
Statistica Sinica: Supplement

Supplementary Materials of “Response Variable

Selection in Multivariate Linear Regression”

Kshitij Khare and Zhihua Su

University of Florida

Supplementary material includes proofs of all propositions and theorems, implementation de-

tails, additional simulations and discussion of future research directions.

We start by introducing some required notation. Let YD ∈ Rn×rD , YA ∈

Rn×rA , YS ∈ Rn×rS and X ∈ Rn×p denote the data matrices of YD, YA,

YS and X. For example, the ith row of YD ∈ Rn×rD contains the ith

observation of YD. Let ED ∈ Rn×rD , EA ∈ Rn×rA and ES ∈ Rn×rS denote

the data matrices of εD, εA, εS , and 1n denotes an n-dimensional vector

of 1’s. Then YD = 1TnαD + XβTD + ED and Y−D = 1Tnα−D + E−D, where

Y−D =
[
YT
A YT

S
]T

, E−D = [EA ES ], and αD ∈ RrD and α−D ∈ RrA are

parts of α that correspond to the dynamic responses and non-dynamic

responses respectively. Let YD,c ∈ Rn×rD , YA,c ∈ Rn×rA , YS,c ∈ Rn×rS

and Xc ∈ Rn×p denote the centered data matrices of YD, YA, YS and

X, i.e. YD,c = YD − 1nȲ
T
D, YA,c = YA − 1nȲ

T
A, YS,c = YS − 1nȲ

T
S and

Xc = X−1nX̄
T , where ȲD, ȲA, ȲS and X̄ denote the sample mean of YD,



YA, YS and X. Let ED,c and E−D,c denote the centered data matrix of ED

and E−D, then YD,c = Xcβ
T
D + ED,c and Y−D,c = E−D,c. Let PC denote the

projection matrix into the column space C and QC = I − PC. Let ‖ · ‖2,

‖ · ‖F and ‖ · ‖max denote the spectral norm, Frobenius norm and entry-wise

maximum norm of a matrix, respectively.

S1. Proof of Proposition 2

Proof. From Proposition 1, the asymptotic distribution of β̂D,1 is given

by

√
n{vec(β̂D,1)−vec(βD)} d→ N(0,V1), V1 = Σ−1

X ⊗(ΣD−ΣD,AΣ−1
A ΣA,D).

The asymptotic distribution of β̂D,2 is given by

√
n{vec(β̂D,2)−vec(βD)} d→ N(0,V2), V2 = Σ−1

X ⊗(ΣD−ΣD,(A,S)Σ
−1
(A,S)Σ(A,S),D).



We hope to prove that V1 = V2. Let D =
(
ΣS −ΣS,AΣ−1

A ΣA,S
)−1

. Note

that

(ΣD −ΣD,AΣ−1
A ΣA,D)− (ΣD −ΣD,(A,S)Σ

−1
(A,S)Σ(A,S),D)

=
(

ΣD,A ΣD,S
) ΣA ΣA,S

ΣS,A ΣS


−1 ΣA,D

ΣS,D

−ΣD,AΣ−1
A ΣA,D

= ΣD,A(Σ−1
A + Σ−1

A ΣA,SDΣS,AΣ−1
A )ΣA,D −ΣD,AΣ−1

A ΣA,SDΣS,D

−ΣD,SDΣS,AΣ−1
A ΣA,D + ΣD,SDΣS,D −ΣD,AΣ−1

A ΣA,D

= (ΣD,AΣ−1
A ΣA,S −ΣD,S)D(ΣD,AΣ−1

A ΣA,S −ΣD,S)T .

Since YD YS | YA, we have ΣD,AΣ−1
A ΣA,S −ΣD,S = 0. Thus V1 = V2.

An alternative proof uses an equivalence stated in §3.1 in Dawid (1979),

that YD YS | YA implies YD given YA and YD given (YA,YS) have the

same distribution. Note that V1 is the covariance matrix of YD given YA,

and V2 is the covariance matrix of YD given (YA,YS). Thus V1 = V2.

S2. A generalization of Propositions 1 and 2

In this section we present a generalization of Propositions 1 and 2 for the

setting when r = rn →∞ as n→∞, but the number of dynamic variables

rD and the number of predictors p remains fixed. In this setting, the error

matrix Ec = [ED,c EA,c] and the corresponding error covariance matrix Σ



depend on n, but this dependence is suppressed for simplicity of notation.

Proposition S2. Consider an asymptotic regime discussed above, where

rD and p remain fixed, but r is allowed to grow with n. Assume that the

errors are normally distributed in models (2.2), (2.3), (2.4). Assume that

D, A and S are given. Let ΣD|−D = ΣD −ΣD,−DΣ−1
−DΣ−D,D and ΣD|A =

ΣD −ΣD,AΣ−1
A ΣA,D.

(a) Suppose r = o(n) and the eigenvalues of Σ are uniformly bounded (in

n) away from zero and infinity. Then the asymptotic distribution of β̂D

(the maximum likelihood estimator of βD under (2.2)) is given by

Σ
−1/2
D|−D(β̂D − βD)

(
XT
c Xc

)1/2 d→MNrD×p (0, IrD , Ip) ,

and the asymptotic distribution of β̂D,2 (the maximum likelihood esti-

mator of βD under (2.4) with YD YS | (YA,X)) is given by

Σ
−1/2
D|A (β̂D,2 − βD)

(
XT
c Xc

)1/2 d→MNrD×p (0, IrD , Ip) .

Here MNrD×p denotes the matrix normal distribution on the space of

rD × p matrices.

(b) Suppose rA = o(n) and the eigenvalues of the principal (top) rD + rA

submatrix of Σ are uniformly bounded (in n) away from zero and infin-

ity. Then the asymptotic distribution of β̂D,1 (the maximum likelihood



estimator of βD under (2.3)) is given by

Σ
−1/2
D|A (β̂D − βD)

(
XT
c Xc

)1/2 d→MNrD×p (0, IrD , Ip) .

To see that Proposition 1 follows as a special case of this proposition when

r is fixed, note that 1
n
XT
c Xc

P→ ΣX and

• θ ∼MN(µ,U,V)⇒ DθC ∼MN(DµC,DUDT ,CTVC).

• θ ∼MN(µ,U,V)⇒ vec(θ) ∼ N(vec(µ),V ⊗U).

Proof. Note that β̃D = YT
D,cXc(XT

c Xc)
−1 = βD + ETD,cXc(XT

c Xc)
−1 and

β̃−D = YT
−D,cXc(XT

c Xc)
−1 = ET−D,cXc(XT

c Xc)
−1. The sample residual RD

from the regression of YD on X is RD = QXcED,c and the sample residual

R−D from the regression of Y−D on X is R−D = QXcE−D,c. The ma-

trix β̃D|−D contains the coefficients from the regression of RD on R−D, i.e.

β̃D|−D = ETD,cQXcE−D,c(ET−D,cQXcE−D,c)−1. So β̂D = β̃D − β̃D|−Dβ̃−D =

βD+ETD,cXc(XT
c Xc)

−1−ETD,cQXcE−D,c(ET−D,cQXcE−D,c)−1ET−D,cXc(XT
c Xc)

−1.

Note that

E = [ED E−D] ∼MN(0, In,Σ)

and

Ec ∼MN

(
0, In − 2

Jn
n

+
J2
n

n2
,Σ

)
,



where Jn is the n× n matrix with all entries 1. Using the properties of the

matrix normal distribution listed above, it follows that

(β̂D−βD)
(
XT
c Xc

)1/2
=
(
ẼTc,D −ΣD,−DΣ−1

−DẼ
T
c,−D

)
+
(
ΣD,−DΣ−1

−D − Ĉ
)
ẼTc,−D

(S2.1)

where

ẼTc = ETc Xc(XT
c Xc)

−1/2 ∼MN(0,Σ, Ip) (S2.2)

(since XT
c Jn = 0), and

Ĉ =

(
ETD,cQXcE−D,c

n

)(
ET−D,cQXcE−D,c

n

)−1

.

For arbitrary a ∈ RrD and b ∈ Rp satisfying ‖a‖2 = ‖b‖2 = 1, we have

aTΣ
−1/2
D|−D(β̂D − βD)

(
XT
c Xc

)1/2
b

= aTΣ
−1/2
D|−D

(
ẼTc,D −ΣD,−DΣ−1

−DẼ
T
c,−D

)
b +

aTΣ
−1/2
D|−D

(
ΣD,−DΣ−1

−D − Ĉ
)
ẼTc,−Db

= Z +W, (S2.3)

where

Z = aTΣ
−1/2
D|−D

(
ẼTc,D −ΣD,−DΣ−1

−DẼ
T
c,−D

)
b

= aTΣ
−1/2
D|−D

[
IrD −ΣD,−DΣ−1

−D
]
ẼTc b (S2.4)

and

W = aTΣ
−1/2
D|−D

(
ΣD,−DΣ−1

−D − Ĉ
)
ẼTc,−Db. (S2.5)



Using (S2.2), (S2.3), (S2.4) and properties of the matrix normal distribution

listed above, it follows that

Z ∼ N
(
0, (aTa)(bTb)

)
= N(0, 1).

If we show that W
P→ 0, then it follows that

aTΣ
−1/2
D|−D(β̂D − βD)

(
XT
c Xc

)1/2
b

d→ N(0, 1)

for arbitrary a ∈ RrD and b ∈ Rp with ‖a‖2 = ‖b‖2 = 1. Using the

Cramer-Wold device gives the required result for β̂D.

We now complete this final step of the proof, i.e., show that W
P→ 0.

Note by (S2.5) that

|W | ≤ ‖a‖2

∥∥∥Σ−1/2
D|−D

∥∥∥
2

∥∥∥ΣD,−DΣ−1
−D − Ĉ

∥∥∥
2

∥∥∥ẼTc,−Db
∥∥∥

2
. (S2.6)

Since ‖a‖2 = 1, ẼTc,−Db ∼ N (0,Σ−D), and the eigenvalues of Σ (hence those

of ΣD|−D and Σ−D) are uniformly bounded away from zero and infinity, it

follows that

‖a‖2

∥∥∥Σ−1/2
D|−D

∥∥∥
2

∥∥∥ẼTc,−Db
∥∥∥

2
= OP (1). (S2.7)

For any v ∈ Rr with ‖v‖2 ≤ 1, we have Ev ∼ N
(
0,
(
vTΣv

)
In
)
. Since

the eigenvalues of Σ are uniformly bounded above and below, it follows

by the Hanson-Wright inequality (Rudelson and Vershynin, 2013, Theorem



1.1) that

P

(∣∣∣∣vT (ETE
n
−Σ

)
v

∣∣∣∣ > η

)
≤ 2 exp

[
−C0nmin(η2, η)

]
(S2.8)

for an appropriate constant C0 which does not depend on n. Using (Ghosh

et al., 2018, Lemma B.2), it follows that

P

(∥∥∥∥ETEn −Σ

∥∥∥∥
2

> η

)
≤ 2 exp

[
−C0nmin(η2, η) + 2r log 21

]
. (S2.9)

Using η =
√

3r log 21
C0n

and r = o(n), we get∥∥∥∥ETEn −Σ

∥∥∥∥
2

= OP

(√
r

n

)
= oP (1). (S2.10)

Hence ∥∥∥∥ETc Ecn
−Σ

∥∥∥∥
2

=

∥∥∥∥ETEn −Σ− ETJnE
n2

∥∥∥∥
2

≤
∥∥∥∥ETEn −Σ

∥∥∥∥
2

+

∥∥∥∥ETJnE
n2

∥∥∥∥
2

≤ OP

(√
r

n

)
+

1

n2
1TnEET1n

= OP

(√
r

n

)
+OP

( r
n

)
. (S2.11)

The last equality follows from the fact that

1

n
1TnEΣ−1ET1n ∼ χ2

r,

the eigenvalues of Σ are uniformly bounded above and below, and χ2
r =

OP (r).



Let X̃c = X − 1nµ
T
X. By using the fact that p is fixed, X and E

are independent (with matrix normal distributions specified above), the

eigenvalues of Σ are uniformly bounded above and below, and the Hanson-

Wright inequality (Rudelson and Vershynin, 2013, Theorem 1.1) (similar to

(S2.8)), we get

P

(∣∣∣∣∣uT
(
X̃T
c X̃c

n
−ΣX

)
u

∣∣∣∣∣ > η

)
≤ 2 exp

[
−C1nmin(η2, η)

]
(S2.12)

for every u ∈ Rp with ‖u‖2 ≤ 1, and an appropriate constant C1 which

does not depend on n, and

P

(∣∣∣∣∣(X̃cu + Ev)T (X̃cu + Ev)

n
− uTΣXu− vTΣv

∣∣∣∣∣ > η

)
≤ 2 exp

[
−C2nmin(η2, η)

]
(S2.13)

for every u ∈ Rp,v ∈ Rr with ‖u‖2 ≤ 1, ‖v‖2 ≤ 1, and an appropriate

constant C2 which does not depend on n. It follows from (S2.8), (S2.12)

and (S2.13) that

P

(∣∣∣∣∣uT
(
X̃T
c E
n

)
v

∣∣∣∣∣ > 3η

)
≤ 6 exp

[
−C3nmin(η2, η)

]
(S2.14)

where C3 = min(C0, C1, C2). Using (Ghosh et al., 2018, Lemma B.2), it

follows that

P

(∥∥∥∥∥X̃T
c E
n

∥∥∥∥∥
2

> 3η

)
≤ 6 exp

[
−C3nmin(η2, η) + (r + p) log 21

]
. (S2.15)



Using η =
√

2r log 21
C3n

, r = o(n) and the fact that p is fixed, we get∥∥∥∥∥X̃T
c E
n

∥∥∥∥∥
2

= OP

(√
r

n

)
= oP (1). (S2.16)

Note that Xc − X̃c = 1n(µX − X̄)T , it follows that ‖Xc − X̃c‖2 =
√
n‖X̄−

µX‖2 = OP (1) (since p is fixed). Note from (S2.11) that
∥∥∥ETc Ec

n

∥∥∥
2

= OP (1).

It follows from (S2.16) that

∥∥∥∥XT
c Ec
n

∥∥∥∥
2

=

∥∥∥∥XT
c E
n

∥∥∥∥
2

≤

∥∥∥∥∥X̃T
c E
n

∥∥∥∥∥
2

+

∥∥∥∥∥(Xc − X̃c)
TEc

n

∥∥∥∥∥
2

≤

∥∥∥∥∥X̃T
c E
n

∥∥∥∥∥
2

+
1

n

∥∥∥Xc − X̃c

∥∥∥
2
‖Ec‖2

= OP

(√
r

n

)
. (S2.17)

Combining (S2.11), (S2.17) along with the fact that XTX/n P→ ΣX, we get

∥∥∥∥ 1

n
ETc QXcEc −Σ

∥∥∥∥
2

≤
∥∥∥∥ 1

n
ETc Ec −Σ

∥∥∥∥
2

+

∥∥∥∥∥ETc Xc

n

(
XT
c Xc

n

)−1 XT
c Ec
n

∥∥∥∥∥
2

= OP

(√
r

n

)
.

(S2.18)

Since the eigenvalues of Σ are uniformly bounded above and below, and

r = o(n), it follows that∥∥∥∥∥
(

1

n
ETc QXcEc

)−1

−Σ−1

∥∥∥∥∥
2

= OP

(√
r

n

)
.



Finally, using the form of the inverse of a partitioned matrix, we conclude

that

∥∥∥ΣD,−DΣ−1
−D − Ĉ

∥∥∥
2

=

∥∥∥∥∥∥ΣD,−DΣ−1
−D −

(
ETD,cQXcE−D,c

n

)(
ET−D,cQXcE−D,c

n

)−1
∥∥∥∥∥∥

2

= OP

(√
r

n

)
.

The desired result for β̂D now follows from (S2.6) and (S2.7). The result

for β̂D,2 follows by noting that Y−D = (YT
A,Y

T
S )T . If YD YS | (YA,X),

then as shown in Section S1 above, ΣD|−D = ΣD|A. The result for β̂D,1 in

part (b) follows by going through the arguments for the β̂D proof above

verbatim - but replacing −D by A in all relevant places.

S3. Proof of Proposition 3

Proof. We first look into β̂D,1. Note that β̃D = YT
D,cXc(XT

c Xc)
−1 =

βD + ETD,cXc(XT
c Xc)

−1 and β̃A = YT
A,cXc(XT

c Xc)
−1 = ETA,cXc(XT

c Xc)
−1. The

sample residual RD from the regression of YD on X is RD = QXcED,c and

the sample residual RA from the regression of YA on X is RA = QXcEA,c.

The matrix β̃D|A contains the coefficients from the regression of RD on

RA, i.e. β̃D|A = ETD,cQXcEA,c(ETA,cQXcEA,c)−1. So β̂D,1 = β̃D − β̃D|Aβ̃A =

βD + ETD,cXc(XT
c Xc)

−1 − ETD,cQXcEA,c(ETA,cQXcEA,c)−1ETA,cXc(XT
c Xc)

−1.



On the other hand, β̂D,3 = RT
D|ARX|A(RT

X|ARX|A)−1, where RX|A =

QYA,cXc = QEA,cXc, RD|A = QYA,cYD,c = QEA,cYD,c. Therefore β̂D,3 =

YT
D,cQEA,cXc(XT

c QEA,cXc)
−1 = βD + ETD,cQEA,cXc(XT

c QEA,cXc)
−1.

We focus on β̂D,3 first. By Woodbury equality, we have

(XT
c QEA,cXc)

−1

=
[
XT
c Xc − XT

c EA,c(ETA,cEA,c)−1ETA,cXc

]−1

= (XT
c Xc)

−1 + (XT
c Xc)

−1XT
c EA,c

[
ETA,cEA,c − ETA,cXc(XT

c Xc)
−1XT

c EA,c
]−1 ETA,cXc(XT

c Xc)
−1

= (XT
c Xc)

−1 + (XT
c Xc)

−1XT
c EA,c(ETA,cQXcEA,c)−1ETA,cXc(XT

c Xc)
−1.



Therefore

β̂D,3 = βD + ETD,cQEA,cXc(XT
c Xc)

−1 + ETD,cQEA,cPXcEA,c(ETA,cQXcEA,c)−1ETA,cXc(XT
c Xc)

−1

= βD + ETD,cQEA,cXc(XT
c Xc)

−1 + ETD,cQEA,c(I−QXc)EA,c(ETA,cQXcEA,c)−1ETA,cXc(XT
c Xc)

−1

= βD + ETD,cQEA,cXc(XT
c Xc)

−1 − ETD,cQEA,cQXcEA,c(ETA,cQXcEA,c)−1ETA,cXc(XT
c Xc)

−1

= βD + ETD,cQEA,cXc(XT
c Xc)

−1 − ETD,c(I−PEA,c)QXcEA,c(ETA,cQXcEA,c)−1ETA,cXc(XT
c Xc)

−1

= βD + ETD,cQEA,cXc(XT
c Xc)

−1 − ETD,cQXcEA,c(ETA,cQXcEA,c)−1ETA,cXc(XT
c Xc)

−1

+ETD,cEA,c(ETA,cEA,c)−1ETA,cQXcEA,c(ETA,cQXcEA,c)−1ETA,cXc(XT
c Xc)

−1

= βD + ETD,cQEA,cXc(XT
c Xc)

−1 − ED,cQXcEA,c(ETA,cQXcEA,c)−1ETA,cXc(XT
c Xc)

−1

+ETD,cPEA,cXc(XT
c Xc)

−1

= βD + ETD,cXc(XT
c Xc)

−1 − ED,cQXcEA,c(ETA,cQXcEA,c)−1ETA,cXc(XT
c Xc)

−1

= β̂D,1.

S4. Proof of Proposition 4

Proof. Following the definitions of Xc, YA,c, YD,c, RX|A and RD|A in the

proof of Proposition 3, the OLS estimator of (β1,β2) is

(β̂1, β̂2) = YT
D,c(Xc,YA,c)[(Xc,YA,c)T (Xc,YA,c)]−1.



Using the structure on the matrix inverse, we have

β̂1 = YT
D,cXc[XT

c Xc − XT
c YA,c(YT

A,cYA,c)−1YT
A,cXc]

−1

−YT
D,cYA,c(YT

A,cYA,c)−1YT
A,cX[XT

c Xc − XT
c YA,c(YT

A,cYA,c)−1YT
A,cXc]

−1

= YT
D,cYA,c(RT

X|ARX|A)−1 − YT
D,cYA,c(YT

A,cYA,c)−1YT
A,cX(RT

X|ARX|A)−1

= RT
D|ARX|A(RT

X|ARX|A)−1

= β̂D,3.

S5. Proof of Proposition 5

Proof. Recall that Σ has the partition

Σ =


ΣD ΣD,A ΣD,S

ΣA,D ΣA ΣA,S

ΣS,D ΣS,A ΣS

 .

We partition Ω = Σ−1 into a 2 × 2 block matrix with respect to D and

(A,S), then

Ω =

 Σ−1
D|(A,S) −Σ−1

D|(A,S)ΣD,(A,S)Σ
−1
(A,S)

−Σ−1
(A,S)|DΣ(A,S),DΣ−1

D Σ−1
(A,S)|D

 ≡
 Ω11 Ω12

Ω21 Ω22

 .

Notice that

BD|(A,S) = ΣD,(A,S)Σ
−1
(A,S) = ΣD|(A,S)Σ

−1
D|(A,S)ΣD,(A,S)Σ

−1
(A,S) = −ΣD|(A,S)Ω12 = −Ω−1

11 Ω12.



Since ΣD|(A,S) > 0, the columns in Ω12 = (ΩD,A,ΩD,S) is zero if and only

if the corresponding columns in BD|(A,S) = (BD|A,BD|S) is zero. Thus

BD|S = 0 and each column in BD|A is nonzero.

S6. Proof of Theorem 1

Proof. Note that f1(β) is a strictly convex function for n > p, and hence

has a unique global (and local) minimum β̂step1. Hence, to prove estimation

consistency of β̂step1, it is sufficient to show that for any small ε > 0, there

exists a sufficiently large constant C, such that

lim
n→∞

P̄

(
inf

‖vec(u)‖=C
f1(β̄ + n−1/2u) > f1(β)

)
> 1− ε. (S6.19)

Note that

f1(β̄ + n−1/2u)− f1(β̄)

= tr
[{

Yc − Xc(β̄ + n−1/2u)T
}
S−1
Y|X
{
Yc − Xc(β̄ + n−1/2u)T

}T
/n
]

− tr{(Yc − Xcβ̄
T

)S−1
Y|X(Yc − Xcβ̄

T
)T/n}+ λ1

r∑
i=1

wi
{
‖β̄i· + n−1/2ui·‖ − ‖β̄i·‖

}
≥ −2n−3/2 tr{XT

c (Yc − Xcβ̄
T

)S−1
Y|Xu}+ n−1 tr(uTS−1

Y|XuSX) +

λ1

∑
i∈D̄

wi
(
‖β̄i· + n−1/2ui·‖ − ‖β̄i·‖

)
≡ (I) + (II) + (III). (S6.20)

Note that XT
c (Yc − β̄Xc) = XT (Yc − β̄Xc), and the (k, l)th entry of

XT (Yc − β̄Xc) is given by
∑n

j=1 Xjk(εjl −
∑n

j=1 εjl/n). Recall that εj =



Yj − β̄Xj, and {εj}nj=1 are IID with mean 0 and covariance matrix Σ̄

under P̄ . Let (ΣX)kk denote the (k, k)th element of ΣX, and (µX)k denote

the kth element of µX. Since 1
n

∑n
j=1X

2
jk → (ΣX)kk + (µX)2

k > 0, it follows

by Lindeberg’s central limit theorem that
∑n

j=1Xjk(εil −
∑n

j=1 εjl/n) =∑n
j=1 Xjkεil−

∑n
j=1 εjl/n

∑n
j=1Xjk = OP̄ (

√
n). Since XT (Yc−β̄Xc) is a p×r

matrix, and p, r are fixed, it follows that ‖vec{XT (Yc− β̄Xc)}‖ = OP̄ (
√
n).

For any matrix A, let λmax(A) and λmin(A) denote the square-root of the

maximum and minimum eigenvalue of ATA respectively. Since SY|X → Σ̄

as n → ∞, it follows that λmax(S−1
Y|X) = OP̄ (1), and λmin(S−1

Y|X) = OP̄ (1).

From these facts, we get

(I) ≥ − 1

2n3/2
‖vec(u)‖‖vec{XT (Yc−β̄Xc)}‖λmax(S−1

Y|X) = −‖vec(u)‖
n

OP̄ (1),

(S6.21)

and

(II) ≥
λmin(S−1

Y|X)λmin(SX)‖vec(u)‖2

n
=
‖vec(u)‖2

n
OP̄ (1). (S6.22)

Recall that wi = ‖β̂i·‖−γ1 . Since β̂ols is a
√
n-consistent estimator for

β̄ and ‖β̄i·‖ > 0 if i ∈ D̄, it follows that wi = OP̄ (1) for i ∈ D̄. Hence, by

the triangle inequality and the fact that λ1 = o
(

1√
n

)
, we get that

−(III) ≤ λ1√
n

∑
i∈D̄

wi‖ui·‖ ≤
λ1rD̄‖vec(u)‖√

n
max

1≤i≤rD̄
wi. =

‖vec(u)‖
n

oP̄ (1).

(S6.23)



Note that (S6.23) is dominated by (S6.21) and (S6.22), and by choos-

ing ‖vec(u)‖ = C sufficiently large, the positive term (S6.22) dominates

(S6.21). Thus the statement in (S6.19) holds.

We now use the method of contradiction to prove dynamic response

selection consistency. Suppose that ‖(β̂step1)i·‖ > 0 for some i /∈ D̄. Since

β̂step1 is the global minimizer of f1(β), it follows by the first derivative

condition that

(
2S−1

Y|Xβ̂step1SX − 2S−1
Y|XSYX

)
i·

+ λ1wi
(β̂step1)i·

‖(β̂step1)i·‖
= 0.

Since β̂step1 and β̂ols are
√
n-consistent estimators of β̄, and SY|X, SX

are consistent estimators of Σ and ΣX, it follows that

2S−1
Y|Xβ̂step1SX − 2S−1

Y|XSYX = 2S−1
Y|X(β̂step1 − β̂ols)SX = Op(n

−1/2),

Since (β̂step1)i· 6= 0, there exists a k such that |(β̂step1)ik|/‖(β̂step1)i·‖ ≥

1/
√
r. Recall that wi = 1/‖β̂i·,ols‖γ1 . As β̂i·,ols is

√
n-consistent, then

‖β̂i·,ols‖−γ1 = ΩP̄ (nγ1/2). Since n(1+γ1)/2λ1 →∞,
√
nλ1wi|β̂ik|/‖β̂i·‖ tends to

infinity as n→∞. This is a contradiction, so (β̂step1)i· = 0 with probability

tending to 1 for any i /∈ D̄. Combining this with the estimation consistency

result for β̂step1, we get P̄ (D̂ = D̄)→ 1 as n→∞.

Selection consistency of ancillary response can be established following

exactly the same procedure as the dynamic response.



Now we prove the estimation consistency of β̂D̂. Let T c denote the

complement of set T . Notice that

P̄ (‖vec(β̂D̂)− vec(β̄D̄)‖ ≥ ε)

= P̄
(
‖vec(β̂D̂)− vec(β̄D̄)‖ ≥ ε | D̂ = D, Â = A

)
P̄
(
D̂ = D, Â = A

)
+P̄

(
‖vec(β̂D̂)− vec(β̄D̄)‖ ≥ ε | {D̂ = D, Â = A}c

)
P̄
(
{D̂ = D, Â = A}c

)
≥ P̄

(
‖vec(β̂D̂)− vec(β̄D̄)‖ ≥ ε | D̂ = D, Â = A

)
P̄
(
D̂ = D, Â = A

)
By dynamic response selection consistency and ancillary response selection

consistency, β̂D̂ is a
√
n-consistent estimator of β̄D.

S7. Proof of Theorem 2

Proof. Note that β̂D̂ = β̃D̂ − β̃D̂|Â and β̂D,oracle = β̃D − β̃D|Aβ̃A, where

β̃D̂, β̃D̂|Â, β̃Â, β̃D, β̃D|A and β̃A are OLS estimators. By the selection

consistency of the dynamic and ancillary responses in Theorem 1, it follows

that

√
n{vec(β̂D,oracle)−vec(βD)} d→ N(0,Voracle), Voracle = Σ−1

X ⊗(ΣD−ΣD,AΣ−1
A ΣA,D).

and

√
n{vec(β̂D̂)− vec(βD)} d→ N(0,V), V = Σ−1

X ⊗ (ΣD −ΣD,AΣ−1
A ΣA,D).

Since V = Voracle and P̄ (D̂ = D̄)→ 1, we have ‖vec(β̂D̂)−vec(β̂D,oracle)‖ =

oP̄ (n−1/2).



S8. Assumptions for high-dimensional consistency

In this section, we provide and discuss the regularity assumptions that

are needed for establishing high-dimensional selection consistency of the

proposed procedure in Theorem 3. Let Tn = {(i, j) : Ω̄ij 6= 0} be the set of

indices of nonzero elements in Ω̄, tn = |Tn|c the cardinality of Tn, and sn

the minimum absolute value of nonzero entries in Ω̄.

The first three assumptions, Assumptions 1- 3, are required for the

consistency of the CONCORD estimator Ω̂.

Assumption 1. The errors ε1, ε2, · · · , εn are independent and identically

sampled from a sub-Gaussian distribution with mean zero and covariance

matrix Σ̄. The eigenvalues of Σ̄ are uniformly bounded above by k̄ and

uniformly bounded below by k = 1/k̄. The predictors X1,X2, · · · ,Xn are

IID from a sub-Gaussian distribution.

Assumption 2 (Incoherence condition). Let Γ denote a
(
rn
2

)
-dimensional

square matrix. Then the number of rows or columns of Γ is the same as the

number of the edges connecting vertices {1, . . . , rn}. The element Γ(i,j),(t,s)

denotes the element whose row corresponds to the edge connecting vertices

i and j and column corresponds to the edge connecting vertices s and t. Let



1{·} be the indicator function. For 1 ≤ i < j ≤ rn and 1 ≤ t < s ≤ rn,

Γ(i,j),(t,s) = Σ̄js1{i=t} + Σ̄it1{j=s} + Σ̄is1{j=t} + Σ̄jt1{i=s},

and γ denote a
(
rn
2

)
-dimensional vector such that for 1 ≤ i < j ≤ rn,

γ(i,j) = Ω̄ij. Then

max
(i,j)∈T cn

∣∣Γ(i,j),TnΓ
−1
Tn,Tn

sign(γTn)
∣∣ < 1,

where sign(x) = (sign(xi))
k
i=1 is the sign function for any k-dimensional

vector x.

Assumption 3. rn = O(nκ) for some κ > 0, tn
√

log rn/n = o (min(1, s2
n)),

and for some constant c > 0, λ = c
(

4
√

log rn/n
)

, where λ is the penalty

in (3.13).

Similar assumptions are made in Khare et al. (2015) for consistency of

the CONCORD estimator in the IID setting. Note that the setting here is

slightly different from Khare et al. (2015), as Ω is the precision matrix of

the residuals, which are not IID.

The next assumption controls the rate at which the true number of

dynamic and ancillary variables can grow as n increases.

Assumption 4. r2
D̄rĀ + rD̄r

2
Ā = o

(
n

log rn

)
.



The next two assumptions, are again standard for sparsity selection con-

sistency in both the frequentist and Bayesian paradigms. They essentially

provide lower bounds for the “minimum signal strength” in the context of

the dynamic and ancillary response selection steps. As a specific example,

if rD̄ and rĀ are uniformly bounded in n, then the two assumptions are sat-

isfied, for example, if
√

log(rn)/n = o(1), the entries of β̄D̄ are uniformly

bounded below (very mild requirement given rD̄ = O(1)), and the eigenval-

ues of Σ̄ are uniformly bounded (a standard assumption in high-dimensional

asymptotics).

Assumption 5.
√
rD̄ log(rn)/n+

√
tnrA(log(rn)/n)3/4 = o

(
min1≤i≤rD̄ ‖β̄D̄,i·‖max

)
.

Assumption 6. Recall that B̄D̄|Ā,S̄ = −Ω̄
−1
D̄ Ω̄D̄,(Ā,S̄). Let B̄D̄|Ā,S̄ =

(
B̄D̄|Ā, B̄D̄|S̄

)
.

Then √(
r2
D̄rĀ + rD̄r

2
Ā

)
log(rn)

n
= o

(
min

1≤i≤rĀ
‖B̄D̄|Ā,·i‖max

)
.

The last two assumptions control the behavior of various group-specific

penalty parameters.

Assumption 7. λ1 max1≤i≤rD̄ wi = O
(√

log(rn)/n
)

and (tn +
√
rD̄ +

rĀ)
√

log(rn)/n = o
(
λ1 minrD̄+1≤i≤rn wi

)
.

Assumption 8. λ2 max1≤i≤rĀ w̃i = O
(√

(rD̄ + rĀ) log(rn)/n
)

and
√(

r2
D̄rĀ + rD̄r

2
Ā

)
log(rn)/n =

o
(
λ2 minrĀ+1≤i≤rn w̃i

)
.



S9. Proof of Theorem 3

Proof. We first establish the consistency of the CONCORD estimator Ω̂.

Let E be the rn × n matrix with columns ε1, ε2, · · · , εn. Then

SY|X =
1

n
E(I−PX)ET . (S9.24)

Hence SY|X is not the covariance matrix of the errors. To derive the consis-

tency of the CONCORD estimator of Ω−1, we need to derive a concentration

inequality for SY|X.

Let W be a d-dimensional random vector with mean µW and covariance

matrix ΣW. Assume that W − µW follows a sub-Gaussian distribution.

Suppose that W1, . . . ,Wn are IID samples of W. Let W̄ =
∑n

i=1 Wi/n.

Then W̄ − µW also follows a sub-Gaussian distribution with mean 0 and

covariance matrix ΣW/n. Note that the sample covariance matrix is

SW =
1

n

n∑
k=1

(Wk − W̄)(Wk − W̄)T

=
1

n

n∑
k=1

(Wk − µW)(Wk − µW)T − (W̄ − µW)(W̄ − µW)T .

Let (Wk − µW)i denote the ith element of the random vector Wk − µW.

From Lemma 1 in Ravikumar et al. (2011), there exist positive constants



b1, C1, C2, C3 and C4, such that for δ ∈ (0, b1),

P (|SW,ij −ΣW,ij| > δ) ≤P

∣∣∣∣∣∣
{

1

n

n∑
i=1

(Wk − W̄)(Wk − W̄)T

}
ij

−ΣW,ij

∣∣∣∣∣∣ > δ

2


+ P

[∣∣∣∣{(W̄ − µW)(W̄ − µW)T
}
ij
− 1

n
ΣW,ij

∣∣∣∣ > δ

2

]
+ 1{ 1

n
ΣW,ij>

δ
2
}

≤ C1 exp(−C2nδ
2) + C3 exp(−C4n

3δ2)

≤ C5 exp(−C6nδ
2),

where C5 > C1, and C6 = C2. In the second inequality, when n is suf-

ficiently large, 1{ 1
n
ΣW,ij>

δ
2
} = 0. This is because Σ is upper bounded by

k̄ and the dimension of ΣX is fixed. Let δ =
√
C7{log(d)/n}1/2 for some

d > 0. Then

P (|SW,ij −ΣW,ij| >
√
C7{log(d)/n}1/2) ≤ d−C6C7

for large enough d (or large enough n, if d grows with n). Since C7 can be

any positive constant, we take C7 such that C6C7 > 2.

Using the union sum inequality, we have

P (‖SW −ΣW‖max > δ) =P (∪di,j=1|SW,ij −ΣW,ij| > δ)

≤
d∑
i=1

d∑
j=1

P (|SW,ij −ΣW,ij| > δ)

≤d2d−C6C7 = d−(C6C7−2).



Thus with probability at least 1− d−η, where η = C6C7 − 2 > 0, we have

‖SW −ΣW‖max ≤ C7{log(d)/n}1/2

for large enough d. Henceforth, it will be understood that statements re-

garding relevant high probability events hold for large enough n (depending

on η). Now we take W = (XT , εT )T , then W is a (p+ rn)-dimensional ran-

dom vector with mean µW = (µTX,0
T )T , where 0 is an rn dimensional zero

vector. Since X − µX and ε are both sub-Gaussian random vector, then

W−µW is a sub-Gaussian random vector with mean 0 and block diagonal

covariance matrix with diagonal blocks ΣX and Σ. Thus there exists a

constant C0 > 0 such that ‖SW − ΣW‖max ≤ C0{log(rn + p)/n}1/2 with

probability at least 1 − (p + rn)−η. Since p is fixed, we can find C∗0 such

that

‖SW −ΣW‖max ≤ C∗0{log(rn)/n}1/2,

with probability at least 1− r−ηn . Note that SX −ΣX, Sε −Σε and Sε,X

are sub-matrices of SW − ΣW, where SX = XT
c XT

c /n, Sε = ETE/n and

Sε,X = ETX/n. Hence with probability at least 1− r−ηn

‖SX −ΣX‖max ≤ C∗0{log(rn)/n}1/2,

‖Sε −Σε‖max ≤ C∗0{log(rn)/n}1/2,

‖Sε,X‖max ≤ C∗0{log(rn)/n}1/2.

(S9.25)



Because that SY|X = Sε − Sε,XS−1
X SX,ε, where SX,ε = STε,X, we have

SY|X −Σ =Sε −Σε + (Sε,X −Σε,X)Σ−1
X ΣX,ε + Σε,X(S−1

X −Σ−1
X )ΣX,ε

+ Σε,XΣ−1
X (SX,ε −ΣX,ε) + (Sε,X −Σε,X)(S−1

X −Σ−1
X )ΣX,ε

+ Σε,X(S−1
X −Σ−1

X )(SX,ε −ΣX,ε) + (Sε,X −Σε,X)Σ−1
X (SX,ε −ΣX,ε)

+ (Sε,X −Σε,X)(S−1
X −Σ−1

X )(SX,ε −ΣX,ε).

Using the fact that for A ∈ Rd1×d2 , B ∈ Rd2×d3 , ‖AB‖max ≤ d2‖A‖max‖B‖max,

we have

‖SY|X −Σ‖max ≤ Cres{log(rn)/n}1/2, (S9.26)

with probability at least 1− r−ηn for some Cres > 0.

The concentration inequality in (S9.26), along with Assumptions 1-3

ensure that the proof of (Khare et al., 2015, Theorem 2) goes through for

the current setting. It follows that for any η > 0, there exists a constant

Cη such that for large enough n,

∥∥∥Ω̂− Ω̄
∥∥∥

2
< Cη

√
tn

4

√
log rn
n

, (S9.27)

and Ω̂ recovers the zeros and non-zeros in Ω with probability at least 1−r−ηn .

This establishes the high-dimensional accuracy of Ω̂ as an estimator of Ω.

Before proving Theorem 3, we first establish two inequalities (S9.28)

and (S9.31) which will be useful in subsequent analysis. It follows by the



triangle inequality that for every η > 0,

∥∥∥Ω̂−D̄,D̄(Ω̂D̄)−1
∥∥∥

2

≤
∥∥∥Ω̄−D̄,D̄Ω̄

−1
D̄

∥∥∥
2

+
∥∥∥Ω̂−D̄,D̄(Ω̂D̄)−1 − Ω̄−D̄,D̄Ω̄

−1
D̄

∥∥∥
2

≤ k̄2 +
∥∥∥Ω̂−D̄,D̄ ((Ω̂D̄)−1 − Ω̄

−1
D̄

)∥∥∥
2

+
∥∥∥(Ω̂−D̄,D̄ − Ω̄−D̄,D̄

)
Ω̄
−1
D̄

∥∥∥
2

≤ k̄2 +
∥∥∥Ω̂−D̄,D̄∥∥∥

2

∥∥∥(Ω̂D̄)−1 − Ω̄
−1
D̄

∥∥∥
2

+
∥∥∥Ω̂−D̄,D̄ − Ω̄−D̄,D̄

∥∥∥
2

∥∥∥Ω̄−1
D̄

∥∥∥
2

(a)

≤ k̄2 + C1,η

√
tn

4

√
log rn
n

(S9.28)

for some constant C1,η, with probability at least 1− r−ηn for large enough n.

Here (a) follows from Assumption 1, (S9.27), the fact that Ω̂ recovers the

zeros of Ω with high probability, and tn
√

log rn/n→ 0 as n→∞.

Note that each row of SY−D̄X has p entries, and p = O(1). Let ‖ · ‖∞

denote the row-sum norm of a matrix. Using the third relation in (S9.25),

for every η > 0, there exists a constant C2,η such that

‖SY−D̄X‖∞ = ‖Sε−D̄X‖∞ ≤ C2,η

√
log rn
n

(S9.29)

with probability at least 1 − r−ηn for large enough n. Since Ω̄S̄,D̄ = 0, we

get

∥∥∥Ω̂−D̄|D̄SY−D̄X

∥∥∥
∞
≤

∥∥∥Ω̂−D̄SY−D̄X

∥∥∥
∞

+
∥∥∥Ω̂−D̄,D̄(Ω̂D̄)−1Ω̂D̄,−D̄SY−D̄X

∥∥∥
∞

≤
∥∥∥Ω̂−D̄∥∥∥

∞

∥∥SY−D̄X

∥∥
∞ +

∥∥∥Ω̂Ā,D̄(Ω̂D̄)−1Ω̂D̄,Ā

∥∥∥
∞

∥∥SYĀX

∥∥
∞ .

(S9.30)



From (S9.27) and Assumption 1, ‖Ω̂−D̄‖∞ is bounded by tn/k and
∥∥∥Ω̂−D̄,D̄(Ω̂D̄)−1Ω̂D̄,−D̄

∥∥∥
∞

is bounded by k̄3rĀ with probability tending to 1. Then it follows by

(S9.27), (S9.29), (S9.30), the fact that Ω̂ recovers the zeros and nonze-

ros in Ω̄ with high probability that for every η > 0, there exists a constant

C3,η > 0 such that

∥∥∥Ω̂−D̄|D̄SY−D̄X

∥∥∥
∞
≤ C3,η(tn + rĀ)

√
log rn
n

(S9.31)

with probability at least 1− 2r−ηn for large enough n.

Now let β̃ be the solution of the restricted problem

β̃ = arg min
β̃−D̄·=0

f̃1(β).

We will show that β̃ is the minimizer for (3.14) with high probability. As

∂f1(β)/∂βi· = −2eTi Ω̂(SYX − βSX) + λ1wi∂‖βi·‖/∂βi·, where ei is an rn-

dimensional vector of 0 except for a 1 in the ith element, this is equivalent

to show that

−2eTi Ω̂(SYX − β̃SX) + λ1wi
β̃i·

‖β̃i·‖
= 0, for i ∈ D̄, (S9.32)

‖2eTi Ω̂(SYX − β̃SX)‖ ≤ λ1wi, for i /∈ D̄. (S9.33)

Condition (S9.32) holds because of the definition of β̃. Let

tD̄ =

(
w1

β̃
T
1·∥∥β̃T1·∥∥ · · · wrD̄

β̃
T
rD̄·∥∥β̃TrD̄·∥∥

)T

∈ RrD̄×p,



and partition Ω̂ as

Ω̂ =

 Ω̂D̄ Ω̂D̄,−D̄

Ω̂−D̄,D̄ Ω̂−D̄

 ,

then condition (S9.32) can be written as

−2Ω̂D̄(SYD̄X − β̃D̄SX)− 2Ω̂D̄,−D̄SY−D̄X + λ1tD̄ = 0.

Notice that

SYX − β̃SX =

 SYD̄X − β̃D̄SX

SY−D̄X

 ,

and denote Ω̂−D̄|D̄ = Ω̂−D̄ − Ω̂−D̄,D̄Ω̂
−1

D̄ Ω̂D̄,−D̄. Then for every i /∈ D̄,

‖2eTi Ω̂(SYX − β̃SX)‖2

= ‖2ẽTi Ω̂−D̄,D̄(SYD̄X − β̃D̄SX) + 2ẽTi Ω̂−D̄SY−D̄X‖2

= ‖2ẽTi Ω̂−D̄|D̄SY−D̄X + λ1ẽ
T
i Ω̂−D̄,D̄Ω̂

−1

D̄ tD̄‖2

≤ 2‖ẽTi Ω̂−D̄|D̄SY−D̄X‖2 + λ1‖ẽTi Ω̂−D̄,D̄Ω̂
−1

D̄ tD̄‖2, (S9.34)

where ẽi ∈ Rrn−rD̄ and eTi = (0T , ẽTi ). Here 0 is a rD̄-dimensional zero vec-

tor. Note that ‖tD̄‖2 ≤
√
prD̄max(w1, · · · , wrD̄) and ‖ẽTi Ω̂−D̄,D̄Ω̂

−1

D̄ tD̄‖2 ≤

‖Ω̂−D̄,D̄Ω̂
−1

D̄ tD̄‖2 ≤ ‖Ω̂−D̄,D̄Ω̂
−1

D̄ ‖2‖tD̄‖2. Also,

2‖ẽTi Ω̂−D̄|D̄SY−D̄X‖2 ≤ 2‖Ω̂−D̄|D̄SY−D̄X‖∞.

By (S9.28), (S9.31), (S9.34) and Assumption 7, it follows that ‖2ẽTi Ω̂(SYX−



β̃SX)‖2 ≤ λ1wi for every i /∈ D̄, which implies that β̂step1 = β̃ and β̂step1,i· =

0 for every i /∈ D̄ with probability at least 1− 3r−ηn for large enough n.

From (S9.32), we have

−2Ω̂D̄(βD̄SX − β̃D̄SX + SεD̄X)− 2Ω̂D̄,−D̄SY−D̄X + λ1tD̄ = 0.

Thus

β̂step1,D̄ − β̄D̄ = Ω̂
−1

D̄ Ω̂D̄,−D̄SY−D̄XS−1
X + Ω̂

−1

D̄ SεD̄XS−1
X −

λ1

2
Ω̂
−1

D̄ tD̄S−1
X

= Ω̂
−1

D̄ Ω̂D̄,ĀSYĀXS−1
X + Ω̂

−1

D̄ SεD̄XS−1
X −

λ1

2
Ω̂
−1

D̄ tD̄S−1
X

with probability at least 1−r−ηn for large enough n. The last equality above

follows from the selection consistency of the CONCORD estimator Ω̂. By

the sub-Gaussianity of the errors and the predictors, (S9.27), Assumption 3,

and Assumption 4, it follows that for every η > 0, there exists a constant

C4,η such that

‖β̂step1,D̄ − β̄D̄‖max = ‖Ω̂
−1

D̄ Ω̂D̄,ĀSYĀXS−1
X + Ω̂

−1

D̄ SεD̄XS−1
X −

λ1

2
Ω̂
−1

D̄ tD̄S−1
X ‖max

≤ ‖Ω̂
−1

D̄ Ω̂D̄,ĀSYĀXS−1
X ‖max + ‖Ω̂

−1

D̄ SεD̄XS−1
X ‖max + ‖λ1

2
Ω̂
−1

D̄ tD̄S−1
X ‖max

≤ C4,η

(
√
tn

4

√
log rn
n

√
rA

√
log rn
n

+

√
rD̄ log rn

n

)
(S9.35)

with probability at least 1− 3r−ηn for large enough n. Using Assumption 5,

we get β̂step1,j· 6= 0 for every j ∈ D̄ with probability at least 1 − 3r−ηn for

large enough n. Since we already established that β̂step1,j· = 0 for every



j /∈ D̄ with probability at least 1− 3r−ηn for large enough n, part (a) of the

result follows.

We now prove part (b). Note from part (a) that D̂ = D̄ on an event

with probability at least 1−6r−ηn for large enough n. We will restrict to this

high probability event throughout the subsequent argument. Recall that

R = Yc − Xcβ̂step1 is the matrix of residuals obtained by using β̂step1. Let

C = RRT/n. We proceed to establish a useful concentration bound for C

around the error covariance matrix Σ. Note that R = Yc−Xcβ̄
T

+Xcβ̄
T −

Xcβ̂
T

step1. It follows that

‖C−Σ‖max

≤

∥∥∥∥∥ 1

n

n∑
`=1

(ε` − ε̄)(ε` − ε̄)T −Σ

∥∥∥∥∥
max

+
1

n

∥∥∥(β̂step1 − β̄)XT
c Xc(β̂step1 − β̄)T

∥∥∥
max

+

2

n

∥∥∥(β̂step1 − β̄)XT
c (Yc − Xcβ̄

T
)
∥∥∥

max

≤

∥∥∥∥∥ 1

n

n∑
`=1

(ε` − ε̄)(ε` − ε̄)T −Σ

∥∥∥∥∥
max

+
∥∥∥(β̂step1 − β̄)SX(β̂step1 − β̄)T

∥∥∥
max

+

2
∥∥∥(β̂step1,D̄ − β̄D̄)SXεD̄

∥∥∥
max

.

Since the errors {εi}ni=1 and the predictors {Xi}ni=1 are both IID sub-

Gaussian with respective covariance matrices having uniformly bounded

eigenvalues (by Assumption 1), and independent of each other, it follows

by a straightforward application of Theorem 1.1 in Rudelson and Vershynin

(2013), part (a), the uniform boundedness of p and (S9.35) that for every



η > 0, there exists a constant C5,η such that

‖C−Σ‖max ≤ C5,η

√
rD̄ log rn

n
(S9.36)

with probability at least 1− 7r−ηn for large enough n.

Now let B̃ be the solution of the following restricted problem

B̃ = arg min
B·S̄=0

f̃2(B).

We will show that B̃ is the minimizer for (3.15) with high probability. As

∂f̃2(B)/∂B·i = 2Ω̂D̄
(
BC−D̄,i −CD̄,i

)
+λ2w̃i∂‖B·i‖2/∂B·i, this is equivalent

to show that

2Ω̂D̄

(
B̃C−D̄,i −CD̄,i

)
+ λ2w̃i

B̃·i

‖B̃·i‖
= 0, for i ∈ Ā, (S9.37)

‖2Ω̂D̄

(
B̃C−D̄,i −CD̄,i

)
‖ ≤ λ2w̃i, for i ∈ S̄. (S9.38)

Condition (S9.37) holds because of the definition of B̃. Let

t̃Ā =

(
w̃1

B̃·1∥∥B̃·1∥∥ · · · w̃rĀ
B̃·rĀ∥∥B̃·rĀ∥∥

)
∈ RrD̄×rĀ ,

then condition (S9.37) can be written as

2Ω̂D̄

(
B̃C−D̄,Ā −CD̄,Ā

)
+ λ2t̃Ā = 0.

Since B̃·S̄ = 0, it follows that

2Ω̂D̄

(
B̃·ĀCĀ −CD̄,Ā

)
+ λ2t̃Ā = 0. (S9.39)



Now for every i ∈ S̄, it follows from (S9.39) that

2
∥∥∥Ω̂D̄ (B̃C−D̄,i −CD̄,i

)∥∥∥
2

= 2
∥∥∥Ω̂D̄ (B̃·ĀCĀ,i −CD̄,i

)∥∥∥
2

≤ 2
∥∥∥Ω̂D̄ (CD̄,ĀC−1

Ā CĀ,i −CD̄,i
)∥∥∥

2
+ λ2

∥∥∥t̃Ā∥∥∥
2

∥∥C−1
Ā CĀ,i

∥∥
2
.

(S9.40)

Note that
∥∥∥t̃Ā∥∥∥

2
≤ √rD̄rĀmax1≤i≤rĀ w̃i. Also, Ω̄D̄,S̄ = 0, implies that εD̄

and εS̄ are conditionally independent given εĀ, which further implies that

Σ̄D̄,S̄ − Σ̄D̄,ĀΣ̄
−1
Ā Σ̄Ā,S̄ = 0.

Hence, it follows by the triangle inequality and ‖AB‖2 ≤ ‖A‖2‖B‖2 that

∥∥CD̄,ĀC−1
Ā CĀ,i −CD̄,i

∥∥
2

=
∥∥∥CD̄,ĀC−1

Ā CĀ,i −CD̄,i + Σ̄D̄,i − Σ̄D̄,ĀΣ̄
−1
Ā Σ̄Ā,i

∥∥∥
2

≤
∥∥CD̄,i − Σ̄D̄,i

∥∥
2

+
∥∥CD̄,ĀC−1

Ā

∥∥
2

∥∥CĀ,i − Σ̄Ā,i
∥∥

2
+∥∥CD̄,Ā∥∥2

∥∥∥C−1
Ā − Σ̄

−1
Ā

∥∥∥
2

∥∥Σ̄Ā,i∥∥2
+
∥∥CD̄,Ā − Σ̄D̄,Ā

∥∥
2

∥∥∥Σ̄−1
Ā Σ̄Ā,i

∥∥∥
2
.

(S9.41)

Note that ‖U‖2 ≤
√
ab‖U‖max for any a × b matrix U. It follows by

Assumption 1, Assumption 4, (S9.27), (S9.36) and (S9.41) that for every

η > 0, there exists a constant C6,η (not depending on i or n) such that

2
∥∥∥Ω̂D̄∥∥∥

2

∥∥CD̄,ĀC−1
Ā CĀ,i −CD̄,i

∥∥
2
< C6,η

√(
r2
D̄rĀ + rD̄r

2
Ā

)
log rn

n
(S9.42)



with probability at least 1 − 8r−ηn for large enough n. Hence, by (S9.40),

(S9.42) and Assumption 8, we get∥∥∥2Ω̂D̄

(
B̃C−D̄,i −CD̄,i

)∥∥∥
2
≤ λ2w̃i (S9.43)

for every i ∈ S̄, which implies B̂ = B̃ and B̂·S̄ = 0 with probability at least

1− 8r−ηn for large enough n, where B̂ is the minimizer of f̃2(B).

Now, by (S9.39) it follows that

B̂·Ā = CD̄,ĀC−1
Ā −

λ2

2
(Ω̂D̄)−1t̃ĀC−1

Ā .

Since

B̄D̄|Ā = Σ̄D̄,ĀΣ̄
−1
Ā ,

we have∥∥∥B̂·Ā − B̄D̄|Ā

∥∥∥
max

≤
∥∥∥CD̄,ĀC−1

Ā − Σ̄D̄,ĀΣ̄
−1
Ā

∥∥∥
2

+
λ2

2

∥∥∥(Ω̂D̄)−1
∥∥∥

2

∥∥∥t̃Ā∥∥∥
2

∥∥C−1
Ā

∥∥
2

≤
∥∥CD̄,Ā − Σ̄D̄,Ā

∥∥
2

∥∥∥Σ̄−1
Ā

∥∥∥
2

+
∥∥CD̄,Ā∥∥2

∥∥∥C−1
Ā − Σ̄

−1
Ā

∥∥∥
2

+
λ2

2

∥∥∥(Ω̂D̄)−1
∥∥∥

2

∥∥∥t̃Ā∥∥∥
2

∥∥C−1
Ā

∥∥
2
.

It follows by (S9.27), (S9.36), and Assumptions 4 and 8 that for every η > 0,

there exists a constant C7,η such that

∥∥∥B̂·Ā − B̄D̄|Ā

∥∥∥
max
≤ C7,η

√(
r2
D̄rĀ + rD̄r

2
Ā

)
log rn

n

with probability at least 1 − 8r−ηn for large enough n. We conclude from

Assumption 6 that B̂·i 6= 0 for every 1 ≤ i ≤ rĀ with probability at least



1 − 8r−ηn for large enough n. Since we already proved that B̂·S̄ = 0 and

with probability at least 1− 8r−ηn for large enough n, the result in part (b)

follows by recalling that we have restricted to the event D̂ = D̄ which holds

with probability at least 1− 6r−ηn for large enough n.

S10. Proof of Theorem 4

Note that vec(β̂D̂)− vec(β̄D̂) = vec(β̂D̄,1)− vec(β̄D̄) when D̂ = D̄, Â = Ā.

Note that Assumptions 1-8 along with rD̄ = O(1) ensure that

• P̄ (D̂ = D̄, Â = Ā)→ 1 as n→∞.

• rĀ = o(n).

• The eigenvalues of Σ (and all its principal submatrices) are uniformly

bounded (in n) away from zero and infinity.

Since the error distribution is assumed to be normal, the required result

follows immediately from the above facts and part (b) of Proposition S2.

S11. Tuning

Based on previous studies in Chen and Huang (2012) and Zou (2006), it

is sufficient to select γ1 and γ2 from a small set like {0.5, 1, 2}. Our expe-

rience found that larger γ’s usually leads to smaller models. To be more



conservative, all our numerical experiments are conducted at γ1 = 0.5 and

γ2 = 0.5. The tuning parameters λ1 and λ2 can be selected using like-

lihood based methods like AIC, BIC or nonparameteric methods such as

cross-validation. We used cross validation in both steps to select λ1 and

λ2. The warm-start trick (Friedman et al., 2010) is implemented to increase

computation efficiency.

In high-dimensional setting, when applying the CONCORD estimator,

we standardize each columns of R first, and select the tuning parameter

λ by 5-fold cross validation. For a sequence λ1 < · · · < λk, we select the

tuning parameter that yields an estimator of Ω that minimizes

−
rn∑
i=1

ωii + tr(Ω2SY|X).

Then resulting estimator is then rescaled back by the standard deviations

of the original variables in R to obtain Ω̂con.

S12. Additional Simulation

The first simulation investigates the performance of the response variable

selection algorithm in large sample setting. We fixed r = 10, rD = 6,

rA = 2, p = 8, and generated the data from model (2.6). Elements in

βD were independent N(0, 0.52) variates, the intercept was α = 0, and

elements in X were independent N(0, 0.52) variate. We varied the strength



of the association between YD and YA by generating the covariance matrix

Σ such that ρ2
max, the squared largest canonical correlation between YD

and YA, is about 0.9, 0.5 and 0.06 for each sample size 100, 200, 300,

500, 800 and 1200. Then 200 datasets were generated for each scenario.

Given a dataset, we selected the dynamic, ancillary and static responses

using the algorithm in Section 3.2. To evaluate the selection performance,

we computed true positive rates TPRD, TPRA and TPRS for all three

categories of the responses: TPRD = |D̄ ∩ D̂|c/|D̄|c, TPRA = |Ā ∩ Â|c/|Ā|c

and TPRS = |S̄∩Ŝ|c/|S̄|c, where for a set S, |S|c denotes its cardinality. We

took the average of true positive rates over 200 replications. The results

are in Table 1. The results confirm the selection consistency stated in

Table 1: Summary of selection performance as well as efficiency comparison
n TPRD TPRA TPRS Rmedian TPRD TPRA TPRS Rmedian TPRD TPRA TPRS Rmedian

ρ2
max = 0.9 ρ2

max = 0.5 ρ2
max = 0.06

50 0.993 0.915 0.655 2.868 0.989 0.950 0.635 1.292 1.000 0.743 0.868 0.990

100 1.000 1.000 0.875 3.719 1.000 0.995 0.778 1.245 0.998 0.525 0.870 0.965

200 1.000 1.000 0.895 4.809 1.000 1.000 0.833 1.427 0.975 0.450 0.620 0.960

500 1.000 1.000 0.948 5.303 1.000 1.000 0.848 1.371 1.000 0.965 0.823 1.003

1200 1.000 1.000 1.000 6.936 1.000 1.000 0.975 1.354 1.000 1.000 1.000 1.012

Theorem 1: When n is large, the dynamic, ancillary and static responses

are correctly selected with probability tending to 1. Among the three rates,

TPRD is the largest and close to 1 even when YD and YA are weekly

correlated ρ2
max = 0.06. Since the dynamic responses contain the most

important information, this is a desirable property. The algorithm is also



very effective in the selection of the ancillary response, which is the second

most important category. When YD and YA are weekly correlated, it

becomes more difficult to select the ancillary responses. But the selection

performance improves when n increases. We measured the efficiency gain

of a randomly picked element, say βij, by the efficiency ratio Rij defined as

Rij =
var(β̃ij)

var(β̂ij)
, (S12.44)

where var(β̃ij) and var(β̂ij) are the variances of the OLS estimator β̃ij and

our estimator β̂ij calculated based on 200 replications. Then Rmedian is the

median of all the Rij for the nonzero elements in β. We notice that when

ρ2
max = 0.9, we achieve substantial efficiency gains. When YD and YA

are moderated correlated that ρ2
max = 0.5, the efficiency gain is reduced.

However, when Rmedian = 1.292, by performing the response variable selec-

tion procedure, we can reduce the sample size by 23% while achieving the

same efficiency as the using all the response variables, while is considered a

worthwhile gain in many applications. When ρmax = 0.06, YD and YA are

weekly correlated. The estimator β̂D̂ has about the same efficiency as β̃D,

which is computed using all the response variables.

For each dataset, we also computed the oracle estimator β̂D,oracle, and

compared it with β̃D and β̂D̂. The standard deviations of each element in
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Figure 1: Comparison of β̃D, β̂D,oracle and β̂D̂. Solid lines mark β̂D̂, the dash-

dotted line marks the oracle estimator β̂D,oracle, and dashed lines mark β̃D. The

horizontal lines mark the asymptotic standard deviations of the corresponding

estimators. Note that the asymptotic standard deviation of β̂D,oracle and β̂D̂ is

the same by Theorem 2.



βD for the three estimators were calculated. The results for a randomly

selected element are summarized in Figure 1. Note that the OLS estimator

β̃D only uses the dynamic responses YD for estimation. When the sample

size is 50, the ratio of the standard deviations of β̃D versus β̂D̂ is 1.80,

which means that by including the ancillary responses YA we reduces the

sample size by about 70% compared to the regular OLS estimator using

all response variables. We also notice that β̂D̂ and β̂D,oracle have similar

standard deviations, especially when the sample size is large, which confirms

the optimal estimation rate stated in Theorem 2.

S13. Generation of Σ for Simulations in Section 4.1

To generate the Σ for the simulations in Section 4.1, we started with a

matrix A with diagonal elements 1 and off-diagonal elements 0.9. Then

the elements in A−1 that correspond to ΩD,S were set to zero to obtain

matrix B. Note that B has the same sparsity structure as Ω in (2.6), but

B may not be positive definite. To achieve positive definiteness, we added a

positive definite matrix to B. More specifically, we took C = B+0.1MMT ,

where each element in M that corresponds to Ω−D,−D was an independent

uniform (0, 1) variate and other elements were zero. The matrix C preserves

the sparsity structure of B and is positive definite due to the properties of



eigenvalues of B. Then we took Σ0 = C−1. We checked the eigenvalue of

Σ0, and found that while the largest eigenvalue is upper bounded by 1, the

smallest eigenvalue goes to 0 as r →∞. We also observed that the second

smallest eigenvalue is always greater than 0.01 as r → ∞. To ensure that

the eigenvalues of Σ are uniformly bounded as required in Assumption 1, we

made a slight modification to Σ0. We performed a spectral decomposition

of the matrix Σ0. Let (λi,vi) denote the ith eigenvalue-eigenvector pair

(with eigenvalues organized in descending order). Then we take Σ = Σ0 +

(0.01− λr)vrvTr , and the eigenvalues of Σ are bounded below by 0.01 and

bounded above by 1.

S14. Further work

The concept of response variable selection can be extended to other contexts

where multivariate responses are involved, like generalized linear regression,

reduced rank regression (Izenman, 1975), partial least squares (Wold, 1966)

and envelope models (Cook et al., 2010). It may also be extended to linear

regression models with a matrix-variate or tensor variate response (Li et al.,

2011), which can have applications in neuroimaging data.
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