0kΓ

T
0k, k = 1, . . . ,m,

where the decomposition of B is called the Tucker decomposition, and Θ is called the core tensor.

Li and Zhang (2017) established the
√
n-consistency of the estimator of B under the envelope

structure (9) and showed that the envelope estimator is at least as efficient as the standard estimator

asymptotically.

Zhang and Li (2017) considered a tensor linear regression model where the response is a vector

and the predictor is anmth order tensor. The envelope structure (9) is imposed on the coefficients of
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the predictor tensor and the corresponding covariance matrices. Based on the connection between

the predictor envelope model and PLS (c.f. Section 3.1), this leads to a formulation of the tensor

envelope PLS regression.

3.3 Sparse Envelope Model

The sparse envelope model (Su et al., 2016) is motivated when some response variables are invari-

ant to the changes in X and have coefficients zero under multivariate linear regression (1). The

sparse envelope model performs response variable selection and at the same time preserves the ef-

ficiency obtained from the envelope model (2). A response variable is called an inactive response

if the corresponding row in Γ is zero, otherwise, it is called an active response. Without loss of

generality, the response vector can be written as Y = (YT
A,Y

T
I )T , where YA ∈ RrA contains all

active responses, YI ∈ RrI contains all inactive responses, rA and rI denote the number of active

and inactive responses, and rA + rI = r. Then the sparse envelope model is formulated as

Y = µ+ ΓηX + ε, Σ = ΓΩΓT + Γ0Ω0Γ
T
0 , Γ =

 ΓA

0

 , (10)

where ΓA ∈ RrA×u is a semi-orthogonal matrix, and β has the structure β = ((ΓAη)T , 0)T . So the

inactive response YI has regression coefficients zero and the active response YA has regression

coefficients ΓAη. To induce sparsity, Su et al. (2016) added a row-wise group-lasso penalty on the

objective function (3)

ÊΣ(β) = arg min
span(H)∈G(r,u)

log |HT Σ̂Y|XH|+ log |HT Σ̂
−1
Y H|+

r∑
i=1

λi‖hi‖, (11)
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where λi’s are the tuning parameters and hi is the ith row of H. The group-lasso penalty depends

on H only through span(H) and is invariant to an orthogonal transformation of H. This penalty is

often used in dimension reduction literature (Chen and Huang, 2012; Chen et al., 2010) to induce

sparsity on certain coordinates of a subspace. Su et al. (2016) established the oracle property and

asymptotic distribution of the sparse envelope estimator, as well as its convergence rate in high-

dimensional settings. They also pointed out that after variable selection, the inactive response

variables should be kept in the model to improve the efficiency in estimation. This is a major

difference between response variable selection and predictor variable selection, where the inactive

predictors are eliminated from the model once identified.

3.4 Bayesian Envelope Model

Bayesian analysis allows investigators to combine prior information and current data to make better

decisions. The literature addressing envelope models from a Bayesian point of view is rather

scarce. Since the envelope subspace is a parameter on a Grassmann manifold, to specify a prior for

the envelope subspace that respects the manifold structure is the key issue in the development of a

Bayesian approach. Khare et al. (2017) derived a Bayesian approach by considering an alternative

parameterization of the envelope model (2). Instead of taking Γ to be an arbitrary orthonormal

basis of EΣ(B), Γ is chosen to be the orthonormal basis that makes Ω a diagonal matrix with

descending diagonal elements. In addition, it is also required that the maximum entry (in absolute

value) in each column of Γ is positive. Then Γ becomes the unique representing basis for EΣ(B).

Note that Γ is defined on an r×u Stiefel manifold, where an r×u Stiefel manifold is the set of all

r × u semi-orthogonal matrices. Similar requirements are imposed on Γ0. Let O = (Γ,Γ0). The
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matrix Bingham distribution is used for the prior distribution of O, i.e.

π(O) ∝ exp
[
−(1/2) tr(D−1OTGO)

]
,

where D is a diagonal matrix and G is a positive definite or positive semi-definite matrix. The

prior information about EΣ(B) can be incorporated by carefully adjusting the hyperparameters D

and G. The prior distribution for η is assumed to be matrix normal. The diagonal elements of

Ω (or Ω0) are a priori distributed as order statistics of u (or r − u) independent and identical

inverse-Gamma random variates. A flat improper prior is assumed for µ. Khare et al. (2017)

proved the propriety of the posterior distribution. A block Gibbs sampler is derived to sample

from the posterior distribution, and the Harris ergodicity of the Gibbs sampler is established. The

Deviance Information Criterion (DIC) (Gelman et al., 2013) is used to determine the dimension of

the envelope subspace u.

This approach has the attractive feature of being able to incorporate the manifold structure of

EΣ(B). The techniques in this approach can also be applied to Bayesian sufficient dimension re-

duction or other areas where the parameter has a manifold structure. Unlike frequentist approaches

that use bootstrapping or asymptotic distribution to approximate the standard deviation of the esti-

mator β̂ (see Section 2.4), Bayesian envelope directly provides estimation uncertainty by posterior

credible interval. The Bayesian envelope model can also handle situations where the sampler size

is smaller than the number of responses. However, Bayesian envelope model depends on the for-

mulation of the envelope model (2) to choose hyper-parameters, such that conjugacy is obtained in

all parameters. The application of this approach to more complex contexts such as the generalized

linear models or quantile regression may require a different construction of the prior distributions.
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3.5 Envelope Model Beyond Linear Regression

Cook and Zhang (2015a) introduced a model-free framework to incorporate the envelope structure

to any consistent estimation procedure. A guideline for construction of an envelope estimator for

an existing estimation procedure is as follows. Let θ = (ψT ,φT )T ∈ Rm be the parameter vector,

where φ ∈ Rp is the parameter vector of interest and ψ ∈ Rm−p is the nuisance parameter vector.

Let θt = (ψT
t ,φ

T
t )T denote the true value of θ, and θ̂ = (ψ̂

T
, φ̂

T
)T be an estimator of θ. Suppose

that θ̂ is a
√
n-consistent estimator, in other words,

√
n(θ̂−θt) converges to a multivariate normal

vector with mean 0 and positive definite covariance matrix V(θt) ∈ Rm×m in distribution as

n→∞. Then the envelope subspace for the parameter φ is taken to be EV(φt)(φt), where V(φt)

is the asymptotic covariance matrix of φ̂, which corresponds to the p × p lower right block of

V(θt). Let u denote the dimension of EV(φt)(φt), and Γ be any orthonormal basis for EV(φt)(φt).

The envelope subspace can be estimated as

ÊV(φt)(φt) = arg min
span(H)∈G(m,u)

log |HTM̂H|+ log |HT (M̂ + Û)−1H|, (12)

where M̂ = V̂(φt) is a
√
n-consistent estimator of V(φt) and Û = φ̂φ̂

T
. Once we obtain the

estimated envelope subspace from solving (12), the envelope estimator of φ is φ̂env = PÊφ̂, where

PÊ is the projection matrix onto the estimated envelope subspace.

The preceding procedure gives a general algorithm to obtain an envelope model, without any

parametric model. It can be shown that if M = V(φt) and U = φφT , then EV(φt)(φt) is the

minima of the objective function in (12). But if a parametric model is known, the objective function

can also be derived based on the likelihood function. Cook and Zhang (2015a) showed that the

envelope model can be derived for generalized linear model (GLM) with canonical link, weighted
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least squares and Cox regression model.

We describe the application of the envelope model to GLM as an example. Let Y be a random

variable that belongs to an exponential family. For simplicity, we restrict attention to the natural

exponential family, which only has the natural parameter. Let f denote the probability mass func-

tion or density function of Y : f(y|θ) = exp{yθ − b(θ) + c(y)}, where θ is the natural parameter,

b(·) is the cumulant function and c(·) is some specific function. The predictor vector X ∈ Rp

is assumed to follow a multivariate normal distribution N(µX,ΣX). The canonical link function

is θ(µ,β) = µ + βTX, where θ(µ,β) is a smooth and monotonic function of E(Y |X, θ). The

conditional log likelihood is log f(y|θ) = yθ− b(θ)+ c(y). The standard estimator of β can be ob-

tained by Fisher scoring. To construct the envelope model under GLM, Cook and Zhang (2015a)

considered the ΣX-envelope of β, denoted by EΣX
(β). Let u denote its dimension, Γ ∈ Rp×u

and Γ0 ∈ Rp×(p−u) be an orthonormal basis for EΣX
(β) and EΣX

(β)⊥. Then under the envelope

parameterization, GLM can be written as

log f(y|θ) = yθ − b(θ) + c(y), θ = µ+ ηTΓTX, ΣX = ΓΩΓT + Γ0Ω0Γ
T
0 , (13)

where β = Γη, η ∈ Ru contains the coordinates of β with respect to Γ, and Ω ∈ Ru×u and

Ω0 ∈ R(p−u)×(p−u) are positive definite matrices that carry the coordinates of ΣX with respect to

Γ and Γ0. Cook and Zhang (2015a) used the joint distribution of Y and X as objective function to

estimate the model parameters and derive the envelope estimator. They showed that the envelope

estimator is asymptotically at least as efficient as the standard GLM estimator.

Although the framework in Cook and Zhang (2015a) is generally applicable to any consistent

estimation procedure, the objective function (12) is rooted from normal likelihood with constant
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variance for the errors. If the data has heteroscedastic error structure or the data distribution is

very different from normal, it can take a large sample size for the envelope estimator to get close

to its population parameter. Moreover, the dimension u can be underestimated, leading to a loss

of material information and thus a biased envelope estimator. In such cases, it is better to develop

an envelope estimator based on the specific parametric structure of the model, which is normally

more efficient than the estimator produced from the general procedure. Besides the GLM example,

other examples on using the specific parametric structure to develop an envelope estimator can be

found in Cook et al. (2015a); Rekabdarkolaee et al. (2019); Forzani and Su (2019).

3.6 Envelope Quantile Regression

Ding et al. (2019) derived the envelope quantile regression that advances the envelope model to

distribution-free settings and creates a different estimation and inference scheme for the envelope

model. Quantile regression (Koenker, 2005) considers the relationship between the conditional

quantile of the response and the predictors at different quantile levels. It does not impose distribu-

tional assumptions on error terms, thus it is able to incorporate heterogeneous errors and is robust

to outliers. Let QY (τ | X = x) = inf{y : FY (y | X = x) ≥ τ} denote the τ -th conditional

quantile of Y given X = x, for 0 ≤ τ ≤ 1. A linear quantile regression model is given by

QY (τ | X = x) = µτ + βTτ X, (14)

where µτ ∈ R is the intercept and βτ ∈ Rp contains the regression coefficients. The predictor

vector X is assumed to be random with mean µX and covariance matrix ΣX.

The envelope quantile regression assumes that some linear combinations of the predictors does
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not affect the conditional quantile of the response. More specifically, let Sτ be a subspace of

Rp, the envelope quantile regression assumes that (i) QY (τ | X) = QY (τ | PSτX) and (ii)

cov(PSτX,QSτX) = 0. Assumptions (i) and (ii) indicate that QY (τ | X) depends on X only

through PSτX, and QSτX does not carry information on QY (τ | X) through its correlation with

PSτX. The intersection of all such Sτ is the ΣX-envelope of βτ , denoted by EΣX
(βτ ). Let uτ

(0 ≤ uτ ≤ p) denote the dimension of EΣX
(βτ ), and let Φτ ∈ Rp×uτ be an orthonormal basis of

EΣX
(βτ ). Then the envelope quantile regression is formulated as

QY (τ | X = x) = µτ + ηTτ ΦT
τ X, ΣX = ΦτΩτΦ

T
τ + Φ0τΩ0τΦ

T
0τ , (15)

where βτ = Φτητ , and ητ ∈ Ruτ carries the coordinates of βτ with respect to Φτ . The matrix

Φ0τ ∈ Rp×(p−uτ ) is an orthonormal basis of EΣX
(βτ )

⊥. Matrices Ωτ ∈ Ruτ×uτ and Ω0τ ∈

R(p−uτ )×(p−uτ ) are positive definite, and carry the coordinates of ΣX with respect to Φτ and Φ0τ .

Since the envelope quantile regression does not impose any assumptions on the error distribu-

tion, the estimation of the parameters cannot be performed using a likelihood-based method like in

Section 2.2. Its estimation procedure is different from any other envelope models in the literature.

The robust cross validation (Oh et al., 2004, RCV) is applied to select uτ , the dimension of the

envelope ÊΣX
(βτ ). With fixed uτ , Ding et al. (2019) proposed to use the generalized method of

moments (GMM) for estimation. To use GMM, we first construct the estimating equations

g =


g1

g2

g3

 =


1
n

∑n
i=1(1,Xi)

T [I(Yi < µτ + ηTτ ΦT
τ Xi)− τ ]

vech(ΦτΩτΦ
T
τ + Φ0τΩ0τΦ

T
0τ )− vech(SX)

µX − X̄

 = op(n
−1/2). (16)
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where (Xi, Yi), i = 1, . . . , n is a random sample of (X, Y ), I(·) is an indicator function, vech

denotes the vector-half operator that stretches the lower triangle of a symmetric matrix into a

vector, and SX = n−1
∑n

i=1(Xi−µX)(Xi−µX)T is the sample covariance matrix of X given µX.

The estimating equation in g1 is based on a property of the quantile regression, that the standard

estimators of µτ and βτ from the quantile regression model (14) satisfy n−1
∑n

i=1(1,Xi)
T [I(Yi <

µτ + βTτ Xi)− τ ] = op(n
−1/2) (Koenker, 2005; Wang and Wang, 2009). The estimating equations

in g2 and g3 are based on the first and second moment conditions of X. Then the GMM estimators

are obtained by solving

(µ̂τ , η̂τ , Ω̂τ , Ω̂0τ , ÊΣX
(βτ )) = arg min

µτ ,ητ ,Ωτ ,Ω0τ ,EΣX
(βτ )

gT∆̂g, (17)

where ∆̂ is a
√
n-consistent estimator of [E(ggT )]−1, g is defined in (16), and the minimization

is over the parameters in g, i.e. µτ ,ητ ,Ωτ ,Ω0τ , and EΣX
. Note that unlike the other envelope

models, the objective function in (17) is non-smooth. The Nelder-Mead method (Nelder and Mead,

1965) is applied to solve the optimization problem. Once we obtain ÊΣX
(βτ ), Φ̂τ is taken to be an

orthonormal basis of ÊΣX
(βτ ). The envelope quantile regression estimator of βτ is β̂τ = Φ̂τ η̂τ .

Ding et al. (2019) showed that the envelope quantile regression estimator is at least as efficient as

the standard quantile regression estimator asymptotically.

The estimation method and theoretical development in envelope quantile regression are com-

pletely different from the likelihood-based envelope models. The envelope quantile regression

provides a new estimation procedure for envelope models with GMM. The study of asymptotic

properties involves rather different techniques which handle both non-smooth objective function

and over-parameterization. The envelope model theory is advanced to the distribution-free set-
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tings. Using similar techniques, the envelope model can be applied to other quantile regression

settings, such as censored quantile regression (Koenker and Geling, 2001; Peng and Huang, 2008)

and partially linear quantile regression (Lee, 2003; Sherwood and Wang, 2016), for survival and

other complex data analysis. It can also be applied in expectile regression (Newey and Powell,

1987) to achieve efficient estimation or improve prediction performance.

3.7 Envelope Model in Other Contexts of Multivariate Analysis

In this section, we review developments of the envelope model in other contexts of multivariate

analysis. Reduced-rank regression (Anderson, 1951) imposes a rank constraint on the regression

coefficients in the multivariate linear regression (1), which reduces the number of parameters and

improves the efficiency in estimation. Cook et al. (2015a) introduced the envelope structure to

the reduced rank regression, which removes the immaterial variation in the response vector and

further improves the efficiency gains. Cook and Zhang (2015b) derived the simultaneous envelope

model which performs dimension reduction on both X and Y to achieve further efficiency gains

than the response envelope model or predictor envelope model. Forzani and Su (2019) applied the

envelope model to elliptical multivariate linear regression to improve estimation efficiency gains.

This models allows for heteroscedastic errors without requiring any groupings of the data. Li

et al. (2016) made a connection between supervised singular value decomposition and the envelope

model. Zhang et al. (2018) introduced the envelope model for sufficient dimension reduction in

functional data. Zhang and Mai (2019) constructed an envelope discriminant subspace to improve

prediction performance in discriminant analysis and classification. Up to now, all envelope models

require that observations are independent to each other. Under the multivariate spatial regression
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model, Rekabdarkolaee et al. (2019) derived a spatial envelope model that allows for dependent

observations. Wang and Ding (2018) developed the envelope models for time series data in the

context of vector autoregression model. The use of the envelope model in the aster model is an

example of its application in biology. Darwinian fitness is the total number of offsprings of a plant

or an animal, and the aster model (Geyer et al., 2007) is a statistical model derived to model the

distributions of Darwinian fitness. The envelope model is applied by Eck et al. (2017) in the aster

model for variance reduction in life history analyses.

3.8 Extensions in the Structure of Envelope Model

In this section, we review developments in the structure of the envelope model. These develop-

ments either make the envelope model adaptive to more flexible data structure or achieve more

efficiency gains.

Under the linear regression model (1), Su and Cook (2011) introduced the partial envelope

model that can achieve further efficiency gains than the envelope model in the estimation of the

coefficients for predictors of special interest. Suppose that X can be partitioned into X1 ∈ Rp1

and X2 ∈ Rp2 (p1 + p2 = p), where X1 contains the predictors of special interest and X2 contains

other predictors. For example, in a clinical trial, the predictor of interest is the presence or absence

of the drug under study, while demographical characteristics of the patients are also measured as

covariates to reduce variability. We can partition the columns of β accordingly into β1 and β2,

where β1 ∈ Rr×p1 contains the coefficients of X1 and β2 ∈ Rr×p2 contains the coefficients of

X2. Su and Cook (2011) considered the envelope subspace EΣ(β1), and imposed the envelope

structure only on β1. Since EΣ(β1) ⊆ EΣ(B), the partial envelope model is able to further reduce
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the dimension of the material part compared to the envelope model, making it more efficient.

The envelope model (2) requires that the errors have constant variance across the sample.

However, if the data consist of measurements from several groups, the covariance matrices in

the different groups can be different. Sometimes the regression coefficients can differ among the

groups. The heteroscedastic envelope model (Su and Cook, 2013) was developed to incorporate

heteroscedastic error structure in the context of estimating multivariate means for different groups.

The groupwise envelope model (Park et al., 2017) was proposed to accommodate both distinct

regression coefficients and distinct error structures for different groups in the linear regression

model (1). It is motivated by the analysis on the associations between genetic variants and brain

imaging phenotypes of Alzheimer patients. Measurements are taken on 749 Alzheimer patients on

volumes of 93 brain regions and 1071 single nucleotide polymorphisms (SNPs) on 40 candidate

genes. It is known that the brain structures of males and females are different. Numerical analy-

sis shows that by considering the heteroscedasticity of the groups, the groupwise envelope model

gives a less biased and more efficient estimation compared to the envelope model (2).

Like principal component analysis or partial least squares, the envelope model (2) is not scale

invariant or equivariant. The scaled response envelope model (Cook and Su, 2013) includes the

scales as model parameters, which gives a scale-invariant envelope estimator. Let Λ ∈ Rr×r be a

diagonal scaling matrix with positive diagonal elements 1, λ2, . . . , λr. The scaled envelope model

assumes that the scaled response Λ−1Y and X follows the envelope model (2), i.e.

Y = µ+ ΛΓηX + ε, Σ = ΛΓΩΓTΛ + ΛΓ0Ω0Γ
T
0 Λ.

Cook and Su (2013) showed that the scaled envelope estimator is at least as efficient as the OLS
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estimator asymptotically, and it has the potential to provide efficiency gains when the envelope

model (2) degenerates to the standard model.

Su and Cook (2012) proposed a different envelope construction than (2) to achieve efficient

estimation. Instead of considering the smallest reducing subspace of Σ that contains span(β) (i.e.

EΣ(B)), it considers the largest reducing subspace of Σ that is contained in span(β), called the

inner Σ-envelope of β and denoted by IEΣ(β). Let PIE denote the projection matrix onto the

inner envelope subspace, QIE = Ir − PIE , and dim {IEΣ(β)} = d. Then β can be decomposed

as β = PIEβ + QIEβ. When span(β) = Rr, β can be written as β = Γξ1 + Γ0ξ2, where

ξ1 ∈ Rd×p and ξ2 ∈ R(p−d)×p. When span(β) ⊂ Rr, to further reduce the number of parameters

in the model, Su and Cook (2012) used the parameterization β = Γη1 + Γ0Bη2, where Γ ∈ Rr×d

and Γ0 ∈ Rr×(r−d) denote an orthonormal basis of IEΣ(β) and IEΣ(β)⊥, B ∈ R(r−d)×(p−d)

is a semi-orthogonal matrix such that Γ0B denotes an orthonormal basis of span(QIEβ), and

η1 ∈ Rd×p and η2 ∈ R(p−d)×p carries the coordinates of β with respect to Γ and Γ0B. Then the

inner envelope model can be written as

Y = µ+ (Γη1 + Γ0Bη2)X + ε, Σ = ΓΩΓT + Γ0Ω0Γ
T
0 ,

where Ω and Ω0 are positive definite matrices. We expect to achieve an efficient estimation on

PIEβ, especially when ‖Ω‖ ≤ ‖Ω0‖. We expect to have about the same efficiency on QIEβ

as the standard analysis. Then overall, the inner envelope estimator of β is more efficient than

the standard estimator. Su and Cook (2012) showed that the inner envelope estimator is at least

as efficient as the standard estimator asymptotically. Furthermore, because the inner envelope

model has a different mechanism for efficient estimation from the envelope model (2), it can offer

31



efficiency gains in the cases when the envelope model cannot achieve any efficiency gains.

3.9 Software

Software to implement the envelope model includes R package Renvlp and Matlab toolbox

envlp (Cook et al., 2015b). The optimization in the envlp toolbox depends on a Grassmann

and Stiefel manifold optimization Matlab toolbox sg min by Lippert. The Renvlp package

uses the non-Grassmann estimation algorithm (Cook et al., 2016), which makes the computation

faster. Both packages implement a variety of envelope models and several different inference

tools. R package TRES implements envelope models in tensor regression. A complete list of

software for envelope models can be found in http://users.stat.umn.edu/˜rdcook/

envelopes/.

4 Future Research

Almost all advances in envelope models are based on a linear model, while nonlinear regression

has wide applications in face recognition, speech recognition, meteorology and longitudinal data

analysis. Recently there are some interesting new developments in nonlinear sufficient dimension

reduction (Lee et al., 2013; Li and Song, 2017). Some of the tools or techniques may be applicable

to the derivation of a nonlinear envelope model. Another direction is on multivariate generalized

linear model. Multivariate generalized linear model arises in genetics or medical sciences (Li and

Wong, 2010; Schaid et al., 2019; Lu and Yang, 2012), where the response variables are discrete and

correlated. The envelope model (2) requires a continuous response vector and cannot be adopted

to such context. Incorporating the envelope structure in multivariate generalized linear model po-
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tentially has important applications in applied sciences. Up to now, the Bayesian approach is only

derived for the first envelope model (2). While the Bayesian approach offers a different perspective

from the frequentist approach, it would be beneficial to further explore Bayesian approaches for

envelope models in other contexts.
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