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MODELS”
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A. REJECTION SAMPLING PROCEDURE TO SAMPLE FROM GB2,2(A,B)
DISTRIBUTION

Suppose that the matrix Z has a GB2,2(A,B) distribution. As Z is an orthogonal matrix, it
can be written in the form

Z =

[
cos(θ∗) s sin(θ∗)
sin(θ∗) −s cos(θ∗)

]
where θ∗ ∈ [−π, π) and s ∈ {+1,−1}. Using transformations, it can be easily shown that
θ∗ and s are independent, P (s = 1) = P (s = −1) = 1/2, and the marginal density of θ∗ is
proportional to

h1(θ∗) = e−(A11+B22)cos2(θ∗)−(A22+B11)sin2(θ∗)−(A12+A21−B12−B21)sin(θ∗) cos(θ∗)

for every θ∗ ∈ [−π, π). Let us consider a transformation θ∗ → (θ, s1) defined by

θ =


θ∗ if − π

2 ≤ θ
∗ < π

2 ,

θ∗ + π if − π ≤ θ∗ < −π
2 ,

θ∗ − π if π
2 ≤ θ

∗ < π,

and

s1 =

{
1 if − π

2 ≤ θ
∗ ≤ π

2 ,

−1 otherwise.

Using the fact that h1(θ∗) = h1(θ∗ − π) if 0 ≤ θ∗ ≤ π/2, and h1(θ∗) = h1(θ∗ + π) if −π/2 ≤
θ∗ ≤ 0, it can be easily shown that θ and s1 are independent, P (s1 = 1) = P (s1 = −1) = 1/2,
and the marginal density of θ is proportional to

e−(A11+B22)cos2(θ)−(A22+B11)sin2(θ)−(A12+A21−B12−B21)sin(θ) cos(θ)

for every θ ∈ [−π/2, π/2). Now, consider transformation θ → ω defined by

ω =

{
cos(θ) if 0 ≤ θ < π

2 ,

−cos(θ) if − π
2 ≤ θ < 0.
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The Jacobian of this transformation is given by 1√
1−ω2

. Hence the density of ω is proportional
to

h(ω) =
1√

1− ω2
eaω

2+b
√
ω2(1−ω2)I[ω≥0] +

1√
1− ω2

eaω
2−b
√
ω2(1−ω2)I[ω<0],

where a := (A22 + B11 −A11 −B22) and b := (B12 + B21 −A12 −A21). Note that if Z ∼
GB2,2(A,B), then Z̃ ∼ GB2,2(B,A), where Z̃ is obtained from Z by switching its two
columns. Hence, without loss of generality, we can assume a ≤ 0. We now consider the
following cases to obtain an upper bound for h(ω).

• a < 0 and b < 0: Using the inequality e−x ≤ 0.573
x0.223

on [0, 1], we get

h(ω) ≤ β2

(ab)γ
(
ω2
)− 3

2
γ (

1− ω2
)− γ+1

2 I[ω≥0] +
βe
|b|
2

|a|γ
(
ω2
)−γ (

1− ω2
)− 1

2 I[ω<0].

• a < 0 and b > 0: In this case we get

h(ω) ≤ βe
b
2

|a|γ
(
ω2
)−γ (

1− ω2
)− 1

2 I[ω≥0] +
β2

|ab|γ
(
ω2
)− 3

2
γ (

1− ω2
)− γ+1

2 I[ω<0]

Hence ω can be sampled using a rejection sampler with a proposal distribution that is a
mixture of the square root of a Beta distribution and the negative square root of another
Beta distribution. Hence, based on the above arguments, a sample of the matrix Z from the
GB2,2(A,B) distribution can be obtained as follows.

• Generate s and s1 independently, both taking values from {−1, 1} with equal probabil-
ity.

• Generate ω from the rejection sampler presented above.
• If ω > 0,

Z = s1

[
ω s

√
1− ω2

√
1− ω2 −s ω

]
• If ω < 0,

Z = s1

[
ω −s

√
1− ω2

−
√

1− ω2 −s ω

]
.

In practice, we have observed, that for some values of a, b the rejection sampler can be
quite inefficient. In such cases we directly sample θ by using a discrete approximation of the
distribution of θ over the range [−π, π).

B. A PROCEDURE TO GET THE EMPIRICAL PRIOR

Let Σ̂Y be the sample covariance matrix Y, Σ̂res be the sample covariance matrix of the
residuals from the OLS fit of Y on X, and β̂ols be the OLS estimator of β. Following [14],
for a given u, define the objective function as

fobj(H) = log |HT Σ̂resH|+ log |HT Σ̂
−1

Y H|,
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SUPPLEMENT TO BAYESIAN ENVELOPE 3

where H is r × u semi-orthogonal matrix. Notice that fobj(H) depends on H only through
its span. By [5], the envelope subspace is spanned by the eigenspace of Σ in population.
Therefore, we go through all Cru (r choose u) combinations of u eigenvectors of Σ to find the
combination that minimizes fobj , and we collect the u eigenvectors in this combination as

the columns of Γ̃. Other eigenvectors form columns of Γ̃0. If the number Cru is too large, we
start with a random combination, and sequentially update each element in it by searching
through the remaining eigenvectors. Repeat the sequential search several times. After we

have (Γ̃, Γ̃0), Ω̃ = Γ̃
T
Σ̂resΓ̃ and Ω̃0 = Γ̃

T

0 Σ̂YΓ̃0. If Ω̃ and Ω̃0 are not diagonal matrices, we
perform a spectral decomposition to both matrices Ω̃ = TΛTT and Ω̃0 = T0Λ0T

T
0 , where

Λ and Λ0 are diagonal matrices with the diagonal elements arranged in decreasing order.
Then Γ∗ = Γ̃T, Γ∗0 = Γ̃0T0, ω∗ are diagonal elements in Λ, ω∗0 are diagonal elements in

Λ0 and η∗ = Γ∗T β̂ols. Now, ((η∗, (Γ∗,Γ∗0),ω∗,ω∗0) can be used to obtain the empirical prior

as described in Section 3.1. For the case n < r, the matrix Σ̂Y is computationally singular.
Hence, fobj(H) is not well-defined. To deal with this situation, we use another method to get

Γ̃. Let v1, . . ., vr be eigenvectors of Σ̂Y, then the columns of Γ̃ are the u eigenvectors that
maximize the norm of vTi β̂ols. Having Γ̃, ((η∗, (Γ∗,Γ∗0),ω∗,ω∗0) can be obtained in the same
way as above.

C. SAMPLING FROM THE POSTERIOR DENSITY

C.1. Simulating from the full conditional posterior density of µ. It follows by
(11) and (12) (see proof of Theorem 1 in Section 5.2) that the conditional posterior density
of µ given ((Γ,Γ0),η,ω,ω0) is

π(µ | η, (Γ,Γ0),ω,ω0,Y) ∝ e−
1
2

tr{n(µ−Ȳ)T (ΓΩΓT+Γ0Ω0ΓT0 )−1(µ−Ȳ)},

which is a multivariate normal distribution Nr(Ȳ,Σ/n), recall that Σ = ΓΩΓT + Γ0Ω0Γ
T
0 .

Therefore we can simulate from the posterior distribution of µ by making a draw from this
multivariate normal distribution.

C.2. Simulating from the full conditional posterior density of η. Firstly, note
that from (11) and (13) (see proof of Theorem 1 in Section 5.2) the full conditional posterior
density of η given ((Γ,Γ0),ω,ω0) is given by

(C.1) π (η | (Γ,Γ0),ω,ω0,Y) ∝ e−
1
2

tr(Ω−1(η−ΓT ẽ)(XTX+C)(η−ΓT ẽ)T ),

where ẽ = (YTc X + eC)(XTX + C)−1. It follows from (C.1) that we can simulate from the
full conditional posterior distribution of η given ((Γ,Γ0),ω,ω0) by making a draw from the
MNu,p

(
ΓT ẽ,Ω, (XTX + C)−1

)
distribution.

C.3. Simulating from the posterior density of ((Γ,Γ0), ω, ω0). We now focus
on simulating from the posterior density of ((Γ,Γ0),ω,ω0). It follows from (14) (see proof of
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Theorem 1 in Section 5.2) that the posterior density of ((Γ,Γ0),ω,ω0) is given by

π ((Γ,Γ0),ω,ω0 | Y) ∝ n
r
2 |Ω|−

n−1
2 |Ω0|−

n−1
2 |(XTX + C)|−

u
2

(
√

2π)r(n−1)−up
e−

1
2

tr(Ω−1ΓT G̃Γ)

e−
1
2

tr(Ω−1
0 ΓT0 (YTc Yc)Γ0)

u∏
i=1

ω−α−1
i e

− λ
ωi

r−u∏
i=1

ω−α0−1
0,i e

− λ0
ω0,i

e−
1
2

tr(D−1OTGO),(C.2)

where G̃ = YTc Yc + eCeT − ẽ(XTX + C)ẽT . Although it is not possible to directly simulate
from this density, we will derive a Gibbs sampling based procedure to generate approximate
samples from this density. To achieve this objective, we need to derive various conditional
densities associated with the density in (C.2).

Note that the entries of ω and ω0 are arranged in decreasing order. Let 1 ≤ i ≤ u be
arbitrarily fixed. Let ω−i denote the u− 1 dimensional vector obtained by removing the ith

entry of ω. It follows from (16), (17) (see proof of Theorem 1) and (C.2) that the conditional
posterior density of ωi given (Γ,Γ0),ω−i,ω0 is given by

(C.3) π
(
ωi | (Γ,Γ0),ω−i,ω0,Y

)
∝ ω−

n+2α+1
2

i e
−

(ΓT G̃Γ)
ii
+2λ

2ωi 1ωi∈(ωi+1,ωi−1).

Here ω0 = ∞, ωu+1 = 0 and
(
ΓT G̃Γ

)
ii

is the ith diagonal element of the matrix ΓT G̃Γ. It

follows from (C.3) that we can simulate from the conditional posterior density of ωi given
(Γ,Γ0),ω−i,ω0 by making a draw from the

truncated-Inverse-Gamma

n+ 2α− 1

2
,

(
ΓT G̃Γ

)
ii

+ 2λ

2
, ωi+1, ωi−1


distribution.

Let 1 ≤ i ≤ r − u be arbitrarily fixed. Let ω−i0 denote the r − u − 1 dimensional vector
obtained by removing the ith entry of ω0. It follows from (16), (18) (see proof of Theorem 1)
and (C.2) that the conditional posterior density of ω0,i given (Γ,Γ0),ω,ω−i0 is given by

(C.4) π
(
ω0,i | (Γ,Γ0),ω,ω−i0 ,Y

)
∝ ω−

n+2α0+1
2

0,i e
−

(ΓT0 (YTc Yc)Γ0)ii+2λ0

2ω0,i 1ω0,i∈(ω0,i+1,ω0,i−1)

Here ω0,0 = ∞, ω0,r−u+1 = 0 and
(
ΓT0 (YTc Yc)Γ0

)
ii

is the ith diagonal element of the ma-

trix ΓT0 (YTc Yc)Γ0. It follows from (C.4) that we can simulate from the conditional posterior
density of ω0,i given (Γ,Γ0),ω,ω−i0 by making a draw from the truncated-Inverse-Gamma(
n+2α0−1

2 ,
(ΓT0 (YTc Yc)Γ0)ii+2λ0

2 , ω0,i+1, ω0,i−1

)
distribution.

Let O·i and O·j denote the ith and jth columns of the matrix O = [Γ : Γ0] respectively,
where 1 ≤ i < j ≤ r. Let O−(i,j) denote the matrix obtained by removing the ith and jth

columns of O.
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SUPPLEMENT TO BAYESIAN ENVELOPE 5

• Case 1: If 1 ≤ i ≤ u and u + 1 ≤ j ≤ r, it follows from (C.2) that the conditional
posterior density (on the space S+

r,2) of [O·i : O·j ] given (ω,ω0,O
−(i,j)) is proportional

to

(C.5) e
− 1

2
O·i

T
(

G̃
ωi

+ G
Dii

)
O·i− 1

2
O·j

T

(
YTc Yc
ω0,j−u

+ G
Djj

)
O·j

1[O·i : O·j ]TO−(i,j)=0.

Note that the above density is invariant under arbitrary changes to the signs of the
columns of the matrix [O·i : O·j ]. Hence, if we simulate from the density (on the space
Sr,2) which is proportional to

(C.6) e
− 1

2
O·i

T
(

G̃
ωi

+ G
Dii

)
O·i− 1

2
O·j

T

(
YTc Yc
ω0,j−u

+ G
Djj

)
O·j

1[O·i : O·j ]TO−(i,j)=0,

and then change the signs of the simulated matrix to ensure that the maximum entry
(in absolute value ) in each column is positive, the resulting matrix will correspond to
a simulation from the density in (C.5). Let N ∈ Sr,2 be such that NTO−(i,j) = 0. Let
Z = [Z1 : Z2] be a random matrix (on the space S2,2) with density proportional to

(C.7) e
− 1

2
ZT1 NT

(
G̃
ωi

+ G
Dii

)
NZ1− 1

2
ZT2 NT

(
YTc Yc
ω0,j−u

+ G
Djj

)
NZ2

.

It follows that the density of NZ (on the space Sr,2) is given by (C.6). Hence, we can
simulate from the conditional posterior density of [O·i : O·j ] given (ω,ω0,O

−(i,j)) by
simulating from the

GB2,2

(
1

2
NT

(
G̃

ωi
+

G

Dii

)
N,

1

2
NT

(
YTc Yc
ω0,j−u

+
G

Djj

)
N

)

distribution, multiplying the resulting matrix by N, and then changing the signs of the
columns so that the maximum entry (in absolute value) in each column is positive.

• Case 2: If 1 ≤ i < j ≤ u it follows from (C.2) that the conditional posterior density
(on the space S+

r,2) of [O·i : O·j ] given (ω,ω0,O
−(i,j)) is proportional to

(C.8) e
− 1

2
O·i

T
(

G̃
ωi

+ G
Dii

)
O·i− 1

2
O·j

T

(
G̃
ωj

+ G
Djj

)
O·j

1[O·i : O·j ]TO−(i,j)=0

By a similar analysis as in the previous case, we can simulate from the conditional
posterior density of [O·i : O·j ] given (ω,ω0,O

−(i,j)) by simulating from the

GB2,2

(
1

2
NT

(
G̃

ωi
+

G

Dii

)
N,

1

2
NT

(
G̃

ωj
+

G

Djj

)
N

)

distribution, multiplying the resulting matrix by N, and then changing the signs of the
columns so that the maximum entry (in absolute value) in each column is positive.
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• Case 3: If u+1 ≤ i < j ≤ r, it follows from (C.2) that the conditional posterior density
(on the space S+

r,2) of [O·i : O·j ] given (ω,ω0,O
−(i,j)) is proportional to

(C.9) e
− 1

2
O·i

T

(
YTc Yc
ω0,i−u

+ G
Dii

)
O·i− 1

2
O·j

T

(
YTc Yc
ω0,j−u

+ G
Djj

)
O·j

1[O·i : O·j ]TO−(i,j)=0

By a similar analysis as in the previous case, we can simulate from the conditional
posterior density of [O·i : O·j ] given (ω,ω0,O

−(i,j)) by simulating from the

GB2,2

(
1

2
NT

(
YTc Yc
ω0,i−u

+
G

Dii

)
N,

1

2
NT

(
YTc Yc
ω0,j−u

+
G

Djj

)
N

)
distribution, multiplying the resulting matrix by N, and then changing the signs of the
columns so that the maximum entry (in absolute value) in each column is positive.

Using this analysis we now specify a systematic scan Gibbs sampling procedure to generate
approximate samples from the posterior density of ((Γ,Γ0),ω,ω0) (specified in (C.2)). We
start at a given initial value of the parameters, and repeat the following steps.

• For i = 1, 2, · · · , u, update ωi by sampling from the conditional density in (C.3).
• For i = 1, 2, · · · , r − u, update ω0,i by sampling from the conditional density in (C.4).
• For every pair (i, j) such that 1 ≤ i < j ≤ r, depending on where i and j lie, update

O·i and O·j by sampling from the conditional density in (C.5), (C.8) or (C.9).

Alternatively, one can also use a random scan version of the Gibbs sampler as follows.
For every iteration, the first two steps in the algorithm above are the same. However, at
the final step, we randomly choose a pair (i, j), and updates the ith and jth columns of
O = [Γ : Γ0] by sampling from the appropriate conditional distribution. It follows easily
that the Markov chains corresponding to both the random scan and systematic scan Gibbs
samplers described above have the density in (C.2) as a stationary density. Theorem 2 shows
that both the random scan and the systematic scan versions of the Gibbs sampler for the
generalized matrix Bingham distribtuion are in fact Harris ergodic. This provides theoretical
guarantee that the Gibbs sampling algorithms provide approximate samples from the density
in (C.2).

D. ITERATIVE ALGORITHM FOR COMPUTING POSTERIOR MODE

In this section, we provide a method to compute the posterior mode. Note that to obtain the
posterior mode, we need to maximize the function

l = log{π((µ,η, (Γ,Γ0),ω,ω0) | Y}.

Since X is centered, it follows from (11) that irrespective of the values of the other parameters,
l is maximized at µ̂ = Ȳ. Substitute µ = Ȳ in l, and denoting the resulting partially
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SUPPLEMENT TO BAYESIAN ENVELOPE 7

maximized version of l by l1, we get

l1 = constant− n

2
log |Ω| − n

2
log |Ω0| −

1

2
tr{(Yc − XηTΓT )(ΓΩΓT + Γ0Ω0Γ

T
0 )−1(Yc − XηTΓT )T }

−1

2
tr{Ω−1(η − ΓTe)C(η − ΓTe)T } − 1

2
tr(D−1OTGO)

−(α+ 1) log |Ω| − (α0 + 1) log |Ω0| − tr(λΩ−1)− tr(λ0Ω
−1
0 )

= constant− n+ 2α+ 2

2
log |Ω| − n+ 2α0 + 2

2
log |Ω0| − tr(λΩ−1)− tr(λ0Ω

−1
0 )

−1

2
tr{(YcΓ− XηT )Ω−1(YcΓ− XηT )T } − 1

2
tr(YcΓ0Ω

−1
0 ΓT0 YTc )

−1

2
tr{Ω−1(η − ΓTe)C(η − ΓTe)T } − 1

2
tr(D−1OTGO).

Note that
∂l

∂η
= −Ω−1(ηXT − ΓTYTc )X−Ω−1(η − ΓTe)C.

Let η̂ = ΓT (YTc X + eC)(XTX + C)−1. Also, if

A = (YcΓ− Xη̂T )T (YcΓ− Xη̂T ) + (η̂ − ΓTe)C(η̂ − ΓTe)T + 2λIu

= ΓT
{

[Yc − X(XTX + C)−1(YTc X + eC)T ]T [Yc − X(XTX + C)−1(YTc X + eC)T ]

+[(YTc X + eC)(XTX + C)−1 − e]C[(YTc X + eC)(XTX + C)−1 − e]T + 2λIr

}
Γ

and

B = ΓT0 YTc YcΓ0 + 2λ0Ir−u

= ΓT0 (YTc Yc + 2λ0Ir)Γ0,

then
∂l

∂ωi
= −n+ 2α+ 2

2

1

ωi
+

1

2

(A)ii
ω2
i

,

and
∂l

∂ω0,i
= −n+ 2α0 + 2

2

1

ω0,i
+

1

2

(B)ii
ω2

0,i

.

It follows that given O = [Γ : Γ0], the expression l1 is maximized at η̂ = ΓT (YTc X +
eC)(XTX+C)−1, ω̂0,ii = (B)ii/(n+2α0 +2), for i = 1, . . . , r−u, and ω̂ii = (A)ii/(n+2α+2),
for i = 1, . . . , u. Here we did not consider the fact that the ωi’s and ω0,ii’s have to be in
decreasing order. However, note that l1 is invariant to permuting the entries of ω and ω0

(given that the same permutation is applied to the columns of Γ and Γ0). Hence, we can
simply order the ω̂ii’s and ω̂′0,iis, and then permute the columns of Γ and Γ0 accordingly. By
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substituting the maximas for η,ω,ω0 in l1, and denoting the resulting partially maximized
version by l2, we get

l2 = constant−n+ 2α+ 2

2

u∑
i=1

log
(A)ii

n+ 2α+ 2
−n+ 2α0 + 2

2

r−u∑
i=1

log
(B)ii

n+ 2α0 + 2
−1

2
tr(D−1OTGO).

Note that l2 is a function of (Γ,Γ0). The optimization with respect to (Γ,Γ0) can be per-
formed using MATLAB toolbox sg min 2.4.3 by Lippert (http://web.mit.edu/~ripper/
www/sgmin.html).

E. DISCRETIZATION APPROACH FOR TRUNCATED INVERSE-GAMMA

Suppose X ∼ Inverse-Gamma (α, λ, L, U) where U > L ≥ 0. One can use a rejection sampling
based approach or use the R package “distr ” to sample from this distribution. However, none
of the above mentioned methods work well when the Inverse-Gamma(α, λ, 0,∞) distribution
assigns a very small probability to the interval (L,U). To overcome this problem, we sample
from a discretized version of the Inverse-Gamma(α, λ, L, U) distribution. But this discretiza-
tion method is valid only when (L,U) is a finite interval, i.e. U < ∞. To deal with the case
U = ∞, we sample from a discretized version of the Inverse-Gamma(a, λ, L,∞) distribu-

tion restricted to the finite interval [L, δL] where δ = e
{

(1 + e)1−ε
ε

} 1
α for any appropriately

small ε ∈ (0, 1
2). The following lemma justifies the truncation by δL. Note that, for the case

U =∞, this discretization approach is required only when L is greater than λ
1+α , the mode

of a Inverse-Gamma(α, λ, 0,∞) distribution.

Lemma 1 Let X ∼ Inverse-Gamma (α, λ, L,∞) where L > λ
1+α , then for any ε ∈ (0, 1

2), we
have P (X > δL) ≤ ε.

Proof Since 0 < ε ≤ 1
2 we get that,

1− ε
ε
≥ 1 =⇒

(
1− ε
ε

)
eα ≥ 1 =⇒ e

{
(1 + e)

1− ε
ε

} 1
α

≥
{

1 +
1− ε
ε

e1+α

} 1
α

.(E.10)

It follows by (E.10) and the definition of δ that(
e

1+α
δ +

ε

1− ε

)
1

δα
≤ ε

1− ε
.

Using the fact that L > λ
1+α along with some simple algebraic manipulations, we get

e
λ
Lδ

1
(Lδ)α

1
Lα

(
1− λ

δα

) =

∫∞
δL x

−α−1 dx

e−
λ
δL

∫ Lδ
L x−α−1 dx

≤ ε

1− ε
.

Since e−
λ
Lδ < 1, it follows that ∫∞

δL x
−α−1e−

λ
x dx∫ δL

L x−α−1e−
λ
x dx

≤ ε

1− ε
.
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SUPPLEMENT TO BAYESIAN ENVELOPE 9

Finally, we note that

P (X > δL) =

∫∞
δL x

−α−1e−
λ
x dx∫∞

L x−α−1e−
λ
x dx

≤ ε.

F. JEFFREY’S PRIOR FOR ENVELOPE MODELS

Since the parameters in O are not independent, specifically, OOT = Ir. To compute the
Jeffery’s prior, we introduce an alternative parameterization which can write the parame-
ters in the model as independent parameters. According to [1], we can write O as O =
O12O13 · · ·O1rO23 · · ·O2r · · ·Or−1,r, where

Oij =

i j


I 0 0 0 0
i 0 cosθij 0 −sinθij 0

0 0 I 0 0
j 0 sinθij 0 cosθij 0

0 0 0 0 I

.

Now the parameters for the envelope model (4) areψ = (µT , θ12, · · · , θr−1,r, vecT (η),ωT ,ωT0 )T ,
and they are on a product space. Let K = (Iu, 0)T ∈ Rr×u, then β = OKη. The parameters
under the standard model are ξ = (µT , vecT (β), vechT (Σ))T , where “ vech” is the operator
that stacks the lower triangle of a symmetric matrix into a vector. The Fisher information
matrix under the standard model is

J =

 Σ−1 0 0
0 ΣX ⊗Σ−1 0
0 0 1

2ET
r (Σ−1 ⊗Σ−1)Er

 .

Let vij ∈ Rr2 be a vector of 0’s, but with −sinθij , cosθij , −cosθij and sinθij on the (i−1)r+

ith, (i − 1)r + jth, (j − 1)r + ith and (j − 1)r + jth elements. Let di ∈ Rr2 be a vector of
0’s but having 1 on the (i − 1)r + ith element. We define matrices Aij ,Bij by the equation
O = AijOijBij . The gradient matrix G = dξ/dψ is Ir 0 0 0

0 (ηTKTBT
11 ⊗A11)v11 · · · (ηTKTBT

r−1,r ⊗Ar−1,r)vr−1,r Iu ⊗OK 0

0 2Cr(ΣOBT
11 ⊗A11)v11 · · · 2Cr(ΣOBT

r−1,r ⊗Ar−1,r)vr−1,r 0 G44

 ,

where G44 = Cr(O⊗O)d1 · · ·Cr(O⊗O)dr. Then the Fisher information under the envelope
model is GTJG. While explicit form for the Fisher information is present, the determinant
of the Fisher information, and hence the Jeffrey’s prior, has an intractable form. The main
focus in this paper is to derive a flexible class of priors that have clear interpretation and
reflect prior information through hyper-parameters. While invariance to reparameterization
is a useful property to pursue, we find it tangential to our goal at this point.
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G. COMPARISON OF THE BAYESIAN ENVELOPE MODEL AND BAYESIAN
WISHART STANDARD MODEL

Here we compare the performance of the Bayesian envelope model versus the Bayesian
Wishart standard model (using Inverse-Wishart prior for Σ and a matrix-normal prior for
β | Σ). We use the uniform Haar prior for the Bayesian envelope model. We use a uniform
improper prior for both β | Σ and Σ for the Bayesian prior model. We note that this prior is
different that the uniform Haar prior for the envelope model with u = r. Table 1 displays the
ratios of estimation variance and average squared errors using the same data that used for
generating Table 2. We notice that the ratios in Table 1 are similar to those in Table 2 for
all sample sizes, which suggests that the efficiency gains from the Bayesian envelope model
are quite stable to different versions of the Bayesian standard models.

n = 30 n=100 n=200
RatioV ar RatioMSE RatioV ar RatioMSE RatioV ar RatioMSE

β1,1 2.695 2.656 3.552 3.528 3.342 3.354
β1,2 1.977 1.978 2.053 2.057 2.418 2.418
β1,3 2.756 2.749 3.108 3.108 3.785 3.779
β1,4 3.515 3.505 3.332 3.330 3.950 3.940
β1,5 2.815 2.793 3.528 3.517 3.785 3.787
β2,1 2.167 2.148 2.190 2.207 1.995 1.982
β2,2 1.850 1.855 1.426 1.437 1.666 1.684
β2,3 2.209 2.205 2.374 2.364 2.528 2.545
β2,4 2.307 2.299 2.331 2.329 2.404 2.405
β2,5 2.039 2.037 2.352 2.360 1.850 1.842

Table 1
Ratio of estimation variance and average squared error in estimation of β. RatioV ar denotes the ratio of
estimation variance of Bayesian Wishart standard model versus the Bayesian envelope model. RatioMSE

denotes the ratio of average squared error of Bayesian Wishart standard model versus the Bayesian envelope
model.

H. NUMERICAL EXPERIMENTS ON THE PERFORMANCE OF THE BAYESIAN
ENVELOPE MODEL WHEN ωTRUE = (20, 16)T , ω0,TRUE = (0.5, 1, 2)T AND

ωTRUE = (1, 1)T , ω0,TRUE = (1, 1, 1)T

The simulation settings for Table 2 is the same as those in Table 2, but with ωtrue = (20, 16)T

and ω0,true = (0.5, 1, 2)T . By [5], in this case, the non-Bayesian envelope model is still more
efficient than the non-Bayesian standard model, but the efficiency gain is not as large as those
displayed in Table 2. From the results in Table 2, we notice that the Bayesian envelope model
also follows the same phenomenon in this situation.

The simulation settings for Table 3 is the same as those in Table 2, expect ωtrue = (1, 1)T

and ω0,true = (1, 1, 1)T . For the non-Bayesian envelope model, this is a special case where the
non-Bayesian envelope model is as efficient as the non-Bayesian standard model. From the
results in Table 3, we notice that the Bayesian envelope model also is about as efficient as
the Bayesian standard model.
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n = 30 n=100 n=200
RatioV ar RatioMSE RatioV ar RatioMSE RatioV ar RatioMSE

β1,1 1.003 1.004 0.995 1.003 1.012 1.012
β1,2 0.994 0.999 1.092 1.089 1.022 1.022
β1,3 1.040 1.042 1.033 1.008 1.030 1.034
β1,4 0.999 0.996 1.068 1.069 0.998 1.007
β1,5 1.013 1.011 0.988 0.989 0.992 0.994
β2,1 1.049 1.051 1.004 1.005 1.002 1.005
β2,2 1.042 1.035 1.063 1.065 1.098 1.066
β2,3 1.035 1.078 1.075 1.073 1.167 1.162
β2,4 0.973 1.102 1.135 1.138 1.033 1.036
β2,5 1.001 0.997 0.975 0.976 1.026 1.026

Table 2
Ratio of estimation variance and average squared error in estimation of β. RatioV ar denotes the ratio of

estimation variance of the Bayesian standard model versus the Bayesian envelope model. RatioMSE denotes
the ratio of average squared error of the Bayesian standard model versus the Bayesian envelope model.

(ωtrue = (20, 16)T , ω0,true = (0.5, 1, 2)T )

n = 30 n=100 n=200
RatioV ar RatioMSE RatioV ar RatioMSE RatioV ar RatioMSE

β1,1 1.031 1.018 1.016 1.022 1.013 1.009
β1,2 0.994 0.979 1.008 1.009 1.005 1.013
β1,3 0.969 0.938 0.992 0.987 1.016 1.025
β1,4 1.009 1.005 0.997 0.990 1.002 1.000
β1,5 1.024 1.013 1.019 1.024 0.999 1.000
β2,1 1.020 1.021 1.006 1.003 1.007 1.009
β2,2 0.994 0.973 1.024 1.008 0.985 0.978
β2,3 0.937 0.911 0.993 0.995 0.996 0.998
β2,4 1.050 1.036 1.003 1.004 1.004 1.003
β2,5 1.008 0.982 1.003 1.002 1.011 1.008

Table 3
Ratio of estimation variance and average squared error in estimation of β. RatioV ar denotes the ratio of

estimation variance of the Bayesian standard model versus the Bayesian envelope model. RatioMSE denotes
the ratio of average squared error of the Bayesian standard model versus the Bayesian envelope model.

(ωtrue = (1, 1)T , ω0,true = (1, 1, 1)T )
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I. COMPARISON OF THE BAYESIAN ENVELOPE MODEL AND BAYESIAN
WISHART STANDARD MODEL WITH SMALL SAMPLE SIZE

The simulation settings of Table 4 are the same as those that produced Table 3. But the
Bayesian Wishart standard model has a different prior. We use a uniform improper prior for
β | Σ and an inverse Wishart prior for Σ. We notice that ratios of estimation variance and
average squared errors are about the same in the two tables, which suggests that the efficiency
gains achieved by the Bayesian envelope model are still stable with different versions of the
Bayesian Wishart standard model when the sample size is small.

β6,2 β9,10 β19,8 β15,6 β10,9 β48,9 β3,5 β15,2 β17,9 β34,2

RatioMSE 4.391 5.423 5.103 7.917 8.873 7.650 5.412 2.711 8.543 3.918
RatioV ar 4.391 5.383 5.101 9.914 8.840 7.968 5.357 3.129 8.627 3.935

Table 4
Ratio of estimation variance and average squared error for ten randomly selected elements in β, with n = 30

and r = 50. RatioV ar denotes the ratio of estimation variance of the Bayesian Wishart standard model
versus the Bayesian envelope model. RatioMSE denotes the ratio of average squared error of the Bayesian

Wishart standard model versus the Bayesian envelope model.
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