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This Supplement provides technical details, additional simulation results, proofs of theorems and
derivations of results presented in the original text. The referred equations in this Supplement are
labeled as (S1), (S2) etc., whereas labels such as (1), (2), etc. refer to equations from the main text.
Supplementary tables and figures presented herein are labeled as Table S1, Figure S2 etc. which
contrast labels such as Table 1 and Figure 2 etc. used to refer tables and figures from the main text.
Materials are organized by the sections in which they appear in the main text.

A Inverse Wishart distribution and matrix normal distribution

In this section we briefly review the inverse Wishart and the matrix normal distributions used in
prior construction for the proposed Bayesian approaches. For d ≥ 1, a random positive definite
matrix Z ∈ Sd×d

+ is said to follow an inverse Wishart distribution IWd(Φ, ν) if Z−1 follows a Wishart
distribution Wd(Φ−1, ν), where Φ ∈ Sd×d

+ is a positive definite matrix, and ν > d − 1. Here, Sd×d
+

denotes the open cone of positive definite d×d matrices in Sd×d, where Sd×d is the set of all symmetric
d × d matrices with real-valued entries. The density function of Z with respect to Lebesgue measure
on Sd×d

+ is given by1

|Φ|ν/2

2dν/2Γd(ν/2)
|Z|−(d+ν+1)/2 exp

[
−1

2 trace
(
ΦZ−1

)]
.

Here Γd is the multivariate gamma function of dimension d, and it is defined as

Γd(a) = πd(d−1)/4
d∏

j=1
Γ(a + (1 − j)/2), for a > 0

with Γ(·) being the usual Gamma function. For more details on the inverse Wishart density and its
support, see Andersson and Wojnar (2004).

The matrix normal distribution, on the other hand, is a generalization of the multivariate nor-
mal distribution. A random matrix Z ∈ Rd1×d2 is said to follow the matrix normal distribution
MNd1,d2 (Z0,U ,V ), if its probability density function with respect to Lebesgue measure on Rd1×d2 is
given by

exp{−1
2 trace[V −1(Z − Z0)TU−1(Z − Z0)]}

(2π)d1d2/2|V |d1/2|U |d2/2

where Z0 ∈ Rd1×d2 , U ∈ Sd1×d1
+ and V ∈ Sd2×d2

+ .
1by Lebesgue measure on Sd×d

+ , we mean the restriction of the standard Lebesgue measure on Rd×d to the open subset
Sd×d

+ .
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B Supplementary Notes on Approximate Bayesian Inference on the
Envelope Dimension

In most frequentist envelope approaches, the envelope dimension u is selected using a model selection
approach, such as AIC/BIC, likelihood ratio test, cross-validation, etc, and inferences on the model
parameters are made conditional on the selected u. One exception is the weighted envelope estimation
approach (Eck and Cook, 2017) where estimated envelope regression coefficients β are first obtained
for all possible u-values and then averaged with certain BIC-based weights (discussed below). How-
ever, inference on u itself is typically infeasible in a frequentist framework. By contrast, the Bayesian
paradigm, in addition to permitting model selection through similar criteria (e.g., via AIC/BIC, De-
viance information criterion (Spiegelhalter et al., 2002), etc.), also permits a coherent approach to infer-
ring u with all other envelope model parameters. To this, one assigns some prior distribution π(u) on u,
and subsequently obtains the joint posterior of π(u,µ,η,Ω,Ω0,A | data). However, the complicated
trans-dimensional nature of the model parameters for different u makes implementation extremely chal-
lenging. For example, a reversible jump MCMC sampler (Green, 1995) to sample from this joint pos-
terior would require trans-dimensional jumps between Ω ∈ Su×u

+ for different u-values across MCMC
iterations, making implementation highly non-trivial. A possible alternative is to evaluate the marginal
likelihood for a given u directly: m(data | u) =

∫
likelihood(µ,η,Ω,Ω0,A | u, data) d(µ,η,Ω,Ω0,A)

and subsequently use m(data | u) to obtain the marginal posterior Pr(u | data). However, the in-
tegral defining m(data | u) is highly intractable and computationally infeasible in applications with
constrained supports such as ours, and accurate computation of this integral for Bayesian envelope
models is currently an open problem. Assuming vague prior on model parameters, we instead suggest a
simple BIC-based approximation of the above marginal probability following Kass and Raftery (1995)
and obtain the marginal u-posterior as:

Pr(u = k | data) ≈ exp(−BIC(k)/2) π(u = k)∑r
k′=0 exp(−BIC(k′)/2) π(u = k′) ; k = 0, 1, . . . , r (S1)

where BIC(u) = −2 log L̃(u)+ρ(u) log n with L̃(u) denoting the maximized value of the likelihood func-
tion, and ρ(u) is the effective number of parameters in the model. For MCMC-based implementation,
L̃ can be approximated by the maximum of log-likelihood observed across MCMC draws (Frühwirth-
Schnatter, 2011, Section 10.3.4). For the response envelope, predictor envelope, and the envelope probit
models, the effective numbers of parameters ρ are r(r+1)/2+r+pu, r+r(r+1)/2+p+p(p+1)/2+rm
and 1 + p + p(p + 1)/2 + m respectively.

Inference on u can be made through the marginal posterior Pr(u | data). For point estimation
of u, one may consider the posterior mode û = arg maxk=0,...,r Pr(u = k | data). Subsequently one
can estimate the envelope model parameters {µ,η,Ω,Ω0,A} conditional on u = û as done in a
typical frequentist envelope approach. A more coherent Bayesian model averaging (BMA) approach
acknowledging the estimation uncertainty in u marginalizes u entirely to produce the joint marginal
(u-free) BMA posterior:

π(µ,η,Ω,Ω,A | data) =
r∑

k=0
π(µ,η,Ω,Ω,A | u = k, data) Pr(u = k | data). (S2)

Leveraging its finite mixture representation, one may readily compute approximate moments of

π(µ,η,Ω,Ω,A | data)

given the computed moments of u = k specific posteriors {π(µ,η,Ω,Ω,A | u = k, data)}. In particu-
lar, the marginal posterior mean for β is

E(β | data) =
r∑

k=0
E(β | u = k, data) Pr(u = k | data) (S3)
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which is a weighted average of posterior means of β obtained from u = k specific models. To com-
pute posterior quantities beyond moments e.g., quantiles, one may leverage approximate draws from
the joint posterior π(µ,η,Ω,Ω,A | u, data) generated posthoc using MCMC draws from each u-
conditioned posterior. There, one would iteratively generate random {u} with probabilities {Pr(u =
k | data)} and then conditional on that u randomly pick a draw from the MCMC samples generated
for π(µ,η,Ω,Ω,A | u, data). (The u-specific posterior MCMC samples are drawn separately and
possibly parallely for different u’s).

C Various Technical Details and Additional Results on the Repa-
rameterized Bayesian Response Envelope Model and its Imple-
mentation

C.1 Justification of model identifiability

First, we note that the identifiability of the envelope subspace EΣ(β) is proved in Cook et al. (2010).
The one-to-one correspondence between EΣ(β) and A (Su et al., 2016), ensures that the matrix A is
identifiable. Because

CA =
(

Iu

A

)
, and Γ(A) = CA(CT

ACA)−1/2,

therefore Γ(A) is also identifiable. Similarly, since

DA =
(

−AT

Ir−u

)
and Γ0(A) = DA(DT

ADA)−1/2,

therefore Γ0(A) is identifiable. Consequently, under the regression model

Y = µ + βX + ε, E(ε) = 0, var(ε) = Σ,

we have η = ΓT (A)β, Ω = ΓT (A)ΣΓ(A) and Ω0 = ΓT
0 (A)ΣΓ0(A). This implies that η, Ω and Ω0

are identified. Thus all the parameters are identifiable in our reparameterized envelope model

Y = µ + Γ(A)ηX + ε, Σ = Γ(A)ΩΓT (A) + Γ0(A)Ω0Γ
T
0 (A).

C.2 Difference between the reparameterization of response envelope model (6)
and the one used in Khare et al. (2017)

The main difference between the proposed reparameterization and the one used in Khare et al. (2017)
is that the proposed reparameterization is free of any manifold structure. The key parameter of interest
in an envelope model is the envelope subspace EΣ(β). In its most general formulation, EΣ(β) belongs
to an r × u Grassmann manifold, which is the set of all u-dimensional subspaces in an r-dimensional
Euclidean space. However, direct handling of abstract random manifolds for Bayesian modeling is
extremely difficult. The main purpose of the both reparameterizations, the one considered in our
paper and the one considered in Khare et al. (2017), is to identify this target Grassmanian manifold
with appropriately chosen matrices that are more manageable for probabilistic handling in Bayesian
inference, and facilitate incorporation of (induced) prior information on EΣ(β) through richer classes
of probability distributions on matrix spaces.

Our reparameterization focuses on a specific basis of EΣ(β) wherein the (possibly top) u rows
form an identity matrix and the remaining r − u rows form an unrestricted Euclidean matrix, called
A. This parameterization has previously been used in Ma and Zhu (2013) and Su et al. (2016), and
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the key advantange of this parameterization lies in the fact that A and EΣ(β), and A and EΣ(β)⊥

have one-to-one correspondences. Since A is unconstrained, this reparameterization completely avoids
any manifold structure. Consequently, any distribution for unconstrained Euclidean matrices can be
potentially considered here for prior elicitation on A which induces a prior on EΣ(β).

In contrast, the reparameterization in Khare et al. (2017) looks for an orthonormal basis for EΣ(β)
of a specific form. The orthonormality is required to diagonalize Σ; in addition, the element with the
largest absolute value in each column of the is required to have a positive sign. Let us denote this basis
matrix by G. It can be shown that G is a unique orthonormal basis for EΣ(β). Similarly, a unique
orthonormal basis for EΣ(β)⊥ can be constructed, which we denote by G0. Then O = (G,G0) forms
an r×r orthogonal matrix, and is a point on a restricted Stiefel manifold. A restricted Stiefel manifold
is a Stiefel manifold (the space of all orthogonal matrices) that is restricted to conform to the sign
requirements. Any distribution on a Stiefel manifold can be potentially considered in this framework
as prior distribution for O; Khare et al. (2017) consider the matrix Bingham distribution for O.
Thus, to summarize, Khare et al. (2017) convert the original Grassmann manifold parameterization
to a restricted Stiefel manifold parameterization, while our reparameterization is free of any manifold
structure.

C.3 Log likelihood and log posterior density under response envelope model (6)

Given n independent observations (X1,Y1), . . . , (Xn,Yn) from the response envelope model (6)), the
log likelihood for the model parameters is given by

log L(µ,η,Ω,Ω0,A) = const. −n

2 log |Ω| − n

2 log |Ω0| − 1
2 trace

[(
Y − 1nµ

T − XηTΓT (A)
)

(
Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ

T
0 (A)

)−1 (
Y − 1nµ

T − XηTΓT (A)
)T
]

.

Here “const.” stands for an unspecified constant free of the model parameters, and as defined in
the main text YT = (Y1, . . . ,Yn) and XT = (X1, . . . ,Xn). Together with the prior distribution as
discussed in the main text, the un-normalized log posterior density of the model parameters is given
by:

log π(µ,η,Ω,Ω0,A | X,Y)

= const. −n

2 log |Ω| − n

2 log |Ω0| − 1
2 trace

[(
Y − 1nµ

T − XηTΓT (A)
) (

Γ(A)ΩΓT (A) + Γ0(A)Ω0Γ
T
0 (A)

)−1

(
Y − 1nµ

T − XηTΓT (A)
)T
]

− ν + u + 1
2 log |Ω| − 1

2 trace
(
ΨΩ−1

)
− ν0 + r − u + 1

2 log |Ω0|

− 1
2 trace

(
Ψ0Ω

−1
0

)
− 1

2 trace
[
K−1(A − A0)L−1(A − A0)T

]
− p

2 log |Ω|

− 1
2 trace

[
Ω−1

(
η − ΓT (A)e

)
M

(
η − ΓT (A)e

)T
]

. (S4)

We consider the following parameter transformation: (µ,η,Ω,Ω0,A) → (µ̃,η,Ω,Ω0,A) where µ̃ =
µ + Γ(A)ηX, which aids substantial simplification in the forms of the conditional densities required
for random generation from the posterior distribution. Clearly, the absolute Jacobian of the above
transformation is one, and the un-normalized log posterior density for the transformed parameters is
given by:

log π(µ̃,η,Ω,Ω0,A | X,Y)

= const. −n

2 log |Ω| − n

2 log |Ω0| − 1
2 trace

[(
Y − 1nµ̃

T − Xcη
TΓT (A)

) (
Γ(A)ΩΓT (A) + Γ0(A)Ω0Γ

T
0 (A)

)−1

4



(
Y − 1nµ̃

T − Xcη
TΓT (A)

)T
]

− ν + u + 1
2 log |Ω| − 1

2 trace
(
ΨΩ−1

)
− ν0 + r − u + 1

2 log |Ω0|

− 1
2 trace

(
Ψ0Ω

−1
0

)
− 1

2 trace
[
K−1(A − A0)L−1(A − A0)T

]
− p

2 log |Ω|

− 1
2 trace

[
Ω−1

(
η − ΓT (A)e

)
M

(
η − ΓT (A)e

)T
]

. (S5)

C.4 Proof of Theorem 3.1 (Posterior Propriety)

Suppose we have n independent observations (X1,Y1), . . . , (Xn,Yn) from the response envelope model (6).
Define Y ∈ Rn×r and X ∈ Rn×p by YT = (Y1, . . . ,Yn) and XT = (X1, . . . ,Xn), and let 1n denote
an n-dimensional vector of 1’s. At the outset, we consider the transformation (µ,η,Ω,Ω0,A) →
(µ̃,η,Ω,Ω0,A) as discussed in Section C.3. Because the transformation has absolute Jacobian of
transformation 1, it is equivalent to show that the posterior density of the transformed parameters
(µ̃,η,Ω,Ω0,A), as given in (S5) is proper. To this end, we consider the corresponding unnormalized
posterior density f(µ,η,Ω,Ω0,A | X,Y) as given in (S4) . Note that

log f(µ̃,η,Ω,Ω0,A | X,Y)

= − n

2 log |Ω| − n

2 log |Ω0| − 1
2 trace

[(
Y − 1nµ̃

T − Xcη
TΓT (A)

) (
Γ(A)ΩΓT (A) + Γ0(A)Ω0Γ

T
0 (A)

)−1

(
Y − 1nµ̃

T − Xcη
TΓT (A)

)T
]

− ν + u + 1
2 log |Ω| − 1

2 trace
(
ΨΩ−1

)
− ν0 + r − u + 1

2 log |Ω0|

− 1
2 trace

(
Ψ0Ω

−1
0

)
− 1

2 trace
[
K−1(A − A0)L−1(A − A0)T

]
− p

2 log |Ω|

− 1
2 trace

[
Ω−1

(
η − ΓT (A)e

)
M

(
η − ΓT (A)e

)T
]

. (S6)

Our objective is to show that f is integrable with respect to the Lebesgue measure on Rr × Ru×p ×
Su×u

+ × S(r−u)×(r−u)
+ × R(r−u)×u.

For notational convenience, we denote by
∫

f(t) dt an appropriate Lebesgue integral. The following
proof incorporates standard techniques from Bayesian analysis for proving posterior propriety, and
uses some tricks similar to the ones used in Khare et al. (2017). Note that

trace
[(

Y − 1nµ̃
T − Xcη

TΓT (A)
) (

Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ
T
0 (A)

)−1 (
Y − 1nµ̃

T − Xcη
TΓT (A)

)T
]

= trace
[(

Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ
T
0 (A)

)−1

(
Y − 1nµ̃

T − Xcη
TΓT (A)

)T
(P1n + Q1n)

(
Y − 1nµ̃

T − Xcη
TΓT (A)

)]
= trace

[(
Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ

T
0 (A)

)−1

{
n
(
Y − µ̃

) (
Y − µ̃

)T
+
(
Y − Xcη

TΓT (A)
)T

Q1n

(
Y − Xcη

TΓT (A)
)}]

= trace
[(

Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ
T
0 (A)

)−1

{
n
(
µ̃ − Y

) (
µ̃ − Y

)T
+
(
Yc − Xcη

TΓT (A)
)T (

Yc − Xcη
TΓT (A)

)}]
=n

(
µ̃ − Y

)T (
Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ

T
0 (A)

)−1 (
µ̃ − Y

)
+ trace

[(
Yc − Xcη

TΓT (A)
)
Γ(A) Ω−1 ΓT (A)

(
Yc − Xcη

TΓT (A)
)T
]
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+ trace
[
Yc Γ0(A) Ω−1

0 ΓT
0 (A) YT

c

]
(S7)

Also,

trace
[(

Yc − Xcη
TΓT (A)

)
Γ(A) Ω−1 ΓT (A)

(
Yc − Xcη

TΓT (A)
)T
]

+ trace
[
Ω−1

(
η − ΓT (A)e

)
M

(
η − ΓT (A)e

)T
]

= trace
[
ΩT

{
ΓT (A)

(
Yc − Xcη

TΓT (A)
)T (

Yc − Xcη
TΓT (A)

)
Γ(A) +

(
η − ΓT (A)e

)
M

(
η − ΓT (A)e

)T
}]

= trace
[
ΩT

{(
YcΓ(A) − Xcη

T
)T (

YcΓ(A) − Xcη
T
)

+
(
η − ΓT (A)e

)
M

(
η − ΓT (A)e

)T
}]

= trace
[
Ω−1

{
η
(
XT

c Xc + M
)
ηT − 2η

(
XT

c Yc + MeT
)
Γ(A) + Γ(A)T

(
YTY + eMeT

)
Γ(A)

}]
= trace

[
Ω−1ΓT (A)

(
YT

c Yc + eMeT − ě
(
XT

c Xc + M
)
ěT
)
Γ(A)

]
+ trace

[
Ω−1

(
η − ΓT (A)ě

) (
XT

c Xc + M
) (

η − ΓT (A)ě
)T
]

= trace
[
Ω−1ΓT (A) G̃ Γ(A)

]
+ trace

[
Ω−1

(
η − ΓT (A)ě

) (
XT

c Xc + M
) (

η − ΓT (A)ě
)T
]

. (S8)

where

ě =
(
YT

c Xc + eM
) (

XT
c Xc + M

)−1

and G̃ = YT
c Yc + eMeT − ě

(
XT

c Xc + M
)
ěT (S9)

and G̃ is positive semi definite (see, e.g., the proof of Lemma 2 in Khare et al. (2017)).
Therefore, from (S6), (S7) and (S8) we get

log f(µ̃,η,Ω,Ω0,A | X,Y)

= − 1
2

[
n
(
µ̃ − Y

)T (
Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ

T
0 (A)

)−1 (
µ̃ − Y

)]
− 1

2 trace
[
Ω−1

(
η − ΓT (A)ě

) (
XT

c Xc + M
) (

η − ΓT (A)ě
)T
]

− n + p + ν + u + 1
2 log |Ω| − 1

2 trace
[
Ω−1ΓT (A) G̃ Γ(A)

]
− 1

2 trace
[
Ω−1Ψ

]
− n + ν0 + (r − u) + 1

2 log |Ω0|

− 1
2 trace

[
Ω−1

0 ΓT
0 (A) YT

c Yc Γ0(A)
]

− 1
2 trace

[
Ω−1

0 Ψ0
]

− 1
2 trace

[
K−1(A − A0)L−1(A − A0)T

]
. (S10)

Since ∫
exp

(
−1

2 trace
[
n
(
µ̃ − Y

)T (
Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ

T
0 (A)

)−1 (
µ̃ − Y

)])
dµ̃

= (2π)r/2nr/2|Ω|1/2|Ω0|1/2,

and
∫

exp
(

−1
2 trace

[
Ω−1

(
η − ΓT (A)ě

) (
XT

c Xc + M
) (

η − ΓT (A)ě
)T
])

dη

= (2π)up/2|XT
c Xc + M |−u/2|Ω|p/2,
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therefore

log I1 = log
(∫ ∫

f(µ̃,η,Ω,Ω0,A | X,Y)dµ̃ dη

)
= C1 + 1

2 log |Ω| + 1
2 log |Ω0| + p

2 log |Ω|

− n + p + ν + u + 1
2 log |Ω| − 1

2 trace
[
Ω−1

(
ΓT (A) G̃ Γ(A) + Ψ

)]
− n + ν0 + (r − u) + 1

2 log |Ω0| − 1
2 trace

[
Ω−1

0

(
ΓT

0 (A) YT
c Yc Γ0(A) + Ψ0

)]
− 1

2 trace
[
K−1(A − A0)L−1(A − A0)T

]
= C1 − (n + ν − 1) + u + 1

2 log |Ω| − 1
2 trace

[
Ω−1

(
ΓT (A) G̃ Γ(A) + Ψ

)]
− (n + ν0 − 1) + (r − u) + 1

2 log |Ω0|

− 1
2 trace

[
Ω−1

0

(
ΓT

0 (A) YT
c Yc Γ0(A) + Ψ0

)]
− 1

2 trace
[
K−1(A − A0)L−1(A − A0)T

]
(S11)

where
C1 =

(
r

2 + up

2

)
log(2π) + r

2 log n + up

2 − u

2 log |XT
c Xc + M |.

Since n + ν > u and n + ν0 > r − u, therefore, I1 is integrable with respect to Ω and Ω0. Now,
integrating I1 from (S11) with respect to Ω and Ω0, and then by taking logarithm, we get

log I2 = log
(∫ ∫

I1 dΩ dΩ0

)
= C1 + (n + ν − 1) u

2 log 2 + log Γu

(
n + ν − 1

2

)
− n + ν − 1

2 log
∣∣∣ΓT (A) G̃ Γ(A) + Ψ

∣∣∣
+ n + ν0 − 1) (r − u)

2 log 2 + log Γr−u

(
n + ν0 − 1

2

)
− n + ν0 − 1

2 log
∣∣∣ΓT

0 (A) YT
c Yc Γ0(A) + Ψ0

∣∣∣
− 1

2 trace
[
K−1(A − A0)L−1(A − A0)T

]
= C2 − n + ν − 1

2 log
(
|Ψ|

∣∣∣Ψ−1/2ΓT (A) G̃ Γ(A)Ψ−1/2 + Iu

∣∣∣)
− n + ν0 − 1

2 log
(
|Ψ0|

∣∣∣Ψ−1/2
0 ΓT

0 (A) YT
c Yc Γ0(A)Ψ−1/2

0 + Ir−u

∣∣∣)
− 1

2 trace
[
K−1(A − A0)L−1(A − A0)T

]
= C3 − n + ν − 1

2 log
∣∣∣Ψ−1/2ΓT (A) G̃ Γ(A)Ψ−1/2 + Iu

∣∣∣
− n + ν0 − 1

2 log
∣∣∣Ψ−1/2

0 ΓT
0 (A) YT

c Yc Γ0(A)Ψ−1/2
0 + Ir−u

∣∣∣
− 1

2 trace
[
K−1(A − A0)L−1(A − A0)T

]
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≤ C3 − 1
2 trace

[
K−1(A − A0)L−1(A − A0)T

]
. (S12)

where

C2 = C1+ (n + ν − 1) u

2 log 2+log Γu

(
n + ν − 1

2

)
+ (n + ν0 − 1) (r − u)

2 log 2+log Γr−u

(
n + ν0 − 1

2

)
and

C3 = C2 − (n + ν − 1) u

2 log |Ψ| − (n + ν0 − 1) (r − u)
2 log |Ψ0|

and the last inequality follows from the fact that both

Ψ−1/2ΓT (A) G̃ Γ(A)Ψ−1/2 and Ψ
−1/2
0 ΓT

0 (A) YT
c Yc Γ0(A)Ψ−1/2

0

are positive semi definite, and that both determinant and logarithm are order-preserving functions.
From (S12) it follows that∫ ∫ ∫ ∫ ∫

f(µ̃,η,Ω,Ω0,A | X,Y) dµ̃ dη dΩ dΩ0 dA =
∫

I2 dA

≤ exp(C3)
∫

exp
(

−1
2 trace

[
K−1(A − A0)L−1(A − A0)T

])
dA

= exp(C3) (2π)
(r−u)u

2 |K|u/2 |L|(r−u)/2 < ∞.

This completes the proof.

C.5 Proof of Theorem 3.2 (Harris Ergodicity)

At the outset we consider the following parameter transformation: (µ,η,Ω,Ω0,A) → (µ̃,η,Ω,Ω0,A)
where µ̃ = µ + Γ(A)ηX, as discussed before in Section C.3.

The Metropolis within Gibbs sampler described in Algorithm 3.1, and its generalization to the
cases u = 0 and u = r block-wise updates (in a deterministic/random/mixed order) the following 4+u
parameter blocks: µ̃,η,Ω,Ω0,a1, · · · ,au, where aj denotes the j-th column of A (if 1 ≤ u ≤ r − 1,
otherwise some of the parameters do not appear in the model; see Remark 3.3 in the main text). We
discuss the three components of Harris ergodicity separately.

First, we note that the acceptance probabilities in the Metropolis steps in S.1, if present, i.e., if
1 ≤ u ≤ r, are strictly positive everywhere, since the target full conditional density of aj is positive
everywhere. The Gibbs steps S.3–S.5, when viewed as Metropolis steps with same proposal and target
(full conditional) densities, of course have everywhere positive acceptance probabilities (the acceptance
probabilities are all one). This, together with the fact that the proposal densities (the full conditional
densities in steps S.3–S.5 and independent multivariate normal densities in step S.1) are all everywhere
positive, ensures that K(x, B) > 0 whenever λ(B) > 0 for any x ∈ Rr ×Ru×p × Su×u

+ × S(r−u)×(r−u)
+ ×

R(r−u)×u (see Geyer, 1998, Section 3.1.9), where λ is the Lebesgue measure, B is a Borel set on
Rr × Ru×p × Su×u

+ × S(r−u)×(r−u)
+ × R(r−u)×u, and K(·, ·) denotes the Markov transition kernel of the

chain associated with Algorithm 3.1. This proves ϕ-irreducibility of the full chain, with the Lebesgue
measure λ being taken as the underlying measure ϕ.

The fact that K(x, B) > 0 whenever λ(B) > 0, for any x ∈ Rr × Ru×p × Su×u
+ × S(r−u)×(r−u)

+ ×
R(r−u)×u and any Borel set B on Rr ×Ru×p ×Su×u

+ ×S(r−u)×(r−u)
+ ×R(r−u)×u, i.e., each measurable set

with positive Lebesgue measure can be accessed in a single step from any point, ensures aperiodicity
(see, e.g., Dutta, 2012).

Finally, to establish Harris recurrence for the chain, we first note that when u = 0 and/or u = r,
the Algorithm is a ϕ-irreducible Gibbs sampler, which is known to be Harris recurrent (see, e.g.,
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Tierney, 1994 and Roberts and Rosenthal, 2006, Corollary 13). When 1 ≤ u ≤ r − 1, we invoke
Corollary 18 and Proposition 15 in Roberts and Rosenthal (2006), and show that the target posterior
density π(µ̃,η,Ω,Ω0,A | X,Y) is integrable with respect to any 1 ≤ k ≤ 4 + u elements of the set
{µ̃,η,Ω,Ω0,a1, · · · ,au}, where aj denotes the jth column of A2. From (S10), it follows that for an
appropriate (finite, due to posterior propriety) constant C0,

π(µ̃,η,Ω,Ω0,A | X,Y)

= C0 exp
{

−1
2

[
n
(
µ̃ − Y

)T (
Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ

T
0 (A)

)−1 (
µ̃ − Y

)]}
× exp

{
−1

2 trace
[
Ω−1

(
η − ΓT (A)ě

) (
XT

c Xc + M
) (

η − ΓT (A)ě
)T
]}

× |Ω|−(n+p+ν+u+1)/2 exp
{

−1
2 trace

[
Ω−1

(
Ψ + ΓT (A) G̃ Γ(A)

)]}
× |Ω0|−(n+ν0+(r−u)+1)/2 exp

{
−1

2 trace
[
Ω−1

0

(
Ψ0 + ΓT

0 (A) YT
c Yc Γ0(A)

)]}
× exp

{
−1

2 trace
[
K−1(A − A0)L−1(A − A0)T

]}
≤ C0 exp

{
−1

2

[
n
(
µ̃ − Y

)T (
Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ

T
0 (A)

)−1 (
µ̃ − Y

)]}
× exp

{
−1

2 trace
[
Ω−1

(
η − ΓT (A)ě

) (
XT

c Xc + M
) (

η − ΓT (A)ě
)T
]}

× |Ω|−(n+p+ν+u+1)/2 exp
{

−1
2 trace

[
Ω−1Ψ

]}
× |Ω0|−(n+ν0+(r−u)+1)/2 exp

{
−1

2 trace
[
Ω−1

0 Ψ0
]}

× exp
{

−1
2 trace

[
K−1(A − A0)L−1(A − A0)T

]}
=: f0(µ̃,η,Ω,Ω0,A | X,Y), say

where ě =
(
YT

c Xc + eM
) (

XT
c Xc + M

)−1
and G̃ = YT

c Yc + eMeT − ě
(
XT

c Xc + M
)
ěT , and the

inequality follows from the fact that G̃ (see, e.g., Khare et al., 2017, Lemma 2), ΓT (A) G̃ Γ(A)
and ΓT

0 (A) YT
c Yc Γ0(A) are all positive semi-definite matrices. Therefore, the Lebesgue integrability

of π(µ̃,η,Ω,Ω0,A | X,Y), with respect to one or more parameter blocks, is ensured by that of
f0(µ̃,η,Ω,Ω0,A | X,Y). Now, for any µ̃ ∈ Rr

exp
{

−1
2

[
n
(
µ̃ − Y

)T (
Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ

T
0 (A)

)−1 (
µ̃ − Y

)]}
≤ 1

and ∫
exp

{
−1

2

[
n
(
µ̃ − Y

)T (
Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ

T
0 (A)

)−1 (
µ̃ − Y

)]}
dµ̃

2It is to be noted that the generic Metropolis within Gibbs samplers considered in Roberts and Rosenthal (2006) have
state spaces X ⊂ Rd, and the samplers update one of the d (univariate) coordinates at a time. However, their Harris
recurrence results can be easily extended to algorithms that update the coordinates block-wise. Moreover, although
Theorem 16, Corollary 17 and Corollary 18 in Roberts and Rosenthal (2006) only consider random-scan Metropolis
within Gibbs samplers, these can be extended to deterministic or mixed scan samplers, without altering any arguments
in the original proof. For example, in a deterministic or mixed scan sampler, the set Cn,r, as defined in the original proof of
Theorem 16 in Roberts and Rosenthal (2006), can be empty for some values of n. This is because for deterministic/mixed
scan samplers, In, the direction of the proposed move of the full chain at time n, can possibly take only one deterministic
value among {1, · · · , d}, d being the number of blocks (coordinates) in the chain, so that {In = d} is either a sure or
an impossible event. However, the subsequent statement ∪∞

n,r=1Cn,r = H remains intact, as it considers all possible n’s.
This ensures validity of the results even for deterministic/mixed scan algorithms.
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= (2nπ)r/2|Ω|1/2|Ω0|1/2.

Therefore, for any µ̃ ∈ Rr, f0(µ̃,η,Ω,Ω0,A | X,Y) ≤ f
(0)
1 (η,Ω,Ω0,A | X,Y), and

∫
f0(µ̃,η,Ω,Ω0,A |

X,Y) dµ̃ = f
(1)
1 (η,Ω,Ω0,A | X,Y), where

f
(ξ)
1 (η,Ω,Ω0,A | X,Y)

= (2nπ)ξr/2C0 exp
{

−1
2 trace

[
Ω−1

(
η − ΓT (A)ě

) (
XT

c Xc + M
) (

η − ΓT (A)ě
)T
]}

× |Ω|−(n−ξ+p+ν+u+1)/2 exp
{

−1
2 trace

[
Ω−1Ψ

]}
× |Ω0|−(n−ξ+ν0+(r−u)+1)/2 exp

{
−1

2 trace
[
Ω−1

0 Ψ0
]}

× exp
{

−1
2 trace

[
K−1(A − A0)L−1(A − A0)T

]}
for ξ = 0, 1. Again, for any η ∈ Ru×p

exp
{

−1
2 trace

[
Ω−1

(
η − ΓT (A)ě

) (
XT

c Xc + M
) (

η − ΓT (A)ě
)T
]}

≤ 1

and ∫
exp

{
−1

2 trace
[
Ω−1

(
η − ΓT (A)ě

) (
XT

c Xc + M
) (

η − ΓT (A)ě
)T
]}

dη

= (2π)up/2|XT
c Xc + M |−u/2|Ω|p/2.

Therefore, for all η ∈ Ru×p, f
(ξ)
1 (η,Ω,Ω0,A | X,Y) ≤ f

(ξ,0)
2 (Ω,Ω0,A | X,Y) and

∫
f

(ξ)
1 (η,Ω,Ω0,A |

X,Y) dη = f
(ξ,1)
2 (Ω,Ω0,A | X,Y), where

f
(ξ,κ)
2 (Ω,Ω0,A | X,Y)

= nξr/2(2π)(ξr+κup)/2|XT
c Xc + M |−ξu/2 C0 |Ω|−(n−ξ+(1−κ)p+ν+u+1)/2 exp

{
−1

2 trace
[
Ω−1Ψ

]}
× |Ω0|−(n−ξ+ν0+(r−u)+1)/2 exp

{
−1

2 trace
[
Ω−1

0 Ψ0
]}

× exp
{

−1
2 trace

[
K−1(A − A0)L−1(A − A0)T

]}

for κ = 0, 1, and hence it is enough to show that f
(ξ,κ)
2 (Ω,Ω0,A | X,Y) is Lebesgue integrable with

respect to any 1 ≤ k ≤ 2 + u elements of {Ω,Ω0,a1, · · · ,au} for ξ, κ = 0, 1. The proof is completed
by first noting that f

(ξ,κ)
2 is proportional to the product of IWu(Ψ, n − ξ + (1 − κ)p + κ + ν) density

at Ω, IWu(Ψ0, n − ξ + ν0) density Ω0, and MNr−u,u(A0,K,L) density at A, and that moments of all
(nonnegative) orders exist for a (matrix) normal distribution.

C.6 Conditional posterior distributions for the parameter blocks in the response
envelope model (6)

A Metropolis-within-Gibbs MCMC sampler for the posterior density (S4) is obtained by the full condi-
tional and collapsed marginal distributions of various parameter blocks. We consider the transformed
parameters (µ̃,η,Ω,Ω0,A) as given in (S5) for posterior simulation. At each iteration, given µ̃, µ is
obtained from the transformation µ = µ̃ + Γ(A)ηX.
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Consider the following factorization of the joint posterior density of (µ̃,η,Ω,Ω0,A) as obtained
from (S10):

π(µ̃,η,Ω,Ω0,A | X,Y) = π(µ̃,η | Ω,Ω0,A,X,Y ) π(Ω,Ω0,A | X,Y)

A collapsed Metoropolis-within-Gibbs sampler utilizing the above factorization generates Markov chain
samples from the joint posterior density by first generating MCMC samples for (A, (Ω,Ω0)) from their
(joint) marginal posterior density, and subsequently generating exact samples for (µ̃,η) from the cor-
responding joint conditional posterior density given (A, (Ω,Ω0)). For generating MCMC samples for
(A, (Ω,Ω0)) one iteratively updates (Ω,Ω0) and A by drawing exact and MCMC samples from the
associated conditional posterior densities respectively. In particular, (Ω,Ω0) is updated by sampling
from the density π((Ω,Ω0) | A,X,Y) = π(Ω | A,X,Y)π(Ω0 | A,X,Y) (i.e., Ω and Ω0 are inde-
pendently generated conditional on A,X,Y). On the other hand, A is updated by Markov chain
sampling from the conditional density π(A | Ω,Ω0,X,Y) (see the following section). Finally, given
(A, (Ω,Ω0)), (µ̃,η) are generated by exact sampling from π(µ̃,η | Ω,Ω0,A | X,Y) = π(µ̃ | Ω,Ω0,A |
X,Y) π(η | Ω,Ω0,A,X,Y ) (i.e., µ̃ and η are independently generated given (A, (Ω,Ω0)). In the
following explicit forms of the relevant conditional distributions are provided. Except for A, all other
relevant conditional distributions are standard distributions from which direct exact random sampling
is possible.

1. The conditional density π(µ̃ | Ω,Ω0,A,X,Y) is given by

log π(µ̃ | Ω,Ω0,A,X,Y) = const. −1
2

[
n
(
µ̃ − Y

)T (
Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ

T
0 (A)

)−1 (
µ̃ − Y

)]
which means

µ̃ | Ω,Ω0,A,X,Y ∼ Nr

(
Y , n−1Σ

)
.

2. The posterior conditional density π(µ̃ | Ω,Ω0,A,X,Y) is given by

log π(η | Ω,Ω0,A,X,Y) = const. −1
2 trace

[
Ω−1

(
η − ΓT (A)ě

) (
XT

c Xc + M
) (

η − ΓT (A)ě
)T
]

where ě is as given in (S9). This means

η | Ω,Ω0,A ∼ MNu,p

(
Γ(A)T ě, Ω,

(
XT

c Xc + M
)−1

)
.

3. The conditional density π(Ω | A,X,Y) is given by

log π(Ω | A,X,Y) = const. −(n − 1 + ν) + u + 1
2 log |Ω| − 1

2 trace
(
Ψ̃ Ω−1

)
where Ψ̃ = Ψ + ΓT (A) G̃ Γ(A), and G̃ is as defined in (S9). This means

Ω | A,X,Y ∼ IWu

(
Ψ̃, n − 1 + ν

)
.

4. The posterior conditional density π(Ω | A,X,Y) is given by

log π(Ω0 | A,X,Y) = const. −(n − 1 + ν0) + r − u + 1
2 log |Ω0| − 1

2 trace
(
Ψ̃0 Ω

−1
0

)
where Ψ̃0 = Ψ0 + ΓT

0 (A) Y T
c Yc Γ0(A). This implies

Ω0 | A,X,Y ∼ IWr−u

(
Ψ̃0, n − 1 + ν0

)
.
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5. The posterior conditional density π(A | Ω,Ω0,X,Y) is given by

log π(A | Ω,Ω0,X,Y) = const. −1
2 trace

[
Ω−1ΓT (A) G̃ Γ(A)

]
− 1

2 trace
[
Ω−1

0 ΓT
0 (A) YT

c Yc Γ0(A)
]

− 1
2 trace

[
K−1(A − A0)L−1(A − A0)T

]
. (S13)

This density does not correspond to any standard distribution, and i.i.d. rejection sampling
will be inefficient due to high-dimensionality. Instead a Metropolis sampling scheme is adopted;
details are provided in the following section.

C.7 Metropolis-Hastings sampler for sampling from the conditional posterior den-
sity of A as given in (S13)

Metropolis-Hastings with random-walk proposal for column-wise updates. A simple random-
walk Metropolis scheme for updating A column-wise from the target conditional posterior density
π(A | Ω,Ω0,X,Y) are described as follows. For a specific Ω and Ω0 write the conditional posterior
density of π(A | Ω,Ω0,X,Y) as exp[g(A)]. Let aj ∈ Rr−u denote the j-th column of A, j = 1, . . . , u.
Given the tuning parameter τ > 0, for j = i1, . . . , iu, where {i1, . . . , iu} denotes a random permutation
of {1, . . . , u}, do the following:

1. Generate a∗
j ∼ Nr−u(aj , τ2Ir−u). Replace the j-th column of A by a∗

j and call the resulting
matrix A∗. Calculate ρ(A∗,A) = exp [g(A∗) − g(A)].

2. Perform a Bernoulli experiment with probability of success min[1, ρ(A∗,A)]. If a success is
achieved, update aj to a∗

j ; otherwise retain aj .

Metropolis-Hastings with likelihood-driven proposal. The random-walk proposal is compu-
tationally efficient, but requires tuning and may suffer from poor mixing in high dimensions if not
well-tuned. Here we provide a “likelihood-driven” proposal that requires no tuning and achieves good
mixing even in high-dimension, particularly when a vague prior distribution is used on A. The pro-
posal utilizes the 2-dimensional generalized matrix Bingham sampling scheme proposed in Khare et al.
(2017), while properly exploiting the Euclidean identification of the envelope parameter (and in ad-
dition uses a transformation on the von Mises distribution for sampling; see below). This collectively
reduces the computation load substantially compared to the Khare et al. (2017) implementation, espe-
cially when the envelope dimension u is small relative to the number of responses r (see the run time
comparisons provided in Section C.13 of this supplement), while producing a potentially substantially
better mixing chain than a sub-optimally tuned random walk sampler.

Consider the likelihood-part of the conditional posterior density π(A | Ω,Ω0,X,Y) of A given Ω
and Ω0:

q(A | Ω,Ω0,X,Y) ∝ exp
(

−1
2 trace

[
Ω−1ΓT (A) G̃ Γ(A)

]
− 1

2 trace
[
Ω−1

0 ΓT
0 (A) YT

c Yc Γ0(A)
])

For Metropolis update of A we seek to generate proposals by drawing (Gibbs) samples from the density
q(A | Ω,Ω0,X,Y).

Now consider eigen-decompositions of Ω = PΛP T and Ω0 = P0Λ0P
T
0 where P ∈ Ru×u and

P0 ∈ R(r−u)×(r−u) are orthogonal matrices and Λ = diag(λ1, . . . , λu) and Λ0 = diag(λu+1, . . . , λr) are
diagonal matrices carrying eigenvalues of Ω and Ω0 respectively. Then

q(A | Ω,Ω0,X,Y) ∝ exp
(

−1
2 trace

[
Λ−1Γ̃T (A) G̃ Γ̃(A)

]
− 1

2 trace
[
Λ−1

0 Γ̃T
0 (A) YT

c Yc Γ̃0(A)
])
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= exp
(

−
r∑

l=1
ÕT

·l HlÕ
T
·l

)

where Γ̃(A) = Γ(A)P and Γ̃0(A) = Γ0(A)P0 are both semi-orthogonal matrices, Õ = (Γ̃(A), Γ̃0(A)),
Õ·l is the l-th column of Õ, l = 1, . . . , r, and Hl = G̃/(2λl) for l = 1, . . . , u and Hl = YT

c Yc/(2λl)
for l = u + 1, . . . , r. A proposal for A may thus be generated through Õ having density q(Õ |
Ω,Ω0,X,Y) ∝ exp

(
−
∑r

l=1 Õ
T
·l HlÕ

T
·l

)
. We observe the notable similarity of this density with the

density of the orthogonal envelope parameter matrix considered in Khare et al. (2017). Hence for ran-
dom generation from the above density we adapt the Khare et al. (2017) approach, with modifications
that utilize the Euclidean matrix A-based identification of the envelope space.

Remark C.1. Compared to the Khare et al. (2017) approach, our approach can be substantially more
efficient in applications. In Khare et al. (2017) a Gibbs sampling scheme is proposed that updates
Õ by iteratively updating all

(r
2
)

pairs of columns. In our current parameterization, however, both
Γ(A) and Γ0(A) uniquely determine A (see (3) in Section 3.1 of the main text), and hence only
updating the first u columns of Õ (corresponding to Γ(A)), or alternatively the last r − u columns
of Õ (corresponding to Γ0(A)) is sufficient. In applications this can reduce the computation burden
substantially, particularly when u (or r − u) is much smaller than r. For example, when u (or r − u) is
much smaller than r, one only needs to consider

(u
2
)

+ u(r − u) (or
(r−u

2
)

+ (r − u)u) pairs of columns
in Õ that contain at least one of the first u (or the last r − u) columns of Õ. This saves

(r−u
2
)

pairs
(or

(u
2
)

pairs if the last r − u columns are updated) as compared to the Khare et al. (2017) approach.

Now to update a specific pair (i, j) of columns of Õ, consider the conditional density of (Õ·i, Õ·j)
conditional on the remaining columns (denoted by Õ·,−(i,j)):

q(Õ·i, Õ·i | Õ·,−(i,j),Ω,Ω0,X,Y) ∝ exp
[
−ÕT

·iHiÕ
T
·i − ÕT

·jHjÕ
T
·j

]
Following Khare et al. (2017), we sample from the above density by first generating a 2 × 2 orthogonal
matrix Z from the density

q(Z | Õ·,−(i,j),Ω,Ω0,X,Y) ∝ exp
(
−ZT

·,1N
T
·,(i,j)HiN·,(i,j)Z·,1 − ZT

·,2N
T
·,(i,j)HjN·,(i,j)Z·,2

)
and then defining Õnew

·i = N·,(i,j)Z·,1 and Õnew
·j = N·,(i,j)Z·,2. Here Z·,k denotes the k-th column of Z

(k = 1, 2) and N·,(i,j) ∈ Rr×2 is a semi-orthogonal matrix whose columns are orthogonal to Õ·,−(i,j).
Note that a convenient specific choice of N·,(i,j) is Õ·,(i,j) = (Õ·,i, Õ·,j), the current values of Õ·,i and
Õ·,j . The above density is called the 2 × 2 generalized matrix Bingham density (GB2,2(A,B) with
A = NT

·,(i,j)HiN·,(i,j) and B = NT
·,(i,j)HjN·,(i,j)) in Khare et al. (2017) who propose a rejection-

sampling approach to random generation from the above density. In the following section we provide
an alternative sampling scheme utilizing a von Mises connection to the density that is computationally
more efficient than this rejection sampler.

Once all column-pairs (i, j) under consideration (say, all pairs with at least one column from the first
u columns of Õ) have been updated, this process produces an updated Õnew matrix. The corresponding
Γ(A)new is obtained from the first u columns Õnew

·,(1:u) of Õnew as Γ(A)new = Õnew
·,(1:u)P

T where P is the
same eigenvector matrix as obtained in the eigen decomposition of Ω. From Γ(A)new, the proposal of
A, namely, A∗ is obtained through the reverse transformation as described in Section 3.1 in the main
text.

Once the proposal A∗ is obtained, a Metropolis-Hasting step is performed. This entails calculating
acceptance ratio

ρ(A,A∗) = exp [g(A∗) − g(A)
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+
∑
i,j

(
log π(Õ·i, Õ·j | Õnew

·i , Õnew
·j ) − log π(Õnew

·i , Õnew
·j | Õ·i, Õ·j)

)
+ log |J(Õnew)| − log |J(Õ)|

]
then performing a Bernoulli experiment with probability of success min{1, ρ(A,A∗)}, and finally
updating A to A∗ if a success is achieved in the Bernoulli experiment, or otherwise retaining the
current value of A. Here |J(Õ)| denotes the denotes the Jacobian of the transformation A 7→ Õ =
(Γ(A),Γ0(A)), defined as matrix-volume of the Jacobian matrix: ∂ vec(Õ)

∂T vec(A) . Note that the transforma-
tion is trans-dimensional, and hence determinant of the Jacobian matrix does not exist; instead we use
matrix volume (Ben-Israel, 1999). The matrix volume of a full column rank rectangular matrix B ∈
Rm×n is defined as square-root of the determinant of BTB. We provide analytic expression for the Ja-
cobian of the transformation in a following section. Note that ignoring the Jacobian adjustment in the
Metropolis-Hastings acceptance ratio effectively amounts to sampling from the conditional posterior
of O = (Γ(A),Γ0(A)) instead of the conditional posterior of A. The posterior of O = (Γ(A),Γ0(A))
is associated with the prior on O induced by the (matrix normal) prior on A. More specifically, the
induced prior on O is given by: π(O) ∝ exp

(
−1

2 trace
[
K−1(A − A0)L−1(A − A0)T

])
|J(O)|. If

the final objective is to make inference on the regression parameter β, sampling can alternatively be
done on the O-scale. This aids computational efficiency on the sampler. In our computational experi-
ments performed in this paper, we elected to ignore the Jacobian adjustment to achieve computational
efficiency, and to aid sampling in the Γ(A) parameterization.

The Gibbs transition densities π(Õnew
·i , Õnew

·j | Õ·i, Õ·j) are obtained from the 2×2 generalized ma-
trix Bingham densities. In particular, Õnew

·,(i,j) = Õ·,(i,j)Z where Z ∼ GB2,2(A = ÕT
·,(i,j)HiÕ·,(i,j),B =

ÕT
·,(i,j)HjÕ·,(i,j)) implies that the conditional density of Õnew

·,(i,j) given the current Õ·,(i,j) is simply the
above GB2,2 density evaluated at the observed value of Z, conditional on the current value of Õ·,(i,j)).
(The Jacobian of transformation Z 7→ Õ·,(i,j) has matrix volume 1 as Õ·,(i,j) is semi-orthogonal). See
the following subsection for an explicit form of the GB2,2(A,B) density (including the normalizing
constant), along with a von-Mises based random sampling scheme from the density.

Remark C.2. Under the aforementioned random-walk Metropolis scheme, the columns of A can be
updated in a systematic or in a random order, thereby producing a fixed scan and a mixed / random
scan sampler respectively. (Note that a mixed scan means that the columns of A are updated randomly
while the other parameters are updated systematically.) Since for any Gibbs-type sampler, a fixed-scan
variant and a random-scan variant both converge to the same target distribution (Geyer, 1998), an
MCMC chain generated by updating columns of A randomly, and one generated by updating columns
of A systematically, are both guaranteed to converge to the same target posterior distribution.

C.8 Explicit closed form expression for the generalized matrix Bingham GB2,2(A, B)
density and exact random sampling scheme using von Mises distribution

A random 2×2 orthogonal matrix Z = (Z·1,Z·1) is said to follow the 2×2 generalized matrix Bingham
GB2,2(A,B) distribution if Z has density

f(Z | A,B) ∝ exp
[
−ZT

·1AZT
·1 − ZT

·2BZT
·2

]
.

Since Z is an arbitrary 2 × 2 orthogonal matrix, we can write Z as (Khare et al., 2017)

Z =
(

cos θ s sin θ
sin θ −s cos θ

)
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where θ ∈ [−π, π) and s ∈ {−1, 1} are arbitrary. Using transformations it is straightforward to show
that in the resulting density θ are s are independent with s ∼ Discrete-Uniform({−1, 1}), and θ having
the marginal density

f(θ | A,B) ∝ exp[−(A1,1 +B2,2) cos2 θ − (A2,2 +B1,1) sin2 θ − (A1,2 +A2,1 +B2,2 +B2,2) sin θ cos θ].

Write a = −(A1,1 + B2,2), b = −(A2,2 + B1,1), and c = −(A1,2 + A2,1 + B2,2 + B2,2). Then the
exponent in the above density is given by

a cos2 θ + b sin2 θ + c sin θ cos θ = a

2 (1 + cos 2θ) + b

2 (1 − cos 2θ) + c

2 sin 2θ

= a + b

2 cos 2θ + c

2 sin 2θ + a + b

2 = r

2 cos(2θ − α) + a + b

2

where r =
√

(a − b)2 + c2 and α = arctan(c/(a−b)). This implies f(θ | A,B) ∝ exp[(r/2) cos(2θ−α)],
which in turn implies that 2θ follows a von Mises vM(µ = α, κ = r/2) distribution (Mardia and Jupp,
2009). Hence the complete (including the normalizing constant) density of θ is given by:

f(θ | A,B) = 1
πI0(r/2) exp

[
r

2 cos(2θ − α)
]

; −π ≤ θ < π.

where I0(·) denotes the modified Bessel function of the first kind of order 0. From this, the complete
GB2,2(A, ,B) density including the normalizing constant can be derived as follows:

f(Z | A,B) = f(θ | A,B) f(s | A,B)

= 1
2πI0(r/2) exp

[
r

2 cos(2θ − α)
]

= 1
2πI0(r/2) exp

[
−a + b

2

]
exp

[
r

2 cos(2θ − α) + a + b

2

]
= 1

2πI0(r/2) exp
[
−a + b

2

]
exp

[
−ZT

·1AZT
·1 − ZT

·2BZT
·2

]
= 1

2πI0(r/2) exp
[1

2 (traceA + traceB)
]

exp
[
−ZT

·1AZT
·1 − ZT

·2BZT
·2

]
.

For random generation from the GB2,2(A,B) density one can simply use the above von Mises con-
nection. More specifically, one can draw ϕ ∼ vM(µ = α, κ = r/2) and s ∼ Discrete-Uniform({−1, 1})
independently, and subsequently define θ = ϕ/2 and

Z =
(

cos θ s sin θ
sin θ −s cos θ

)

where α and r are as defined above. The resulting Z will have the target GB2,2(A,B) distribution.

C.9 Jacobian of the Transformation A 7→ (Γ(A), Γ0(A))

Consider the transformation A 7→ (Γ(A),Γ0(A)), where Γ(A) = CA

(
CT

ACA

)−1/2
with CT

A =

(Iu,AT ) and Γ0(A) = DA

(
DT

ADA

)−1/2
with DA = (−AT , Ir−u), and we are interested in the

Jacobian matrix of the transformation A 7→ (Γ(A),Γ0(A)) defined as

∂vec((Γ(A),Γ0(A)))
∂T vec(A) =

(
∂vec(Γ(A))
∂T vec(A) ,

∂vec(Γ0(A))
∂T vec(A)

)
.
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Below we provide explicit forms for the two blocks, viz., ∂vec(Γ(A))
∂T vec(A) and ∂vec(Γ0(A))

∂T vec(A) are separately. First
we have

∂vec(Γ(A))
∂T vec(A) =

∂vec
(
CA(CT

ACA)−1/2
)

∂T vec(CA)
∂vec(CA)
∂T vec(A)

=

(Iu ⊗ CA)
∂vec

(
(CT

ACA)−1/2
)

∂T vec(CA) +
(
(CT

ACA)−1/2 ⊗ Ir

) ∂vec(CA)
∂T vec(A) .

Here

∂vec(CA)
∂T vec(A) =


M 0 . . . 0
0 M . . . 0
...
0 0 . . . M

 and M =
(
0u×(r−u)
Ir−u

)
,

and

∂vec
(
(CT

ACA)−1/2
)

∂T vec(CA) = −
[
(CT

ACA)−1/2 ⊗ Iu + Iu ⊗ (CT
ACA)−1/2

]−1
×[

(CT
ACA)−1 ⊗ (CT

ACA)−1CT
A + (CT

ACA)−1CT
A ⊗ (CT

ACA)−1Kr,u

]
where Kr,u denotes the commutation matrix of order (r, u). Next, we have

∂vec(Γ0(A))
∂T vec(A) =

∂vec
(
DA(DT

ADA)−1/2
)

∂T vec(DA)
∂vec(DA)
∂T vec(A)

=

(Ir−u ⊗ DA)
∂vec

(
(DT

ADA)−1/2
)

∂T vec(DA) +
(
(DT

ADA)−1/2 ⊗ Ir

) ∂vec(DA)
∂T vec(A) .

Here
∂vec(DA)
∂T vec(A) =

K(r−u),r ∂vec(DT
A)

∂T vec(A) = K(r−u),r

(
−Iu(r−u)

0(r−u)2×u(r−u)

)
and

∂vec
(
(DT

ADA)−1/2
)

∂T vec(DA) = −
[
(DT

ADA)−1/2 ⊗ Ir−u + Ir−u ⊗ (DT
ADA)−1/2

]−1
×[

(DT
ADA)−1 ⊗ (DT

ADA)−1DT
A + (DT

ADA)−1DT
A ⊗ (DT

ADA)−1Kr,(r−u)
]

.

C.10 Comparison of posterior standard deviation of the Bayesian envelope model
and the bootstrap-based standard errors of the frequentist envelope model

We consider numerical experiments with response dimensions r = 20. The dimension of the response
envelope was fixed at u = 2, and the number of predictors was fixed at p = 5. The model parameters
were generated following the same procedure in Section 7.1 of the main text. Then 100 independent
datasets were generated for each sample size n = 50, 100, 200, 500 and 1000.

In each simulated dataset, we fitted the proposed Bayesian response envelope model and the
frequentist response envelope model (Cook et al., 2016) (as implemented in R package Benvlp (Lee and
Su, 2020)). For the Bayesian model, we ran the MCMC samplers for 10000 iterations, after discarding
the first 5000 iterations as burn-in. For the frequentist model, we evaluated bootstrap standard errors
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using residual bootstrap with 10000 bootstrap samples. The comparison of the posterior standard
deviations from the Bayesian model with the bootstrap-based standard errors from the frequentist
model for the first element in β is included in Table S1. Other elements in β follow the same pattern.

n Posterior SD Bootstrap SE

50 0.174 0.159
100 0.116 0.113
200 0.079 0.083
500 0.049 0.056

1000 0.035 0.042

Table S1: Comparison of the posterior standard deviation (posterior SD) of the Bayesian envelope
model and the bootstrap-based standard errors (bootstrap SE) of the frequentist envelope model.

The posterior standard deviations and the bootstrap standard errors are similar, especially when
the sample size is larger. This is not surprising as the Bayesian models considered herein contain
vague prior information, which gets dominated by the data (likelihood) information particularly when
the sample size is large. Consequently, variability in the corresponding posterior distributions reflect
primarily the variability in the likelihood. Such similarity between a Bayesian posteiror standard
deviation and a Bootstrap standard error is not specific to the envelope models, and can be observed
in practice in various other problems; see e.g., the example and the notes provided on p. 271-272 of
Friedman et al. (2001).

C.11 Maximum a posteriori Estimation in response envelope model

A computationally fast point estimator for the Bayesian response envelope model parameter vector
is obtained through the mode of the target posterior density (maximum a posteriori (MAP) esti-
mation). Algorithm C.1 below provides a strategy for MAP estimation for the model parameters
{µ̂, η̂, Ω̂, Ω̂0, Â}. The algorithm utilizes the decomposition in (S10) of the target posterior density:

π(µ̃,η,Ω,Ω0,A | X,Y) = π(µ̃ | Ω,Ω0,A,X,Y ) π(η | Ω,Ω0,A,X,Y) × (S14)
π(Ω | A,X,Y) π(Ω0 | A,X,Y) π(A | X,Y)

wherein all the (conditional) densities on the right hand side except that for A have standard forms,
and closed form expressions for their respective modes are available.

Algorithm C.1. Computation of the MAP estimators {µ̂, η̂, Ω̂, Ω̂0, Â} for model (6).

S.1 Find Â = arg maxA∈R(r−u)×u l(A), where

l(A) = − n + ν − 1
2 log

∣∣∣ΓT (A) G̃ Γ(A) + Ψ
∣∣∣− n + ν0 − 1

2 log
∣∣∣ΓT

0 (A) YT
c Yc Γ0(A) + Ψ0

∣∣∣
− 1

2 trace
[
K−1(A − A0)L−1(A − A0)T

]
. (S15)

Then obtain Γ(A) and Γ(A0) using transformation as described in (4).

S.2 Compute

(i) η̂ = ΓT (Â)ě, (ii) Ω̂ = 1
n + p + ν + u + 1

(
ΓT (Â)G̃Γ(Â) + Ψ

)
,
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(iii) Ω̂0 = 1
n + ν0 + r − u + 1

(
ΓT

0 (Â)YT
c YcΓ0(Â) + Ψ0

)
, (iv) µ̂ = Y − ΓT (Â)η̂X.

where G̃ and ě are as defined in (S9).

Remark C.3. The objective function l(A) in Step S.1 is smooth, and can be solved using the Nelder-
Mead algorithm or gradient based optimization. Starting value of A can be set at one of the four√

n-consistent starting values considered in Cook et al. (2016).

To test the computational cost, we considered a numerical experiment using the settings in Sec-
tion 7.1 of the main text as a starting point. Since the envelope subspace is on an r × u Grassmann
manifold, we increased both r and u and studied four scenarios (a) r = 20, u = 2 (setting in Section
6.1), (b) r = 20, u = 10, (c), r = 70, u = 2 and (d) r = 70, u = 10. Other parameters were generated
the same way as in Section 6.1 of the main text. For each scenario, we simulated 100 replicates, and
obtained the MAP estimates of the model parameters, with the objective function for A in Step S.1
being optimized using the Nelder-Mead algorithm. The median computing time as well as the average
mean squared errors (MSE) ∥β̂ − βtrue∥2/(rp) were recorded. The computing time is the total time
for obtaining the MAP estimators, i.e. for both Step S.1 and Step S.2, while the computing time for
Step S.2 is miniscule. The results are summarized in Table S2.

r u n Median time (in min) MSE

20 2

100 0.0093 0.0107
200 0.0086 0.0053
500 0.0085 0.0020
1000 0.0082 0.0010

20 10

100 0.0430 0.0198
200 0.0389 0.0093
500 0.0346 0.0040
1000 0.0319 0.0021

70 2

100 0.1063 0.0158
200 0.0890 0.0069
500 0.0870 0.0026
1000 0.0830 0.0013

70 10

100 0.8087 0.0540
200 0.5820 0.0232
500 0.5188 0.0081
1000 0.4675 0.0041

Table S2: Computing time and average MSE of the MAP estimator

As expected, the MAP estimators are indeed orders of magnitude faster to compute than MCMC
based approximation of the posterior. The median computing times for the MCMC chains for scenario
(a) were 5.43, 7.53, 6.02, and 7.94 minutes for n = 100, 200, 500 and 1000 respectively, while the
computing times for the MAP estimators for scenario (a) are 0.0093, 0.0086, 0.0085 and 0.0082 minutes
for n = 100, 200, 500 and 1000 respectively. Even with a moderate problem (r = 70 and u = 10)
in Scenario (d), the median computing time is still well under a minute. Of course, the objective of
MAP estimation is vastly different from full MCMC sampling. The latter aids approximation of the
entire posterior distribution and hence permits a full Bayesian inference. The former on the other
hand produces just a single point estimate that by itself does not aid any quantification of modeling
and estimation uncertainty and therefore does not permit inference.

18



C.12 Fast Approximate Bayesian Inference using Blackbox Variational Methods

Recall the decomposition (S14) for the joint posterior density of the response envelope model as the
product of the marginal posterior density of A times the conditional posterior density of the remaining
parameters given A as leveraged in Section C.11 for deriving MAP estimates. This decomposition can
also be used for fast approximate Bayesian inference via some blackbox variational method, such as
mean-field Automatic Differential Variational Inference (ADVI; Kucukelbir et al. 2017). To this end,
first note that the conditional posterior distribution of µ,η,Ω,Ω0 given A can be efficiently sampled
by leveraging the decomposition

π(µ̃,η,Ω,Ω0 | A,X,Y) = π(µ̃ | Ω,Ω0,A,X,Y) π(η | Ω,Ω0,A,X,Y) π(Ω | A,X,Y) π(Ω0 | A,X,Y).

Each density on the right-hand side is standard and can be efficiently simulated given (approximate)
posterior draws for A. Specifically, we have

Ω | A,X,Y ∼ IWu(Ψ + ΓT (A)G̃Γ(A), n + p + ν),
Ω0 | A,X,Y ∼ IWr−u(Ψ0 + ΓT (A)YT

µY
YµY

Γ(A), n + p + ν),

η | Ω,Ω0,A,X,Y ∼ MNu,p

(
ΓT (A)ě,Ω, (XT

µX
XµX

+ M)−1
)

, and

µ̃ | Ω,Ω0,A,X,Y ∼ Nr

(
Y ,

1
n

(
Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ

T
0 (A)

))
.

Hence one approximate sampling only from the marginal posterior distribution of A with unnormalized
log density l(A) as given in (S15) in the context of MAP estimation of A. Since the elements of A
are unconstrained, a blackbox variational Bayes algorithm, e.g., mean-field ADVI as implemented in
probabilistic programming language stan (Gelman et al., 2015; Carpenter et al., 2017), requiring only
(log) posterior density (up to a constant multiple) for approximate sampling, can be readily employed.

However, we make a cautionary note here that while a black-box variational approach can indeed
produce an immediate fast approximation of the target posterior for the proposed envelope model, care
must be taken while using the estimates for anything other than quick initial experimentation with
the model. Variational approaches, specifically the commonly used mean-field variational approaches
(as considered here) are known to underestimate the spread of the target posterior distribution. This
leads to an inadequate quantification of estimation uncertainty, thereby potentially producing highly
misleading inferences; see the simulation results and the associated discussion in Section C.14. More-
over, the simulation results presented in Sections C.13 and C.14 show notably poorer performances of
the variational Bayes estimators even from a point estimation (via posterior mean) perspective, when
compared with the proposed MCMC-based estimators and several other (frequentist or Bayesian)
competing methods/estimators.

C.13 Additional Simulation Results I: Comparing estimation accuracy, prediction
performance and computational cost of the proposed Bayesian response en-
velope model with a number of competing approaches

We considered numerical experiments with response dimensions r = 20. The envelope dimension was
fixed at u = 2, and the number of predictors was fixed at p = 7. The model parameters were generated
following the same procedure in Section 6.1 of the main text. Then 100 independent datasets were
generated for each sample size n = 50, 100, 200, 500, and 1000.

In each dataset, we considered 11 separate (point) estimators of the regression coefficient β and
corresponding predictions (on a newly generated dataset from the true model):

(i) “Bayes utrue”: MCMC posterior mean from the proposed Bayesian envelope model with true u.
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(ii) “Bayes û”: MCMC posterior mean from the proposed Bayesian envelope model with u = û =
BIC-based approximate posterior mode for u.

(iii) “Bayes BMA”: MCMC posterior mean from the proposed approximate envelope BMA “u-
integrated" model.

(iv) “Bayes manifold utrue”: MCMC posterior mean from the manifold Bayesian envelope model
(Khare et al., 2017) with true u.

(v) “Bayes VB utrue”: Variational Bayes (ADVI; Kucukelbir et al. 2017) posterior mean for the
proposed Bayesian envelope model with true u.

(vi) “Bayes std.”: MCMC posterior mean for the standard (full; u = r) Bayesian linear regression
model.

(vii) “Frequentist utrue”: Frequentist envelope estimator with true u, through its implementation in
R package Renvlp (Lee and Su, 2020). Performed with residual bootstrap to facilitate inference.

(viii) “Frequentist wtd”: Frequentist weighted envelope estimator of Eck and Cook 2017. Performed
with residual bootstrap to facilitate inference.

(ix) “Frequentist RRR”: Frequentist reduced rank regression with optimally chosen rank using R
package rrr and Renvlp. Only point estimation is performed.

(x) “remMap”: remMap model (Peng et al. 2010) with cross-validation selected dimension as imple-
mented in R package remMap. Only point estimation is performed.

(xi) “Bayes RRR utrue”. Bayesian reduced rank regression with rank = utrue based on the stan pro-
gram of Files et al. (2019). Due to the extremely high computational burden (see Section C.13.3,
an optimal rank selection was not performed, and the true envelope dimension utrue was used as
a proxy for the optimal rank.

Prior to making any comparisons, we make a comparative note between the “exactness” of the fre-
quentist vs. Bayesian inferences. For the frequentist approaches we consider bootstrap-based approx-
imations of the corresponding sampling distributions which usually produce more accurate inferences
than asymptotic-normal-based approximations. It is important to note, however, that bootstrap ap-
proximations are still theoretically justified only when n is large enough; consider, e.g., the asymptotic
error rates of various bootstrap statistics provided in Hall (2013, Chapter 3). By contrast, MCMC-
based Bayesian inferences are exact for any n (no approximation is made on the posterior distribution
based on the sample size), with the precision of the resulting estimates/inferences depending entirely
on the computing power. This is particularly important in situations with small or moderate sample
sizes where the bootstrap approximation can be less reliable.

For all MCMC-based implementations except Bayes RRR, we ran the respective samplers for 10,000
iterations after discarding the initial 5,000 iterations as burn-in. We then computed the MCMC pos-
terior means for β and µ on the retained MCMC iterations while also noting the median effective
sample sizes for all components of β. For frequentist envelope approaches, viz., “Frequentist utrue”
and “Frequentist wtd.” we considered B = 10,000 residual bootstrap resamples to approximate the cor-
responding sampling distributions. For the ADVI-based “Bayes VB utrue” we obtained 10,000 random
draws from the optimized variational distribution. For the stan-based “Bayes RRR” implementation,
1000 MCMC samples were retained after an initial warmup of 1000 iterations. For the final three
non-envelope-based approaches, viz., “Frequentist RRR”, “remMap” and “Bayes RRR” we centered
the training data (both the predictors and the responses) at their respective sample means prior to
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model fit; the same (training data) sample means were used to subsequently center the test data
prior to predictions from the fitted methods. Below we compare and discuss the (point) estimation
accuracy, prediction accuracy, and computational costs for these approaches as evaluated from the
replicated experiments. The computational costs were first measured through CPU running times for
each method. Subsequently, the raw running times were rescaled to aid approximate comparability
with a view to the (median) effective (β-) sample sizes from the “Bayes utrue” MCMC sampler; see
section C.13.3 for more details.

C.13.1 Comparing (Point) Estimation Accuracy

To quantify the (point) estimation accuracy of each model/estimator we consider the component-wise
mean squared error (MSE) obtained from replicated values of each point estimator of β. For the (i, j)th
element in βtrue, suppose β̂k

i,j denotes the computed value of the estimator in the kth replication. Then
the MSE for the (i, j) component is computed as

∑100
k=1(βtrue

i,j − β̂k
i,j)2/100. For exposition, we focus

on the averages (across all (i, j)’s) of these component-specific MSEs for different methods, r, and n,
which are displayed in Table S3. Some notable observations from the table are discussed below.

First, we observe that the standard Bayesian estimator (u = r model) incurs much larger average
MSEs than the proposed Bayes envelope estimators (all three of Bayes utrue, Bayes û, and Bayes BMA)
for all n and r. This concords with the findings discussed in Section 7.1 of the main text. Second, the
frequentist envelope estimators (Frequentist utrue and Frequentist wtd.) appear to produce somewhat
larger average MSEs than the corresponding Bayes MCMC-based envelope estimators (Bayes utrue and
Bayes BMA) across the board (all n and r). However, the differences are modest – less than 10% in
most cases. Third, Bayes utrue and Bayes manifold utrue have comparable average MSEs particularly
when the sample size is large. This is unsurprising as both approaches furnish envelope models with
vague proper priors for the model parameters and use MCMC for posterior approximation.

Fourth, for small n’s, Bayes utrue enjoys smaller average MSEs than Bayes û and Bayes BMA;
with Bayes BMA and Bayes û having largely comparable performances. However, the differences
diminish as the sample size increases. This is unsurprising with a view to the u-selection table in the
main text: for small sample sizes, there is much variability incurred in estimating u by the posterior
distribution of u which gets translated into the variability of the final β estimator. However, as the
sample size grows the posterior distribution of u gets more and more concentrated around utrue, and
hence the estimators from Bayes û and Bayes BMA effectively reduces to the estimator from Bayes
utrue. Fifth, the variational Bayes utrue posterior mean produces a considerably poorer point estimator
of β compared to the proposed MCMC-based Bayesian envelope point estimator from Bayes utrue, with
the former having an average MSE that is 2 to 61 times as big as the average MSEs of the latter.
In fact, for the smallest sample size n = 50, the VB approach produces the poorest estimator with
the largest MSEs among all the methods/estimators considered. However, the performance of Bayes
VB utrue gets better with larger sample sizes; however, it still produces substantially noisier estimates
than the other Bayesian envelope approaches considered.

Finally, the final three non-envelope-based approaches, viz. Frequentist RRR, remMap, and Bayes
RRR utrue, incur substantially bigger (about twice as big or even bigger) average MSEs compared to the
proposed MCMC-based Bayesian envelope estimators. Of these three, Frequentist RRR consistently
produces the smallest average MSEs and the Bayes RRR utrue produces the largest. For smaller
and moderate n (≤ 200), Frequentist RRR estimators perform as good or better than Bayes VB
utrue; however, as the sample size grows, the VB approach produces more accurate estimators. The
Bayes RRR utrue appears to produce poor estimates even with large n’s. We note that this may
be attributable to the disparity between the optimal rank of a Bayesian reduced rank regression
model, and the corresponding envelope dimension utrue of an envelope estimator. Due to extremely
high computational cost, an optimal rank selection was not performed for Bayes RRR and the true
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envelope dimension utrue was simply used as a proxy for the optimal rank. However, when performed
the consequent optimal model may incur less variability. However, with a view to the performance of
the frequentist reduced rank regression estimator (for which we did consider an optimal rank selection),
it seems unlikely that an optimally tuned Bayes RRR estimator would incur smaller errors than the
proposed Bayesian envelope estimators.

Method n = 50 n = 100 n = 200 n = 500 n = 1000

Bayes utrue 3.389 1.458 0.737 0.267 0.144
Bayes û 5.259 1.717 0.758 0.271 0.139
Bayes BMA 5.103 1.681 0.751 0.270 0.139
Bayes manifold utrue 3.249 1.402 0.728 0.266 0.145
Bayes VB utrue 190.480 4.465 1.433 0.882 0.813
Bayes std. 25.025 11.095 5.284 2.066 1.043
Frequentist utrue 3.631 1.499 0.782 0.288 0.161
Frequentist wtd. 7.621 2.128 0.843 0.299 0.161
Frequentist RRR 27.980 3.364 1.515 0.576 0.308
remMap 30.194 13.265 5.851 2.189 1.082
Bayes RRR utrue 24.472 20.781 19.553 18.516 18.228

Table S3: Comparison of replication MSEs (total across coordinates of β) among various methods/
point estimators of β for different sample sizes (n).

C.13.2 Comparing (Point) Prediction Accuracy

Method n = 50 n = 100 n = 200 n = 500 n = 1000

Bayes utrue 7.55 7.42 7.35 7.30 7.30
Bayes û 7.65 7.43 7.35 7.30 7.30
Bayes BMA 7.65 7.42 7.35 7.30 7.30
Bayes manifold utrue 7.52 7.40 7.37 7.30 7.30
Bayes VB utrue 17.12 7.57 7.40 7.33 7.33
Bayes std. 8.67 7.91 7.59 7.39 7.35
Frequentist utrue 7.55 7.41 7.37 7.30 7.30
Frequentist wtd. 7.76 7.44 7.37 7.30 7.30
Frequentist RRR 8.85 7.51 7.40 7.31 7.31
remMap 8.98 8.00 7.62 7.39 7.35
Bayes RRR 8.61 8.37 8.30 8.22 8.20

Table S4: Comparison of unit average mean squared prediction errors from several competing methods
considered in the simulation. The right five columns display the computed average mean squared
prediction error.

Next, we focused on the prediction accuracy for each model/estimating method under consider-
ation. For this, after training the various models/estimators on each replicated training dataset, we
generated a new test dataset {(Xnew

i ,Y new
i ) : i = 1, . . . , n} (the same n as in the training data), and

computed the unit average mean squared prediction error defined as (rn)−1∑n
i=1 ∥Y pred

i − Y new
i ∥2,
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where Y pred
i = µ̂ + β̂Xnew

i and µ̂ and β̂ are the estimates from each model/method. For the non-
envelope-based approaches, viz., Frequentist RRR, remMap, and Bayes RRR utrue, both training and
test data were centered (separately for the predictors and the responses) by the respective training
sample means prior to model fit and prediction, and the corresponding µ̂’s were set to zero. Note at
the outset that with growing sample sizes these unit average prediction errors are expected to stabilize
for each method; however, unlike estimation error, prediction errors will not converge to zero with
n → ∞ due to the inherent variabilities in Y ’s (measurement noise). The results are summarized in
Table S4. From the table, it follows that the overall prediction performances of the proposed Bayesian
envelope approaches (Bayes utrue, Bayes û, and Bayes BMA) are consistently better or as good as the
other approaches. The overall prediction performances for the different methods generally resemble
the estimation performance patterns noted in Section C.13.1, although there are some differences. The
prediction performances for the different methods are discussed in detail below.

First, we note that the standard Bayesian estimator (u = r model) has a uniformly poorer pre-
diction performance compared to the proposed Bayes envelope estimators (all three of Bayes utrue,
Bayes û, and Bayes BMA) for all n and r. Second, the frequentist envelope estimators (Frequentist
utrue and Frequentist wtd.) have comparable prediction errors as their corresponding Bayes MCMC-
based envelope estimators (Bayes utrue and Bayes BMA) across the board (all n and r). Third, Bayes
utrue and Bayes manifold utrue also have virtually identical unit average prediction errors. Fourth,
for small n’s, Bayes utrue enjoys smaller prediction errors than Bayes û and Bayes BMA; with Bayes
BMA and Bayes û having largely comparable performances, with the differences diminishing as the
sample size increases. However, unlike estimation performance, the differences between the prediction
performances of these three estimators are not as prominent even for small sample sizes. Fifth, for
the small sample size of n = 50, Bayes VB utrue produces extremely poor prediction as noted through
the considerably large prediction errors which are much bigger than their counterparts from the other
models/estimators. However, as the sample size increases the average unit prediction errors become
less severe and comparable to the other approaches/estimators.

Finally, the final three non-envelope-based approaches, viz. Frequentist RRR, remMap, and Bayes
RRR utrue, produce substantially bigger average unit prediction errors compared to the proposed
MCMC-based Bayesian envelope estimators for the small sample size of n = 50. As the sample size
grows, the average prediction errors get noticeably smaller for remMap and Frequentist RRR, virtually
becoming identical to the envelope-based approaches, but not for Bayes RRR. Again this could be
attributable to the disparity between the optimal rank of a Bayesian reduced rank regression model,
and the corresponding envelope dimension utrue of an envelope estimator, as noted in the discussion of
estimation performances, and for large n an optimally tuned Bayes RRR implementation may incur
comparable prediction error as the proposed method.

C.13.3 Comparing Computing Costs

Finally, we focus on the computational costs for the various methods/estimators in terms of CPU
running times and effective sample sizes (for the proposed MCMC-based Bayesian approach). All
computations were done on SLURM HPC parallel computing clusters at the Center for Computational
Research at the State University of New York at Buffalo, with computing nodes having 16 – 20 GB
of allocated memory each, and clock speeds ranging between 2.10 – 2.40 GHz.

To permit a fair comparison of computational costs for the proposed Bayesian envelope model
MCMC sampler relative to the Khare et al. (2017) MCMC sampler, we first compare their respective
effective sample sizes (ESS). The ESS is a simple univariate measure of the effectiveness of MCMC
draws, estimating the number of independent and identically distributed random samples required
to achieve the same level of precision as achieved by MCMC samples. The average ESS ratio across
elements in β and replications for the proposed method to the manifold method for u = utrue is
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summarized in Table S5. The values suggest that the ESS of the two methods are very comparable,
with the proposed method having a slightly lower ESS on average than the manifold method. This
slight reduction in ESS is more than compensated by the substantial reduction in computing times
which we discuss next.

Next, we focus on the running times of the proposed method and compare them with those of the
various competing methods. Prior to any comparisons, we make two notes. First, for the “ensemble”
models (both Bayes BMA and Frequentist wtd.) the total CPU running times under sequential model
fits are recorded. In practice, however, one can of course fit models with different u’s in parallel
which can substantially reduce the total observed user running time. Second, the cost of running
Bayes û and Bayes BMA are virtually the same – both require running all individuals u-sepcific
models together with (approximate) u-specific probabilities. The two approaches only differ in how
the subsequent point estimate is computed – Bayes û obtains a single point estimate based on the
posterior u probabilities while Bayes BMA uses the posterior u probabilities to obtain a model-averaged
point estimate; given MCMC draws from all models, the difference between the running times for these
computations (selecting a model vs. averaging models) are insignificant. Hence, we only report the
running times of Bayes BMA below.

n ESS Ratio

50 0.936
100 0.892
200 0.900
500 0.908

1000 0.901

Table S5: Average ratio of ESS of the proposed method to the manifold method.

Since the proposed approach permits MCMC-based full Bayesian inference, to ensure a fair cost-
comparison with a common denominator, we rescaled the individual observed running times of Fre-
quentist utrue, Frequentist wtd., Frequentist RRR, remMap, and Bayes RRR in each replicate to get
the corresponding “expected” running times necessary to produce approximately a median ESS num-
ber of posterior samples/bootstrap resamples as obtained for the proposed method with u = utrue.
This entailed multiplying the observed running times of Frequentist utrue and Frequentist wtd. by a
factor of median ESS

B=10000 , those of Frequentist RRR and remMap by a factor of median ESS (since only
a single point estimate was obtained from these models and not a full bootstrap distribution), and
that of Bayes RRR by a factor of median ESS

1000 (since Bayes RRR was run for 1000 final iterations). The
running times of the mean-field variational Bayes implementation were left unchanged as the bulk of
the computation time in VB implementations are spent on optimizing the approximating variational
family which does not depend on the size of the subsequent Monte Carlo draws from the optimized
approximating family; sampling from the optimized variational family is usually very fast.

The obtained running times are summarized in two tables – Table S6 showing the median (across
replicates) absolute running times in minutes for the proposed method with u = utrue and the two
choices of r and Table S7 displaying the median (across replicates) relative/proportional running times
of all 11 methods/estimators relative to the running time of the proposed method, with the run-time
ratios being computed separately in each replication first and then summarized through medians. We
make the following observations from these tables.

From Table S6 it can be seen that the median running times for the different n’s are all within
5 minutes. The variability observed in the running times is attributable to the differences in n’s
(which primarily affect the likelihood computation at each iteration), in r’s and also in the computing
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Method n = 50 n = 100 n = 200 n = 500 n = 1000

Bayes utrue 3.90 2.31 3.42 3.49 3.79

Table S6: Median absolute CPU running times (in minutes) for the proposed Bayesian envelope
method with u = utrue.

cores/processors present in the computing cluster. The relative running times reported in Table S7
avoid the variability in the computing architecture thus permitting a more principled cost comparison
among the different methods as discussed below.

method n = 50 n = 100 n = 200 n = 500 n = 1000

Bayes utrue 1.00 1.00 1.00 1.00 1.00
Bayes û 1.34 1.00 1.00 1.00 1.00
Bayes BMA 36.62 36.87 36.56 36.01 38.59
Bayes manifold utrue 6.53 7.09 7.73 9.82 12.04
Bayes VB utrue 0.09 0.11 0.10 0.11 0.12
Bayes std. 0.04 0.04 0.04 0.05 0.09
Frequentist utrue × med ESS / 10000 3.54 2.13 1.76 1.45 1.31
Frequentist wtd. × med ESS / 10000 36.12 35.18 31.72 30.44 27.83
Frequentist RRR × med ESS 16.94 21.17 22.55 22.36 21.37
remMap × med ESS 37.55 53.32 71.76 122.75 184.10
Bayes RRR utrue × med ESS / 1000 0.60 2.25 6.51 21.90 60.75

Table S7: Median of CPU running times (ratios) for various competing methods/estimators relative
to the running times of the proposed Bayesian envelope method with u = utrue.

First, Table S7 shows that the implementation of the standard Bayesian model is extremely fast
costing on average only 5-10% of the corresponding running times of the proposed method for all n
and r. This is unsurprising as the standard Bayesian model does not require generating draws for the
envelope parameters, a step that takes up the bulk of the computation times for the envelope Based
approaches. However, this perceived gain in speed comes at the cost of a substantially increased
noise incurred in the estimation and prediction from the model (Sections C.13.1 and C.13.2), which
is, of course, the main motivation for developing a Bayesian envelope model. Second, we see that the
(scaled) running times for Frequentist utrue is larger than its Bayesian counterpart, while those for
Frequentist wtd. is comparable or somewhat smaller than Bayes BMA. This is because the compu-
tational cost for the proposed method grows with increasing u < r, and the “ensemble” approaches
(Frequentist wtd. and Bayes BMA) require computation for all u, including large u < r. In appli-
cations, the smaller u’s are precisely the situations that permit the biggest gain in estimation and
prediction efficiency (Cook et al., 2010, 2013), and the proposed approach is seemingly more compu-
tationally efficient than the frequentist approach in such situations. However, unlike MCMC sampling
bootstrapping is (embarrassingly) parallelizable which means that the computation times for the fre-
quentist implementations can be reduced in a parallel computing environment. Second, the proposed
approach enjoys a significantly reduced computing time compared to the manifold based approach of
Khare and Hobert (2012), with the proposed method on average being 650 − 1900% times faster than
the manifold method. This is a direct consequence of the Euclidean space-based formulation of the
underlying envelope parameter which makes the proposed approach substantially less computation-
ally demanding than the Steifel manifold-based sampler of Khare et al. (2017). Third, Bayes VB utrue
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appears to enjoy a substantially reduced computational cost compared to the proposed MCMC-based
Bayes utrue. However, the poorer estimation and prediction performance of the latter particularly for
small sample sizes (Sections C.13.1 and C.13.2) curtail the practical usability of the method. Third,
the stan-based implementation of Bayes RRR has a somewhat comparable (rescaled) computation cost
when the sample size is small, but a substantially bigger cost when the sample size is large. This is
a consequence of the Hamiltonian Monte Carlo-based implementation used in stan (Files et al., 2019)
which requires multiple evaluations of the likelihood and the gradient in each iteration, which grows
substantially with increasing n. Fourth, the expected cost of cross-validation-tuned remMap under a
bootstrap-based inferential computation appears to be substantially bigger than that of Bayes BMA
particularly when the sample size is large, although the runtime for the former can be reduced in a
parallel computing environment leveraging parallelizability of bootstrap resampling. We note however
that the appropriateness of bootstrap resampling for inference in remMap has not been discussed to
the best of our knowledge. Finally, Frequentist RRR appears to enjoy a substantially smaller comput-
ing time, even after accounting for rank selection. This is due to the fact that analytical closed forms
exists for the Frequentist RRR estimators, which substantially reduces its overall computing time.

C.14 Additional Simulation Results II: Running the Proposed MCMC sampler
under larger dimensions and sample sizes

To note how the proposed MCMC algorithm fare with larger dimensions and sample sizes, we per-
formed analgous, but more sizeable simulation experiments. More specifically, we adopted the same
setting as the one described in Section 6.1 of the main text, and looked into three cases: r = 100, p = 20,
and r = 200, p = 20, and r = 200, p = 100, which correspond to 2, 000, 4, 000, and 20, 000 regression
coefficients (number of elements in β). For each case we considered two u’s, namely u = 1 and u = 6.
We varied the sample sizes from 500 to 5000, and 100 replications were generated for each sample size.
The Bayesian envelope model was fit by running the proposed MCMC sampler for 10,000 iterations
(after discarding an initial burn-in of 5,000 iterations). To aid comparison, an ADVI-based (Kucukelbir
et al., 2017) variational implementation was also considered with 1000 Monte carlo draws generated
from the variational family after optimizing. All computations were done on SLURM HPC paral-
lel computing clusters at the Center for Computational Research at the University at Buffalo, with
computing nodes having allocated memory ranging between 24 to 64 GB, and clock speeds ranging
between 2.10-2.40 GHz.

For the MCMC-based implementation, in each iteration, we not only generated the model param-
eters but also evaluated the likelihood function useful for potential statistical inference and model
selection. Thus two computation times were obtained for the MCMC-based implementation, one for
generating the posterior draws together with iteration-wise log-likelihood computation, and one for
only generating the posterior draws without log-likelihood computation. In Table S8, we report the
median computation times in minutes for these two MCMC implementations along with variational im-
plementations along the columns “MCMC logLik” (MCMC with log-likelihood evaluations), “MCMC”
(MCMC without log-likelihood evaluations) and “VB”. The average ratio of effective sample sizes to
MCMC iteration size across all elements in β is included in the column “ESS Ratio” which provides
a simple univariate summary of the efficiency of MCMC draws. We make the following observations
from the table.

First, In all cases, we notice that the proposed MCMC algorithm provides good effective sample
sizes, particularly when the envelope dimension u is small, which is precisely the situation where en-
velope models achieve the greatest gains in estimation and prediction efficiency. When u is increased,
the model becomes less parsimonious and requires a bigger number of effective parameters to sample
from, particularly for the envelope parameter A. This also explains why a larger u also effectuates
a greater running time of the algorithm. Second, we note that the computing time for the MCMC
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r p u n MCMC logLik Time MCMC Time %ESS VB Time
500 16.95 16.85 86.55 6.99

1000 14.07 13.66 92.55 5.71
2000 14.78 13.93 95.95 6.471

5000 29.82 24.38 98.53 15.78
500 75.34 79.74 44.44 5.10

1000 82.60 83.82 44.19 6.42
2000 84.59 86.47 44.83 7.81

100

6

5000 81.98 82.19 44.50 10.66
500 104.41 100.88 86.93 24.42

1000 107.20 101.40 95.41 23.21
2000 113.03 101.33 98.55 26.341

5000 129.54 100.84 99.75 28.41
500 267.67 289.39 40.64 22.77

1000 241.23 244.98 41.42 21.14
2000 279.82 281.40 40.87 26.44

20

6

5000 517.20 491.29 38.44 36.12
500 51.19 50.34 92.39 18.18

1000 99.90 94.91 98.10 25.99
2000 83.54 75.39 99.40 24.361

5000 94.89 75.37 100.05 23.97
500 236.19 232.98 53.00 23.23

1000 236.08 233.33 39.68 24.20
2000 236.41 232.30 30.77 24.83

200

100

6

5000 286.57 310.03 26.21 28.27

Table S8: Comparison of median (across replications) running times (in minutes) of the MCMC and
variational implementations of the proposed Bayesian envelope model for larger n, p, and r, and
different u’s.
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r p u n MSE MCMC postvar MCMC MSE VB postvar VB
500 0.591 0.620 14.350 1.406

1000 0.263 0.274 10.036 0.576
2000 0.122 0.128 3.498 0.0271

5000 0.048 0.049 1.581 0.007
500 5.250 5.339 132.260 13.638

1000 2.525 2.531 109.002 2.319
2000 1.224 1.235 57.645 0.206

100

6

5000 0.485 0.486 20.021 0.087
500 3.217 3.867 222.338 6.567

1000 1.458 1.629 64.872 3.005
2000 0.716 0.759 61.439 0.4541

5000 0.286 0.289 20.944 0.088
500 10.163 10.597 2876.678 23.823

1000 4.564 4.681 2907.111 5.104
2000 2.226 2.239 2950.035 0.302

20

6

5000 0.865 0.870 2979.612 0.121
500 3.296 4.542 537.011 2.895

1000 1.547 1.801 303.465 0.120
2000 0.763 0.822 512.522 2.1651

5000 0.305 0.309 121.425 0.185
500 19.845 23.221 13631.671 37.953

1000 8.699 9.582 12781.418 3.021
2000 4.240 4.434 12864.314 1.530

200

100

6

5000 1.664 1.697 12768.959 0.604

Table S9: The total (across β components) replication MSEs of posterior means and the average
(across replications) total (across β components) posterior variances obtained from the MCMC and
variational implementations for larger n, p, and r, and different u’s.
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sampler also steadily increases with the number of responses r; however, it does not vary significantly
with the number of predictors p. We note in this context that the median computation times for the
r = 200, p = 20 configuration are somewhat larger than the median times for the r = 200, p = 100 con-
figuration. This is due to the fact that these computations were done on a computing cluster consisting
of CPUs of varying hardware specifications. Larger memories were allocated to run the jobs corre-
sponding to the r = 200, p = 100 configuration compared to those associated with the r = 200, p = 20
configuration; these resulted in the former configuration being run on more powerful (in terms of clock
speed) computers. Third, the computation time for the MCMC sampler also increases with n, but
this is mainly due to the evaluation of the likelihood; the cost for MCMC draws of model parameters
do not increase substantially with the sample size. Finally, the average computational cost for the
variational implementation is substantially smaller than the corresponding MCMC implementation
with the latter being 2-15 times as expensive as the former on average. However, the variational im-
plementation has a substantially poorer estimation accuracy and estimation uncertainty quantification
which collectively curtails its practical utility as we discuss next.

To assess the accuracy of the MCMC and variational implementations we focused on two metrics
– (a) the average MSE of the corresponding posterior mean and (b) the average posterior variance,
where the average is computed across all replicates and all components of β. Here (a) produces a
frequentist measure of how good the posterior mean is as a point estimator relative to the “truth”,
while (b) leverages a quantifiable summary of estimation uncertainty produced by each method, which
in turn can be used to assess honesty/reliability of the uncertainty quantification (with a view to the
computed frequentist MSE). These results are displayed in the columns of Table S9.

The table shows a reasonable accuracy of the MCMC-based point estimator as quantified through
average MSEs of the posterior mean estimator. The average MSE for the MCMC posterior mean
estimator drops with larger sample sizes for each specific r, p, and u, which illustrates a frequentist
consistency (in the L2 sense) of the estimator. In addition, the MCMC-based (averaged) posterior
variances produce honest and reliable quantification of the estimation uncertainty, as seen through their
closeness with the average MSEs. By contrast, the variational implementation-based posterior mean
point estimator has a much poorer accuracy, with the average MSEs two to four orders of magnitude
bigger than the corresponding MCMC-based point estimators. More importantly, the corresponding
posterior variances do not appear to provide honest quantification of estimation uncertainty: there are
large differences (sometimes between two to four orders of magnitude) between the average MSEs and
the average posterior variances. Indeed, the average posterior variance computed from the variational
implementation is sometimes much smaller than its MCMC counterpart, thus potentially leading to
extremely unreliable statistical inference.

With a view to these simulation results we therefore recommend against using the ADVI variational
implementation for the proposed Bayesian envelope model for principled statistical inference and
suggest using the MCMC implementation instead, despite the latter demanding substantially heavier
computations.

C.15 Additional Simulation Results III: Comparing the estimation performance
of the proposed model with competing approaches models under varying
levels of signal-to-noise-ratio

This section compares under replication the performances of the proposed Bayesian envelope estimators
with several other competing approaches under various signal-to-noise ratios (SNR). To aid precise
control over the SNR in the simulated data, we fixed the sample size at n = 500, and let r = 20, p = 10,
and utrue = 2. Next, we set µ = 0 and µX = 0, and filled the elements of A and η with Uniform(0, 1)
random variates, and subsequently normalized η so that ∥η∥F = 1 effectuating ∥β∥F = 1. Here ∥ · ∥F

denotes the Frobenius norm. Following Cook et al. (2015) the covariance matrices were created as
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[Ω]ij = σ2(−0.9)|i−j| and [Ω0]ij = σ2(−0.9)|i−j| with varying constants σ2 > 0. Since ∥β∥F = 1,
the SNR is simply 1/σ2 which we varied from 0.10 to 1. Our setup is similar to the reduced-rank
envelope model setup of Cook et al. (2015) with utrue = reduced rank dimension (dtrue) = 2, and the
“B”-matrix used to define the reduced-rank envelope regression coefficient β∗ = ΓηB being set to
the (utrue = 2-dimensional) identity matrix B = I2. From each “true” model corresponding to one
specific SNR level, we simulated r = 100 replicated random datasets.

Subsequently, in each simulated dataset, we fitted the proposed Bayesian envelope model, the fre-
quentist envelope model, the remMap model, and the frequentist RRR model and obtained various
point estimators of β obtained from these models. More specifically, we focused on the MCMC pos-
terior mean associated with “Bayes utrue” and “Bayes BMA” (our approaches), and Manifold MCMC
Bayes utrue (Khare et al., 2017) and the frequentist point estimates associated with “Frequentist utrue”,
“Frequentist wtd.”, remMap, and “Frequentist RRR” (see Section C.13 for a description of these mod-
els/estimators). The accuracy of each estimator was defined in terms of total (across all components)
replication MSEs (see section C.13.1 for a definition). These total MSEs for the different estimators
under different SNRs are displayed in Table S10.

SNR Bayes BMA Bayes utrue Man. utrue Freq. utrue remMap Freq. RRR Bayes Full

0.100 0.120 0.285 0.228 0.318 2.810 3.070 4.050
0.111 0.117 0.268 0.271 0.295 2.500 2.800 3.650
0.125 0.113 0.279 0.266 0.302 2.200 2.510 3.240
0.143 0.109 0.274 0.288 0.298 1.890 2.190 2.840
0.167 0.105 0.224 0.211 0.247 1.620 1.850 2.430
0.200 0.100 0.160 0.155 0.178 1.340 1.460 2.030
0.250 0.096 0.166 0.184 0.183 1.070 1.040 1.620
0.333 0.092 0.112 0.120 0.123 0.806 0.608 1.220
0.500 0.087 0.153 0.142 0.160 0.574 0.306 0.811
0.600 0.086 0.118 0.101 0.124 0.503 0.233 0.675
0.675 0.085 0.115 0.103 0.120 0.463 0.202 0.601
0.750 0.084 0.119 0.082 0.126 0.429 0.181 0.541
0.825 0.084 0.107 0.091 0.115 0.399 0.166 0.491
0.900 0.083 0.089 0.082 0.099 0.375 0.149 0.450
1.000 0.083 0.079 0.065 0.094 0.349 0.138 0.405

Table S10: Comparing estimation performance via total MSEs of the proposed method with various
competing methods under varied levels of signal-to-noise ratios (SNRs).

We make the following observations from the table. First, we notice that the MSEs of remMap
and RRR are both about 10 times as large MSE as the envelope model when the SNR is small.
This is consistent with the observation in Cook et al. (2010) that the envelope model is especially
effective when SNR is small, because its rationale is to use dimension reduction tools to remove
the immaterial information in the data, which amounts to reduce the noise level after the dimension
reduction. In contrast, RRR places rank constraints on the coefficient matrix, which is also performing
dimension reduction but not necessarily lead to removal of immaterial information. Second, we observe
that the proposed BMA estimator has a smaller MSE than the frequentist envelope model across all
SNRs, and especially when SNR level is low, which is consistent with the observation that the Bayes
estimator tends to have smaller MSE than the frequentist estimator. When SNR level grows, their
difference becomes smaller. We also notice that with lower SNR, BMA estimator also has smaller
MSE than the manifold implementation of envelope model in Khare et al. (2017), even though the
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manifold implementation uses the true dimension. This is because it is harder to estimate the envelope
subspace when the signal is weaker, and the manifold implementation may not be able to provide a
stable estimator of the envelope subspace even under the true dimension. BMA is a data-driven
method, which gives more weights to dimensions that fits the data better. It is possible that a slight
overestimate of the dimension guarantees the inclusion of all relevant information in this case. But as
SNR level increases, the manifold implementation starts to show the advantage of knowing the true
dimension, and provide a slightly smaller MSE. However, in real applications, the dimension of the
envelope subspace is unknown.

C.16 Additional Simulation Results IV: Estimation variance ratios associated with
the estimation MSE ratios displayed in Table 2 in the main text

The table below displays the ratios of estimation variances (via posterior mean) of β components
computed from the Bayesian standard regression model to the envelope-based models as discussed in
Section 5.1 of the main text (analogous to the the estimation MSEs presented in the main text).

n Vi,j,Mstd/Vi,j,Mû
Vi,j,Mstd/Mi,j,MBMA Vi,j,Mstd/Vi,j,Mutrue

50 4.91 (2.72, 8.72) 5.05 (2.74, 9.26) 7.77 (3.49, 17.23)
100 6.54 (3.67, 17.34) 6.65 (3.69, 17.76) 7.56 (3.91, 21.93)
200 7.11 (3.47, 16.95) 7.16 (3.49, 16.92) 7.52 (3.58, 18.96)
500 7.62 (3.65, 21.17) 7.67 (3.65, 21.07) 7.86 (3.65, 21.77)

1000 7.67 (3.74, 23.39) 7.67 (3.74, 23.39) 7.67 (3.74, 23.39)

Table S11: Medians (ranges) of the component-wise estimation variance ratios Vi,j,Mstd/Vi,j,Mû
,

Vi,j,Mstd/Mi,j,MBMA , and Vi,j,Mstd/Vi,j,Mutrue
.

C.17 Additional Results from the Real Data Analysis

In this section we compare the statistical significance results obtained from the Bayesian envelope
models discussed on Section 7.2.1 of the main text with a Frequentist RRR model with an optimally
chosen rank d = 12, and the Frequentist envelope model with the same u = 1 as used in the Bayesian
model. At the outset, recall from Figure 2C in the main text that these two frequentist approaches
have cross-validation prediction performance nearly identical to the proposed Bayesian envelope model.
However, our focus here lies in inferring the underlying predictor-response relationship through a
statistical significance analysis performed on the regression coefficients. To quantify “significance” for
the two frequentist approaches we considered B = 1000 residual bootstrap resamples, and computed
95% bootstrap confidence percentile intervals for the coordinates for β from each model. Analogously
to the Bayesian approaches, the “significance” for a coordinate of β in each model was then determined
if the corresponding 95% confidence interval excluded zero. Figure S1 display the resulting significance
results for the two frequentist approaches, alongside analogous results from the Bayesian approaches
as shown in Figure 3 of the main text. We make the following observations from the figure. First,
it appears that the Frequentist RRR model produces a very sporadic significance pattern, somewhat
similar to the full Bayesian model. As noted before this irregularity makes a scientific understanding of
the underlying predictor response relationship very challenging. By contrast, the frequentist envelope
approach produces a much more systematic significance pattern, comparable to the Bayesian envelope
model results. This is unsurprising since both the frequentist and the Bayesian envelope models
share the common likelihood, and the Bayesian approach uses vague proper prior. Second, while
the frequentist envelope model does produce a noticeably regular significance pattern, interestingly,
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the total number of components detected to be significant is much bigger for the frequentist approach
compared to the Bayesian approach. Furthermore, the Frequentist RRR model also appears to identify
more significant coefficients than the Bayesian full model.

Frequentist RRR Frequentist Envelope Model

Bayesian Envelope Model Bayesian Standard Model
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Figure S1: Significance of estimated regression coefficients under the envelope model and the standard
model.

D Various Technical Details and Additional Results on the Bayesian
Predictor Envelope/PLS Model and its Implementation

D.1 Log likelihood, log posterior density, and MCMC sampler for Bayesian pre-
dictor envelope model

Let (X1,Y1), . . . , (Xn,Yn) be n independent observations from the predictor envelope model (10), and
let Y ∈ Rn×r and X ∈ Rn×p be data matrices YT = (Y1, . . . ,Yn) and XT = (X1, . . . ,Xn). Then the
log likelihood under the model (10) L(µX ,µY ,η,ΣY |X ,Ω,Ω0,A) is given as follows.

log L(µX ,µY ,η,ΣY |X ,Ω,Ω0,A) = const. −n
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The associated unnormalized log posterior density is as follows:

log π(µY ,µX ,ΣY |X ,η,Ω,Ω0,A | X,Y)
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Algorithm D.1. One iteration of the Metropolis-within-Gibbs MCMC sampler for updating
{µX ,µY ,ΣY |X ,η,Ω,Ω0,A} when 1 ≤ m ≤ p − 1.

S.1 Generate(
µX

µY

)
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X
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)
,

1
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ηTΩΓT (A) ΣY |X + ηTΩη

))
.

S.2 Generate ΣY |X from IWr(Ψ̃Y , ν̃Y ), where ν̃Y = νY + n + m and Ψ̃Y is

ΨY +(YµY
− XµX

Γ(A)η)T (YµY
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Γ(A)η)+
(
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Y and XµX
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(
M̃−1ΓT (A)ẽ,M̃−1,ΣY |X

)
, where M̃ = M + ΓT (A)XT
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Γ(A)
and ẽ = e + XT
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.

S.4 Generate Ω from IWm

(
Ψ̃X , ν̃X

)
, where ν̃X = νX + n, and Ψ̃X = ΨX +ΓT (A)XT

µX
XµX

Γ(A).

S.5 Generate Ω0 from IWp−m(Ψ̃0,X , ν̃0,X), where ν̃0,X = ν0,X + n, and

Ψ̃0,X = Ψ0,X + ΓT
0 (A)XT

µX
XµX

Γ0(A).

S.6 Generate a Markov chain realization for A from stationary density proportional to exp(h(A)),
where h(A) is the full conditional posterior density of A obtained from (S17) (see (S25)).
Simple Metropolis steps for updating A columnwise are described as follows. Let aj ∈ Rp−m

denote the j-th column of A, j = 1, . . . , m. Given the tuning parameter τ > 0, for j = i1, . . . , im,
where {i1, . . . , im} denotes a random permutation of {1, . . . , m}, do the following:

(a) Generate a∗
j ∼ Np−m(aj , τ2Ip−m). Replace the j-th column of A by a∗

j and call the resulting
matrix A∗. Calculate ρ(A∗,A) = exp [h(A∗) − h(A)].

(b) Perform a Bernoulli experiment with probability of success min[1, ρ(A∗,A)]. If a success is
achieved, update aj to a∗

j ; otherwise retain aj .

Once A is updated, CA, DA and ΣX are updated from (9) and (10).
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Remark D.1. Similar to the MCMC sampler for the response envelope model, Algorithm D.1 can
be easily modified to account for the cases of m = 0 and m = p. The parameter A is not present
in such cases, and hence the Metropolis step S.6 does not arise. In addition, when m = 0, then
η = 0,Γ0(A) = Ir and ΣX = Ω0, and steps S.3 and S.4 are not needed. On the other hand, when
m = p, the model degenerates to the standard linear regression model with Γ(A) = Ir and ΣX = Ω,
and step S.5 is to be skipped.

D.2 Proof of Theorem 4.1 (Posterior Propriety)

The proof is similar to the proof for Theorem 3.1. Our objective is to show the integrability of the
unnormalized posterior density π(µY ,µX ,ΣY |X ,η,Ω,Ω0,A | X,Y) with respect to Lebesgue measure
on Rr × Rp × Sr×r

+ × Rm×r × Sm×m
+ × S(p−m)×(p−m)

+ × R(r−u)×u. From the log posterior distribution
(S17),
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Now,
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and similarly,
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Note that,
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where

Z =
(
X
Y

)
, µZ =

(
µX

µY

)
, and ∆ =

(
Γ(A) ΩΓT (A) + Γ0(A) Ω0 Γ

T
0 (A) Γ(A) Ω η

ηT ΩΓT (A) ΣY |X + ηT Ω η

)
.

Also,

trace
[
Σ−1

Y |X (Yc − XcΓ(A)η)T (Yc − XcΓ(A)η)
]

+ trace
[
Σ−1

Y |X

(
η − M−1ΓT (A)e

)T
M
(
η − M−1ΓT (A)e

)]
= trace

[
Σ−1

Y |X

(
ηTΓT (A)XT

c XcΓ(A)η − 2ηTΓT (A)XT
c Yc + YT

c Yc

)]
+ trace

[
Σ−1

Y |X

(
ηTMη − 2ηTMM−1ΓT (A)e + eTΓ(A)M−1MM−1ΓT (A)e

)]
= trace

[
Σ−1

Y |X

(
ηT
(
M + ΓT (A)XT

c XcΓ
)
η − 2ηTΓT (A)

(
XT

c Yc + e
))]

+ trace
[
Σ−1

Y |X

(
YT

c Yc + eTΓ(A)M−1ΓT (A)e
)]

= trace
[
Σ−1

Y |X

(
η − M̌−1ΓT (A)ě
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)]

= trace
[
Σ−1

Y |X

(
η − M̌−1ΓT (A)ẽ

)T
M̌
(
η − M̌−1ΓT (A)ẽ
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where

M̌ = M + ΓT (A)XT
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and H̃ = YT
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with H̃ positive semi definite (Proposition D.2.1). Therefore from (S18), (S19), (S20), (S21), and
(S22) we get

log f(µY ,µX ,ΣY |X ,η,Ω,Ω0,A | X,Y)
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This completes the proof.
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This, together with the fact that M̌ = ΓT (A)XcXcΓ(A) +M is positive definite (since M is positive
definite by assumption), implies that the Schur complement (of ΓT (A)XcXcΓ(A) + M),

H̃ = YT
c Yc + eTΓ(A)M−1ΓTe − ěTΓM̌−1ΓT (A)ě

is also positive semi-definite. This completes the proof.

D.3 Proof of Theorem 4.2 (Harris Ergodicity)

We note that ϕ-irreducibility and aperiodicity of the Markov chain can be established using similar
arguments as used in the proof of Theorem 3.2. Furthermore, when m = 0 and/or m = p, the algorithm
becomes a (full) Gibbs sampler, which together with ϕ-irreducibility, ensures Harris recurrence. We
therefore only prove Harris recurrence for the case 1 ≤ m ≤ p − 1 by showing that the joint posterior
density π(µX ,µY ,η,ΣY |X ,Ω,Ω0,A |,X,Y) is Lebesgue integrable with respect to any 1 ≤ k ≤ 5+m

elements of the set of parameter blocks {µZ ,η,ΣY |X ,Ω,Ω0,a1, · · · ,am}, where µT
Z = (µT

X ,µT
Y ) and

aj is the j-th column of A. The proof is similar to the proof Harris recurrence in Theorem 3.2. From
(S24), it follows that for an appropriately chosen (finite, due to posterior propriety) constant C0, the
joint posterior density is given by
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ě = XT
c Yc + e

and H̃ = YT
c Yc + eTΓ(A)M−1ΓT (A)e − ěTΓ(A)M̌−1ΓT (A)ě.

It will, therefore, be enough to show that f0 is Lebesgue integrable with respect to any one or more
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It is therefore enough to show that, for ξ, κ = 0, 1, f
(ξ,κ)
2 (ΣY |X ,Ω,Ω0,A | X,Y) is Lebesgue in-

tegrable with respect to any 1 ≤ k ≤ 3 + m elements of the set {ΣY |X ,Ω,Ω0,a1, · · · ,am}. The
proof is completed by noting that for ξ, κ = 0, 1 f

(ξ,κ)
2 is proportional to the product of (indepen-
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MNp−m,m(A0,K,L) densities for ΣY |X ,Ω,Ω0 and A respectively.

D.4 Maximum a Posteriori Estimation for Bayesian Predictor Envelope Model

This section provides an algorithm for MAP estimation for the parameters in the predictor envelope
model. Derivations are provided in Section D.4 of this supplement.

Algorithm D.2. Computation of MAP estimators {µ̂X , µ̂Y , Σ̂Y |X , η̂, Ω̂, Ω̂0, Â} of the predictor
envelope model (10) parameters {µX ,µY ,ΣY |X ,η,Ω,Ω0,A}.
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D.5 Full conditional posterior distributions for the parameter blocks in the pre-
dictor envelope model

1. The joint full conditional density of (µT
X ,µT

Y )T , as obtained from (S17) is given by
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2. The posterior conditional log density of η given the other parameters is given by
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4. Simple calculations yield

Ω | µX ,µY ,η,ΣY |X ,Ω0,A,Y,X ∼ IWm(Ψ̃X , ν̃X)

where

ν̃X = νX + n

and Ψ̃X = ΨX + ΓT (A)XT
µX

XµX
Γ(A).

5. Similarly,
Ω0 | µX ,µY ,η,ΣY |X ,Ω,A,Y,X ∼ IWp−m(Ψ̃0,X , ν̃0,X)

where

ν̃0,X = ν0,X + n

and Ψ̃0,X = Ψ0,X + ΓT
0 (A)XT

µX
XµX

Γ0(A).

6. The posterior conditional log density of A given the other parameters is given by
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Clearly, rejection sampling from this density will be inefficient, and a more reasonable strategy
will be to use a Markov chain simulation technique such as Metropolis Hastings.

D.6 Simulation results for the Predictor Envelope Model

Now we perform a simulation study under the context of the predictor envelope model (10). We set
r = 3, p = 15 and mtrue = 5. The elements of µX,true and µY ,true were sampled independently from
Unif(−10, 10), and the elements of ηtrue and Atrue were drawn independently from Unif(5, 10) and
Unif(0, 5), respectively. The matrices Ωtrue, Ω0,true and ΣY |X,true were simulated independently from
5IWm(m + 2, 500Im), IWp−m(p − m + 2, 0.1Ip−m) and IWr(r + 1, 5Ir). The sample size n was taken
to be 50, 100, 200, 500 and 1000, and 200 datasets were generated for each sample size. On each
dataset, we ran Algorithm D.1 (or its extension) to generate 20,000 MCMC samples (after discarding
a burn-in of 10,000 iterations) from the posterior distribution associated with the Bayesian predictor
envelope model for each m in {0, 1, . . . , p}. Then we computed the approximate posterior probabilities
Pr(m | data). A summary of the u estimation is results is displayed in Table S12. The trend in
Table S12 is similar to that in the response envelope model case.

Now we compare the MSE and the estimation variance. We used the MCMC posterior mean as
the point estimator for the regression coefficient β, and calculated its variance and MSE from the
200 replications in exactly the same way as in Section 7.1. This computation was carried out for
m = mtrue, msel and p. The results are plotted in Figure S2, and a close look at the results for β1,1
is taken in Figure S3. Again the results demonstrate the efficiency gains obtained by the Bayesian
predictor envelope model for all sample sizes. For smaller sample sizes, the envelope estimator with
selected dimension has larger estimation variances and MSEs than the envelope estimator with the
true dimension, but is still more efficient than the standard estimator.
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Figure S2: Comparison on estimation variance and MSE for the Bayesian predictor envelope model
versus the Bayesian standard linear regression model.
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Figure S3: MSE and estimation variances of β1,1 at different sample sizes.
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n 0 ≤ u ≤ 4 u = 5 u = 6 u = 7 u = 8 9 ≤ u ≤ 15

50 0.001 (0.032) 0.580 (0.384) 0.320 (0.362) 0.080 (0.195) 0.014 (0.066) 0.000 (0.003)
100 0.002 (0.038) 0.733 (0.335) 0.205 (0.293) 0.049 (0.124) 0.004 (0.049) 0.000 (0.000)
200 0.000 (0.000) 0.815 (0.288) 0.163 (0.264) 0.023 (0.104) 0.000 (0.000) 0.000 (0.000)
500 0.000 (0.000) 0.920 (0.184) 0.079 (0.184) 0.001 (0.002) 0.000 (0.000) 0.000 (0.000)

1000 0.000 (0.000) 0.916 (0.196) 0.084 (0.196) 0.000 (0.001) 0.000 (0.000) 0.000 (0.000)

Table S12: approximate posterior probabilities of envelope dimension.

E Various Technical Details and Additional Results on the Bayesian
Envelope Probit Model and its Implementation

E.1 Log likelihood, log posterior density, and MCMC sampler for Bayesian enve-
lope probit model

Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. samples from the model (11); then the log-likelihood of the model
parameters is given by
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(S26)

Under the Bayesian envelope probit model, the log posterior density associated with the prior
distributions and the log likelihood (S26) is given by
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(S27)

Let UT = (U1, . . . , Un) be the vector of augmented data. Then the joint posterior density of the
parameters {µY ,µX ,η,Ω,Ω0,A} and the latent data U is given by
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Algorithm E.1. One iteration of a data augmentation Metropolis-within-Gibbs MCMC sampler for
updating {µX , µY ,η,Ω,Ω0,A} when 1 ≤ m ≤ p − 1. .
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X , µY )T from Np+1

(
α̃Z , Ξ̃Z

)
, where Ξ̃Z =

(
n∆−1

Z + Ξ−1
Z

)−1
,

α̃Z = Ξ̃Z

(
n∆−1

Z Z + Ξ−1
Z αZ

)
and

Z =
(
X
U

)
, ∆Z =

(
Γ(A)ΩΓT (A) + Γ0(A)Ω0Γ

T
0 (A) Γ(A)Ωη

ηTΩΓT (A) 1 + ηTΩη

)
,

where U = 1T
nU/n. Define UµY = U − µY 1n.

S.3 Generate η from Nm

(
M̃−1ΓT (A)ẽ,M̃−1

)
, where M̃ = M + ΓT (A)XT

µX
XµX

Γ(A) and ẽ =
e + XT

µX
UµY .

S.4 Generate Ω from IWm

(
Ψ̃X , ν̃X

)
, where ν̃X = νX + n, and Ψ̃X = ΨX +ΓT (A)XT

µX
XµX

Γ(A).

S.5 Generate Ω0 from IWp−m(Ψ̃0,X , ν̃0,X) where ν̃0,X = ν0,X+n and Ψ̃0,X = Ψ0,X+ΓT
0 (A)XT

µX
XµX

Γ0(A).

S.6 Generate Markov chain realizations for A from stationary density proportional to exp(h̃(A)),
where h̃(A) is the full conditional posterior density of A obtained from (S28).
Simple Metropolis steps to update A columnwise are described as follows. Let aj ∈ Rp−m denote
the j-th column of A, j = 1, . . . , m. Given the tuning parameter τ > 0, for j = i1, . . . , im, where
{i1, . . . , im} denotes a random permutation of {1, . . . , m}, do the following:

(a) Generate a∗
j ∼ Np−m(aj , τ2Ip−m). Replace the j-th column of A by a∗

j and call the resulting
matrix A∗. Calculate ρ(A∗,A) = exp

[
h̃(A∗) − h̃(A)

]
.

(b) Perform a Bernoulli experiment with probability of success min[1, ρ(A∗,A)]. If a success is
achieved, update aj to a∗

j ; otherwise retain aj .

Once A has been updated, update CA, DA and ΣX by (9) and (11).

Remark E.1. Similar to the response and predictor envelope models, modifications of Algorithm D.1
to account for the cases m = 0 and m = p are straightforward. The Metropolis step S.6 is not
needed as the parameter A is not present in the model in both cases. In addition, when m = 0, then
η = 0,Γ0(A) = Ir and ΣX = Ω0, and steps S.3 and S.4 are not needed. On the other hand, when
m = p, the model degenerates to the standard Bayesian probit regression model with Γ(A) = Ir and
ΣX = Ω, and step S.5 is to be skipped.
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E.2 Maximum a Posteriori Estimation under the Envelope probit model

This section proposes an expectation conditional maximization (ECM, Meng and Rubin, 1993) algo-
rithm for finding the posterior mode of the envelope probit model (11) by exploiting the latent data
structure and the full conditional distributions.

Algorithm E.2. Computation of the MAP estimators {µ̂X , µ̂Y , η̂, Ω̂, Ω̂0, Â} for the parameters of
the envelope probit model (11).

S.1 E Step: Impute the latent variables

Ũi =


µ̂i + ϕ(µ̂i)

1 − Φ(−µ̂i)
if Yi = 1,

µ̂i − ϕ(µ̂i)
Φ(−µ̂i)

if Yi = 0,

where ϕ(·) denote the standard normal density, and

µ̂i = µ̂Y + η̂TΓT (Â)(Xi − µ̂X), for i = 1, . . . , n.

S.2 CM Steps: Based on the imputed data Ũ = (Ũ1, . . . , Ũn)T obtained from the E step, do the
following

S.2.1 Compute µ̂Z = (µ̂T
X , µ̂Y )T = α̃Z where α̃Z = Ξ̃Z

(
n∆−1

Z Z + Ξ−1
Z αZ

)
with Ξ̃Z =(

n∆−1
Z + Ξ−1

Z

)−1
, and Z

T = (XT
, U), with U = 1T

nU/n. Define Ũµ̂Y
= Ũ − µ̂Y 1n and

X̃µ̂X
= X − 1nµ̂

T
X .

S.2.2 Define η̂ = M̃−1ΓT (Â)ẽ, where M̃ = M + ΓT (Â)X̃T
µ̂X

X̃µ̂X
Γ(Â) and ẽ = e + X̃T

µ̂X
UµY .

S.2.3 Compute Ω̂ = Ψ̃X/ν̃X and Ω̂0 = Ψ̃0,X/ν̃0,X where ν̃X = νX + n, ν̃0,X = ν0,X + n,
Ψ̃X = ΨX + ΓT (Â)X̃T

µ̂X
X̃µ̂X

Γ(Â) and Ψ̃0,X = Ψ0,X + ΓT
0 (Â)X̃T

µ̂X
X̃µ̂X

Γ0(Â).

S.2.4 Maximize the full conditional (log) density of A given µ̂X , µ̂Y , η̂, Ω̂, and Ω̂0, and call the
maximizer Â.

E.3 Proof of Theorem 5.1

Using arguments similar to the ones used in the proof of Theorem 3.2, ϕ-irreducibility and aperiodicity
of the Markov chain can be established. Moreover, if m = 0 or m = p, the algorithm becomes a Gibbs
sampler, which, coupled with ϕ-irreducibility, ensures Harris recurrence. In order to prove Harris
recurrence when 1 ≤ m ≤ p − 1, we show that the joint density π(µZ ,η,Ω,Ω0,a1, · · · ,am,U | X,Y)
as provided in (S28) is Lebesgue integrable with respect to any 1 ≤ k ≤ 5 + m elements from the
set {µZ ,η,Ω,Ω0,a1, · · · ,am,U}, where µT

Z = (µT
X , µY ) and aj denote the jth column of A. From

(S28), it follows that for an appropriate (finite, due to posterior propriety) constant C0,

π(µY ,µX ,η,Ω,Ω0,A,U | X,Y)

= C0 exp
{

−1
2
[
(U − 1nµY − XµX

Γ(A)η)T (U − 1nµY − XµX
Γ(A)η)

]}
× |Ω|−n/2|Ω0|−n/2 exp

{
−1

2 trace
[
XµX

(
ΓΩ−1 ΓT (A) + Γ0 Ω

−1
0 ΓT

0 (A)
)
XT
µX

]}
× exp

{
−1

2(µY − αY )2/ΞY − 1
2 (µX − αX)T Ξ−1

X (µX − αX)
}
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× exp
{

−1
2M

(
η − M−1ΓT (A)e

)T
M
(
η − M−1ΓT (A)e

)}
× |Ω|−(νX+m+1)/2 exp

{
−1

2 trace
(
Ω−1ΨX

)}
× |Ω0|−(ν0,X+(p−m)+1)/2 exp

{
−1

2 trace
(
Ω−1

0 Ψ0,X

)}
× exp

{
−1

2 trace
[
K−1(A − A0)L−1(A − A0)T

]}
×

n∏
i=1

1{Ui ≥ 0}Yi1{Ui < 0}1−Yi

≤C0 exp
{

−1
2
[
(U − 1nµY − XµX

Γ(A)η)T (U − 1nµY − XµX
Γ(A)η)

]}
× exp

{
−1

2 trace
[
XµX

(
Γ(A) Ω−1 ΓT (A) + Γ0(A) Ω−1

0 ΓT
0 (A)

)
XT
µX

]}
× exp

{
−1

2(µY − αY )2/ΞY − 1
2 (µX − αX)T Ξ−1

X (µX − αX)
}

× exp
{

−1
2
(
η − M−1ΓT (A)e

)T
M
(
η − M−1ΓT (A)e

)}
× |Ω|−(νX+m+n+1)/2 exp

{
−1

2 trace
(
Ω−1ΨX

)}
× |Ω0|−(ν0,X+(p−m)+n+1)/2 exp

{
−1

2 trace
(
Ω−1

0 Ψ0,X

)}
× exp

{
−1

2 trace
[
K−1(A − A0)L−1(A − A0)T

]}
=: f0(µY ,µX ,η,Ω,Ω0,A,U | X,Y), say,

and it will be enough to show that f0 is integrable with respect to one or more parameter (and latent
data) blocks. Now for any U ∈ Rn

exp
{

−1
2
[
(U − 1nµY − XµX

Γ(A)η)T (U − 1nµY − XµX
Γ(A)η)

]}
≤ 1,

and ∫
exp

{
−1

2
[
(U − 1nµY − XµX

Γ(A)η)T (U − 1nµY − XµX
Γ(A)η)

]}
dU = (2π)n/2.

Therefore,
f0(µY ,µX ,η,Ω,Ω0,A,U | X,Y) ≤ f

(0)
1 (µY ,µX ,η,Ω,Ω0,A | X,Y)

for all U ∈ Rn, and∫
f0(µY ,µX ,η,Ω,Ω0,A,U | X,Y) dU = f

(1)
1 (µY ,µX ,η,Ω,Ω0,A | X,Y),

where

f
(ξ)
1 (µY ,µX ,η,Ω,Ω0,A | X,Y)

= (2π)ξn/2C0 exp
{

−1
2(µY − αY )2/ΞY − 1

2 (µX − αX)T Ξ−1
X (µX − αX)

}
× exp

{
−1

2
(
η − M−1ΓT (A)e

)T
M
(
η − M−1ΓT (A)e

)}
× |Ω|−(νX+n+m+1)/2 exp

{
−1

2 trace
(
Ω−1ΨX

)}
× |Ω0|−(ν0,X+n+(p−m)+1)/2 exp

{
−1

2 trace
(
Ω−1

0 Ψ0,X

)}
× exp

{
−1

2 trace
[
K−1(A − A0)L−1(A − A0)T

]}
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for ξ = 0, 1. Furthermore, for all η ∈ Rm

exp
{

−1
2
(
η − M−1ΓT (A)e

)T
M
(
η − M−1ΓT (A)e

)}
≤ 1

and ∫
exp

{
−1

2
(
η − M−1ΓT (A)e

)T
M
(
η − M−1ΓT (A)e

)}
dη = (2π)m/2|M |1/2,

which implies that

f
(ξ)
1 (µY ,µX ,η,Ω,Ω0,A | X,Y) ≤ f

(ξ,0)
2 (µY ,µX ,Ω,Ω0,A | X,Y)

for all η ∈ Rm, and∫
f

(ξ)
1 (µY ,µX ,η,Ω,Ω0,A | X,Y) dη = f

(ξ,1)
2 (µY ,µX ,Ω,Ω0,A | X,Y)

where

f
(ξ,κ)
2 (µY ,µX ,Ω,Ω0,A | X,Y)

= (2π)(ξn+κm)/2|M |κ/2C0 exp
{

−1
2(µY − αY )2/ΞY − 1

2 (µX − αX)T Ξ−1
X (µX − αX)

}
× |Ω|−(νX+n+m+1)/2 exp

{
−1

2 trace
(
Ω−1ΨX

)}
× |Ω0|−(ν0,X+n+(p−m)+1)/2 exp

{
−1

2 trace
(
Ω−1

0 Ψ0,X

)}
× exp

{
−1

2 trace
[
K−1(A − A0)L−1(A − A0)T

]}

for κ = 0, 1. Thus, it is enough to show that for ξ, κ = 0, 1, f
(ξ,κ)
2 (µY ,µX ,Ω,Ω0,A | X,Y) is Lebesgue

integrable with respect to any 1 ≤ k ≤ 3 + m elements of {µZ ,Ω,Ω0,a1, · · · ,am}. The proof is
completed by noting that for ξ, κ = 0, 1, f

(ξ,κ)
2 is the proportional to the product of independent

Np(αX ,ΞX), N(α, ΞY ), IWm(ΨX , νX + n), IWp−m(ΨX , νX + n) and MNp−m,m(A0,K,L) densities
for µX , µY ,Ω,Ω0 and A respectively.

E.4 Additional simulation results for the Bayesian Envelope Probit Model

In this section, we investigate the Bayesian envelope probit model (11). We generated data from
model (11) with p = 10 and mtrue = 2. We took µX,true = 0, µY,true = 1, ηtrue = (1, 1)T and
Ωtrue = I2. The matrix Ω0,true was a diagonal matrix with diagonal elements 0.002 + 0.014k, for
k = 0, 1, . . . , 7. The elements of Atrue were independent Unif(0, 5) variates, and the sample size was
taken to be 50, 100, 200, 500 and 1000. We generated 200 datasets for each sample size. On each
dataset, we ran Algorithm E.1 (or its extension) to generate 10,000 MCMC samples (after discarding
a burn-in of 40,000 iterations) from the posterior distribution associated with the Bayesian envelope
probit model for m = 2 and m = 10 (full or standard model). We obtained the Bayes point estimator
by taking the MCMC posterior mean for each model. The estimation variances and MSE’s for the
estimators of β are plotted side by side in Figure S4. A more detailed picture for β1, the first element
of β ∈ Rp, is shown in Figure S5. Both figures display noticeable efficiency gains obtained by the
envelope probit model. In Figure S5, it appears that the line for the envelope probit model and the
line for the standard model almost overlap with each other when the sample size is large. However,
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Figure S4: Comparison on estimation variance and MSE for the Bayesian envelope probit model versus
the Bayesian probit model.
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Figure S5: MSE and estimation variances of β1 at different sample sizes.
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they are actually different, as is indicated in Figure S4. This is because when the sample size is
small, the standard probit model has very large estimation variance and MSE. This happens when
m = p or m is close to p. In such cases, the log-likelihood is sometimes infinite, which invalidates the
approxiamte BIC-based Pr(m | data) computation. Therefore we omitted the dimension estimation
results in the current settings.
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