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APPENDIX A: ESTIMATION ALGORITHM

The optimization of (7) or (8) can be performed by a blockwise coordinate
descend algorithm, which updates one row of A at a time and cycles through
the rows of A until convergence. Suppose we want to update aT1 , the first
row of A. For the sake of simplifying the notations, we further assume that
aT1 is the first row in GA. This does not lose any generality since if it were
not the first row in GA, we can permute the rows and columns of GA,
SX|Y and S−1

X to make it so without changing the value of the objective

function. Let A−1 ∈ R(p−d−1)×d denote the submatrix of A with the first
row removed. We partition SX|Y and S−1

X as

SX|Y =

(
S11 S12

S21 S22

)
, S−1

X =

(
T11 T12

T21 T22

)
,

where S11 ∈ R and T11 ∈ R. Define S2|1 = S22 − S21S
−1
11 S12, and T2|1 =

T22−T21T
−1
11 T12. Let a

(k)
1 , A

(k)
−1 and GA(k)be the value of a1, A−1 and GA

after k iterations, and let G denote the submatrix of GA with the first row
removed. We can update aT1 by solving the following optimization problem

(1) â1 = arg min
a1

L(a1) + λw1‖a1‖2,

where

L(a1) = −2 log{1 + aT1 (Id + AT
−1A−1)−1aT1 }

+ log{1 + S11(a1 + S−1
11 GTS21)T (GTS2|1G)−1(a1 + S−1

11 GTS21)}
+ log{1 + T11(a1 + T−1

11 GTT21)T (GTT2|1G)−1(a1 + T−1
11 GTT21)}.

To solve (1), we adopt the majorization-minimization (MM) principle (Hunter
and Lange, 2004; Zou and Li, 2008) and construct a majorization function
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2 ZHU AND SU

for L(a1). Let L′(a
(k)
1 ) be the gradient of L(a1) evaluated at a

(k)
1 , G(k) be

the value of G after k iterations and the constant δ be an upper bound of

the eigenvalues of the Hessian matrix L′′(a
(k)
1 ). For example, we can take

(2)

δ = (1+ε)[4λmax{(Id+A
(k)
−1

T
A

(k)
−1)−1}+2λmax{S11(G(k)TS2|1G

(k))−1}+2λmax{T11(G(k)TT2|1G
(k))−1}],

where ε > 0 and λmax(·) denotes the maximum eigenvalue of a matrix. Then

the majorization function Q(a
(k)
1 ) can be defined as

Q(a1) = L(a
(k)
1 ) + (a1 − a

(k)
1 )L′(a

(k)
1 ) +

1

2
δ(a1 − a

(k)
1 )T (a1 − a

(k)
1 ).

The majorization function Q(a
(k)
1 ) satisfies Q(a

(k)
1 ) ≥ L(a

(k)
1 ), with the

equality holds if and only if a1 = a
(k)
1 . Now instead of updating a1 from

(1), we update a1 by

(3) a
(k+1)
1 = arg min

a1

Q(a1) + λw1‖a1‖2.

The optimization problem (3) has an analytical solution

(4) a
(k+1)
1 =

1

δ

{
δa

(k)
1 − L′(a

(k)
1 )
}{

1− λw1

‖δa(k)
1 − L′(a

(k)
1 )‖2

}
+

,

where (·)+ denotes the positive part of a number. The update of other rows in
A is similar. The details of the algorithm to solve (7) or (8) is summarized in
Algorithm 1. The starting value of A can be obtained by fitting the predictor
envelope model (3). It takes O(pd+d3) flops to update δ, and each update of
ai takes O(d2) flops. The details regarding the flop counts are given below.

Algorithm 1 The algorithm for solving the adaptive group lasso problem
(7) or (8).

1. Get a starting value of A

2. Repeat until convergence of A

For i = 1 to i = p− d

(a) Compute δ using (2)

(b) Keep updating ai by (4) until the convergence of ai

• It costs O(d3 + pd) to update

δ =(1 + ε)[4λmax{(Id + A
(k)
−1

T
A

(k)
−1)−1}+ 2λmax{S11(G(k)TS2|1G

(k))−1}
+ 2λmax{T11(G(k)TT2|1G

(k))−1}].
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The counts are as follows.

In order to update δ, we first need to update B1 = (Id+A
(k)
−1

T
A

(k)
−1)−1,

B2 = S11(G(k)TS2|1G
(k))−1 and B3 = T11(G(k)TT2|1G

(k))−1.

(i) It takes O(d3) flops to update B1 = (Id + A
(k)
−1

T
A

(k)
−1)−1. Because

A
(k)
−1

T
A

(k)
−1 = A(k)TA(k) − a

(k)
1 a

(k)
1

T
, once A(k)TA(k) is calculated in

the last cycle, it takes 2d2 flops to get A
(k)
−1

T
A

(k)
−1 (d2 for multiplication

in a
(k)
1 a

(k)
1

T
and d2 in the subtraction A(k)TA(k)−a

(k)
1 a

(k)
1

T
). We used

a Cholesky decomposition for the matrix inversion, and it takes ap-

proximately d3 flops to get (Id + A
(k)
−1

T
A

(k)
−1)−1 from (Id + A

(k)
−1

T
A

(k)
−1).

(ii) It takes O(d3 + pd) to update B2 = S11(G(k)TS2|1G
(k))−1. Notice

that

G(k)TS2|1G
(k) = G(k)T (S22 − S21S

−1
11 S12)G(k)

=GT
A(k)SX|YGA(k) − (S

−1/2
11 G(k)TS21 + S

1/2
11 a

(k)
1 )(S

−1/2
11 G(k)TS21 + S

1/2
11 a

(k)
1 )T .

After GT
A(k)SX|YGA(k) is initially calculated (before the iterations), it

takes 2dp + d flops to compute S
−1/2
11 G(k)TS21 + S

1/2
11 a

(k)
1 , d2 flops to

compute (S
−1/2
11 G(k)TS21 +S

1/2
11 a

(k)
1 )(S

−1/2
11 G(k)TS21 +S

1/2
11 a

(k)
1 )T and

d2 flops for the subtraction to get G(k)TS2|1G
(k). The matrix inverse

takes O(d3) flops. So the cost of updating S11(G(k)TS2|1G
(k))−1 is

O(d3 + dp).

(iii) The count for B3 = T11(G(k)TT2|1G
(k))−1 is similar to that for

B2.
After we have obtained B1, B2 and B3, it takes O(d3) flops to compute
δ. This is because the cost of getting the maximum eigenvalue of B1,
B2 and B3 is O(d3) flops each. Therefore the cost of getting δ =
(1 + ε)[4λmax(B1 + 2λmax(B2) + 2λmax(B3)] is O(d3) flops.
So the total number of flops to update δ is in the order of O(d3 + pd).

• It takes O(d2) to update a
(k+1)
1 . The counts are as follows.

To update a
(k+1)
1 , we first need to compute the value of L′(a

(k)
1 ). The

expression of L′(a
(k)
1 ) is

L′(a
(k)
1 ) =

−4B1a
(k)
1

1 + a
(k)
1

T
B1a

(k)
1

+
2B2(a

(k)
1 + v2)

1 + (a
(k)
1 + v2)TB2(a

(k)
1 + v2)

+
2B3(a

(k)
1 + v3)

1 + (a
(k)
1 + v3)TB3(a

(k)
1 + v3)
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where v2 = S−1
11 G(k)TS21, v3 = T−1

11 G(k)TT21. Notice that

v2 = S−1
11

(
GA(k)

T (S11,S12)T − a
(k)
1 S11

)
.

Once GT
A(k)(S11,S12)T is initially calculated (before the iterations),

we need only d flops to calculate a
(k)
1 S11 and d flops to subtract it

from GT
A(k)(S11,S12)T . We need another d flops to multiply S−1

11 to

GA(k)
T (S11,S12)T − a

(k)
1 S11. So it takes a total of 3d flops to update

v2. The same count holds for updating v3.
Once we have v2 and v3, it takes O(d2) to calculate each of the three

summands in L′(a
(k)
1 ): −4B1a

(k)
1 /[1 + a

(k)
1

T
B1a

(k)
1 ],

2B2(a
(k)
1 + v2)/[1 + (a

(k)
1 + v2)TB2(a

(k)
1 + v2)]

and 2B3(a
(k)
1 + v3)/[1 + (a

(k)
1 + v3)TB3(a

(k)
1 + v3)]. So it takes O(d2)

flops to obtain the value of L′(a
(k)
1 ).

After we have the value of δ and L′(a
(k)
1 ), it takes O(d) flops to update

a
(k+1)
1 . This can be observed from the formula

a
(k+1)
1 =

1

δ

{
δa

(k)
1 − L′(a

(k)
1 )
}{

1− λw1

‖δa(k)
1 − L′(a

(k)
1 )‖2

}
+

.

So the total number of flops to update a
(k+1)
1 has order O(d2).

The adaptive weights can be chosen as wi = ‖a(0)
i ‖
−γ
2 , where a

(0)
i is the

initial value and also a
√
n-consistent estimator of ai. Parameter γ is a

positive number and can be chosen by cross validation. As suggested by Chen
and Huang (2012) and Zou (2006), it is sufficient to choose γ from a small
candidate set such as {0.5, 1, 2, 4, 8}. For a fixed d, the tuning parameter
λ can be chosen by cross validation or Bayesian information criterion (Zou
and Chen, 2012, BIC). Let lλ be the log likelihood and pA,λ be the number
of selected active predictors. Then BIC(λ) = −2lλ + (pA,λ− d)d log(n). And
we select the λ that minimizes BIC(λ). Zou and Chen (2012) established
the consistency of BIC. The selection of d can be performed using likelihood
ratio testing, BIC, or cross validation.

The optimization of (8) is similar as (7), except we choose γ, d and λ
by a three dimensional cross validation. This is because the likelihood based
methods need moderate sample size to achieve good performance. The start-
ing values of a can be calculated from a starting value of Γ, which is discussed
in Cook, Forzani and Su (2016).
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SUPPLEMENT TO ENVELOPE-BASED SPLS 5

APPENDIX B: ASYMPTOTIC VARIANCE UNDER NORMALITY

If we assume normality, we can get a closed form of the asymptotic vari-
ance for the oracle predictor envelope estimator, the E-SPLS estimator and
the E-SGPLS estimator. The details are included as follows.

Let AA denote the first pA − d rows of A, SXA be the sample covariance
matrix of XA, SXA|Y be the sample covariance matrix of the residuals from

the linear regression of XA on Y, and (S−1
X )A be the upper left pA × pA

block in S−1
X . Define GAA = (Id,A

T
A)T . The symbol

d→ denotes convergence
in distribution.

Proposition 1 Assume that the oracle predictor envelope model (9) holds,
X has finite fourth moments and the errors are normally distributed. Then
the maximum likelihood estimator of βA is β̂A,O = P

ĜAA,O
(SXA )

β̂A,ols,

where

ÂA,O = arg min
AA∈R(pA−d)×d

−2 log |GT
AAGAA |+log |GT

AASXA|YGAA |+log |GT
AA(S−1

X )AGAA |.

Furthermore,

√
n{vec(β̂A,O)− vec(βA)} d→ N(0,VO),

where VO = ΣY|XA ⊗ ΓAΩ−1ΓTA + (ηT ⊗ ΓA,0)T−1(η ⊗ ΓTA,0), and T =

(ηΣ−1
Y|XAη

T + Ω−1)⊗ Ω̃0,A + Ω⊗ Ω̃
−1

0,A|I − 2Id ⊗ IpA−d.

The proof of this proposition is in Section C.3 of the Supplement.

Theorem 3 Assume that the conditions in Theorem 2 hold. If we further
assume normality in X and ε, then the asymptotic variance of the E-SPLS
estimator vec(β̂A) equals VO in Proposition 1.

Theorem 6 (c) Assume that the same conditions in (b) hold, we have a
closed form for the asymptotic variance of the E-SGPLS estimator vec(β̂A):
V = PΓAVO,βAPΓA + (ηT ⊗ ΓA,0)T−1(η ⊗ ΓTA,0), where VO,βA is the

asymptotic variance of the oracle estimator β̂A,O with d = pA, and T =

(η ⊗ ΓTA,0)V−1
O,βA

(ηT ⊗ ΓA,0) + Ω⊗ Ω̃
−1

0,A|I + Ω−1 ⊗ Ω̃0,A − 2Id ⊗ IpA−d.

The explicit form of VO,βA is given in Lemma 3.

APPENDIX C: PROOFS

C.1. Proof of Theorem 1. We denote the objective function in (7) as
fobj(A). To prove Theorem 1, we will show that for any small ε > 0, there
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exists a sufficiently large constant C, such that

(5) lim
n→∞

P

(
inf

∆∈R(p−d)×d,‖∆‖F =C
fobj(A + n−1/2∆) > fobj(A)

)
> 1− ε.

If (5) holds, there exists a local minimizer Â of fobj such that ‖Â−A‖F =

Op(n
−1/2). This establishes that Â is a

√
n-consistent estimator of A. Be-

cause P
Γ̂(SX)

= ĜA(ĜT
ASXĜA)−1ĜT

ASX, and SX is a
√
n-consistent es-

timator of ΣX, P
Γ̂(SX)

is a
√
n-consistent estimator of PΓ(ΣX). Then the

E-SPLS estimator β̂ = P
Γ̂(SX)

β̂ols is a
√
n-consistent estimator of β.

Now we prove (5). We calculate fobj(A+n−1/2∆)− fobj(A) using Taylor
expansion. Since the form of fobj is a little complicated, we write it into four
parts

fobj(A) = −2 log|GT
AGA|+ log|GT

ASX|YGA|+ log|GT
AS−1

X GA|+
p−d∑
i=1

λwi‖ai‖2

≡ f1(A) + f2(A) + f3(A) + f4(A).

We first expand f1(A + n−1/2∆),

f1(A + n−1/2∆) = f1(A) + n−1/2
→∆
df1 (A) +

1

2
n−1

→∆

df2
1 (A) + op(n

−1),

where
→∆
df1 (A) and

→∆

df2
1 (A) are the first and second directional derivatives

(Dattorro, 2016). The first directional derivative is

→∆
df1 (A) = tr

{[df1(A)

dA

]T
∆
}

= −4 tr[(Id + ATA)−1AT∆].

The second directional derivative is

→∆

df2
1 (A) = tr

([→∆
df1 (A)

dA

]T
∆
)

=− 4 tr
{

[−A(Id + ATA)−1(AT∆ + ∆TA)(Id + ATA)−1 + ∆(Id + ATA)−1]T∆
}

=4 tr
{

(Id + ATA)−1(AT∆ + ∆TA)(Id + ATA)−1AT∆− (Id + ATA)−1∆T∆
}

=4 tr
{

(Id + ATA)−1AT∆(Id + ATA)−1AT∆

− (Id + ATA)−1∆T
∗ (Ip −GA(GT

AGA)−1GA)∆∗

}
=4 tr

{
(Id + ATA)−1AT∆(Id + ATA)−1AT∆− (Id + ATA)−1∆T

∗ Γ0Γ
T
0 ∆∗

}
imsart-aos ver. 2014/10/16 file: supplement4.tex date: September 6, 2018



SUPPLEMENT TO ENVELOPE-BASED SPLS 7

where

∆∗ =

(
0d×d
∆

)
∈ Rp×d.

Substitute
→∆
df1 (A) and

→∆

df2
1 (A) into the expansion for f1. We obtain

f1(A + n−1/2∆)− f1(A)

=− 4n−1/2 tr[(Id + ATA)−1AT∆] + 2n−1 tr
{

(Id + ATA)−1AT∆(Id + ATA)−1AT∆

− (Id + ATA)−1∆T
∗ Γ0Γ

T
0 ∆∗

}
+ op(n

−1).

Now we expand f2(A) = log|GT
ASX|YGA|. The first directional derivative

is

→∆
df2 (A) = tr

{[df2(A)

dA

]T
∆
}

= 2 tr[(GT
ASX|YGA)−1GT

ASX|Y∆∗].

Since SX|Y is a
√
n-consistent estimator of ΣX|Y, (GT

ASX|YGA)−1GT
ASX|Y

is a
√
n-consistent estimator of (GT

AΣX|YGA)−1GT
AΣX|Y. Then we have

(GT
ASX|YGA)−1GT

ASX|Y = (GT
AΣX|YGA)−1GT

AΣX|Y+n−1/2Tn+Op(n
−1),

where vec(Tn) converges in distribution to a normal random vector with

mean 0. Substitute the expression to
→∆
df2 (A), we have

→∆
df2 (A) =2 tr[(GT

ASX|YGA)−1GT
ASX|Y∆∗]

=2 tr[(GT
AΣX|YGA)−1GT

AΣX|Y∆∗] + 2n−1/2 tr(Tn∆∗) +Op(n
−1).

Because that ΣX|Y = ΣX −ΣXYΣ−1
Y ΣYX and ΣXY = ΓΩη, we have

ΣX|Y = Γ(Ω−ΩηΣ−1
Y ηTΩ)ΓT + Γ0Ω0Γ

T
0 .

Then by Woodbury matrix identity, we have

(ΓTΣX|YΓ)−1 = (Ω−ΩηΣ−1
Y ηTΩ)−1 = Ω−1+η(ΣY−ηTΩη)−1ηT = Ω−1+ηΣ−1

Y|Xη
T .

Since Γ = GAΓ1, we have (GT
AΣX|YGA)−1 = Γ1(ΓTΣX|YΓ)−1ΓT1 , and

(GT
AΣX|YGA)−1GT

AΣX|Y = Γ1(ΓTΣX|YΓ)−1ΓT1 (ΓΓ−1
1 )TΣX|Y

= Γ1(Ω−1 + ηΣ−1
Y|Xη

T )−1(Ω−1 + ηΣ−1
Y|Xη

T )ΓT

= Γ1Γ
T
1 GT

A = (Id + ATA)−1GT
A.
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The last equality is because Id = ΓTΓ = ΓT1 GT
AGAΓ1. This gives GT

AGA =
(ΓT1 )−1(Γ1)−1. Then

(6) Γ1Γ
T
1 = (GT

AGA)−1 = (Id + ATA)−1.

So the first directional derivative is

→∆
df2 (A) = 2 tr[(Id + ATA)−1AT∆] + 2n−1/2 tr(Tn∆∗) +Op(n

−1).

By Cauchy-Schwartz inequality (Harville, 1998),∣∣∣ tr(Tn∆∗)
∣∣∣ ≤ ‖∆‖F ‖Tn‖F .

The second directional derivative of f2 is

→∆

df2
2 (A) = tr

([→∆
df2 (A)

dA

]T
∆
)

=2 tr
{

(GT
ASX|YGA)−1∆T

∗ SX|Y∆∗

− (GT
ASX|YGA)−1(GT

ASX|Y∆∗ + ∆T
∗ SX|YGA)(GT

ASX|YGA)−1GT
ASX|Y∆∗

}
.

Since SX|Y = ΣX|Y + op(1), after some straightforward algebra, we have

→∆

df2
2 (A) =2 tr

{
(Ω−1 + ηΣ−1

Y|Xη
T )ΓT1 ∆T

∗ Γ0Ω0Γ
T
0 ∆∗Γ1

− (Id + ATA)−1AT∆(Id + ATA)−1AT∆
}

+ op(1).

Substitute
→∆
df2 (A) and

→∆

df2
2 (A) into the expansion for f2, we get

f2(A + n−1/2∆)− f2(A)

=2n−1/2 tr[(Id + ATA)−1AT∆] + 2n−1 tr(Tn∆∗)

+ n−1 tr
{

(Ω−1 + ηΣ−1
Y|Xη

T )ΓT1 ∆T
∗ Γ0Ω0Γ

T
0 ∆∗Γ1

− (Id + ATA)−1AT∆(Id + ATA)−1AT∆
}

+ op(n
−1)

≥2n−1/2 tr[(Id + ATA)−1AT∆]− 2n−1‖∆‖F ‖Tn‖F
+ n−1 tr

{
(Ω−1 + ηΣ−1

Y|Xη
T )ΓT1 ∆T

∗ Γ0Ω0Γ
T
0 ∆∗Γ1

− (Id + ATA)−1AT∆(Id + ATA)−1AT∆
}

+ op(n
−1).
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Notice that f3 and f2 have the same structure, except that SX|Y is replaced

by S−1
X . Because S−1

X is a
√
n-consistent estimator of Σ−1

X , (GT
AS−1

X GA)−1GT
AS−1

X

is a
√
n-consistent estimator of (GT

AΣ−1
X GA)−1GT

AΣ−1
X . Then we have

(GT
AS−1

X GA)−1GT
AS−1

X = (GT
AΣ−1

X GA)−1GT
AΣ−1

X + n−1/2Wn +Op(n
−1),

where vec(Wn) converges in distribution to a normal random vector with
mean 0. We then do the same expansion to f3 and get

f3(A + n−1/2∆)− f3(A)

=2n−1/2 tr[(Id + ATA)−1AT∆] + 2n−1 tr(Wn∆∗)

+ n−1 tr
{

ΩΓT1 ∆T
∗ Γ0Ω

−1
0 ΓT0 ∆∗Γ1 − (Id + ATA)−1AT∆(Id + ATA)−1AT∆

}
+ op(n

−1)

≥2n−1/2 tr[(Id + ATA)−1AT∆]− 2n−1‖∆‖F ‖Wn‖F
+ n−1 tr

{
ΩΓT1 ∆T

∗ Γ0Ω
−1
0 ΓT0 ∆∗Γ1 − (Id + ATA)−1AT∆(Id + ATA)−1AT∆

}
+ op(n

−1).

Now we expand f4(A). Let δTi be the ith row of ∆, then

f4(A + n−1/2∆)− f4(A) =

p−d∑
i=1

{
λwi‖ai + n−1/2δi‖2 − λwi‖ai‖2

}

≥
pA−d∑
i=1

{
λwi‖ai + n−1/2δi‖2 − λwi‖ai‖2

}
≥ −(pA − d)n−1/2λA max

1≤i≤pA−d
‖δi‖2.

The third inequality is based on the triangular inequality that−‖−n−1/2δi‖2 ≤
‖ai+n−1/2δi‖2−‖ai‖2. As

√
nλA → 0, f4(A+n−1/2∆)−f4(A) = op(n

−1).
Combine the results for f1, f2, f3 and f4, we have

fobj(A + n−1/2∆)− fobj(A)

≥ −2n−1‖∆‖F ‖Tn‖F − 2n−1‖∆‖F ‖Wn‖F
+n−1 tr

{
(Ω−1 + ηΣ−1

Y|Xη
T )ΓT1 ∆T

∗ Γ0Ω0Γ
T
0 ∆∗Γ1 + ΩΓT1 ∆T

∗ Γ0Ω
−1
0 ΓT0 ∆∗Γ1

−2(Id + ATA)−1∆T
∗ Γ0Γ

T
0 ∆T

∗

}
− n−1(pA − d)

√
nλA max

1≤i≤pA−d
‖δi‖2 + op(n

−1).

Let M = (Ω−1 + ηΣ−1
Y|Xη

T ) ⊗Ω0 + Ω ⊗Ω−1
0 − 2Id ⊗ Ip−d, and let m1 be

the smallest eigenvalue of M. The matrix M appears in proposition 4.4 in
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10 ZHU AND SU

Cook, Helland and Su (2013). By Shapiro (1986), M is a positive definite
matrix, and m1 > 0. Then we have

tr
{

(Ω−1 + ηΣ−1
Y|Xη

T )ΓT1 ∆T
∗ Γ0Ω0Γ

T
0 ∆∗Γ1 + Ω−1ΓT1 ∆T

∗ Γ0Ω0Γ
T
0 ∆∗Γ1

−2(Id + ATA)−1∆T
∗ Γ0Γ

T
0 ∆T

∗

}
= tr

{
(Ω−1 + ηΣ−1

Y|Xη
T )ΓT1 ∆T

∗ Γ0Ω0Γ
T
0 ∆∗Γ1 + ΩΓT1 ∆T

∗ Γ0Ω
−1
0 ΓT0 ∆∗Γ1 − 2ΓT1 ∆T

∗ Γ0Γ
T
0 ∆∗Γ1

}
= vec(ΓT0 ∆T

∗ Γ1)TMvec(ΓT0 ∆∗Γ1)

≥ m1‖ΓT0 ∆∗Γ1‖2F
= m1 tr(Γ0Γ

T
0 ∆∗Γ1Γ

T
1 ∆T

∗ )

= m1 tr
{[

Ip −GA(Id + ATA)−1GT
A

]
∆∗(Id + ATA)−1∆T

∗

}
= m1 tr

{
∆T
[
Ip−d −A(Id + ATA)−1AT

]
∆(Id + ATA)−1

}
= m1 tr

{
∆T (Id + ATA)−1∆(Id + ATA)−1

}
= m1vec(∆)T [(Id + ATA)−1 ⊗ (Id + ATA)−1]vec(∆)

≥ m1m
2
2‖∆‖2F ,

where m2 is the smallest eigenvalue of (Id + ATA)−1. When ‖∆‖F > C for
sufficiently large C, the terms with order ‖∆‖2F dominate the terms with
order ‖∆‖F . Then fobj(A+n−1/2∆)−fobj(A) > 0 with probability tending
to 1, and conclusion (5) follows.

C.2. Proof of Theorem 2. We prove Theorem 2 by contradiction.
Suppose that âi 6= 0 for i = pA − d + 1, . . . , p − d. Let ei ∈ Rd denote a
vector of 0 with a 1 in the ith place. Then

(7)
dfobj(A)

daTi

∣∣∣
ai=âi

= 0,

where

dfobj(A)

daTi

∣∣∣
ai=âi

=− 4eTi ĜA(Id + ÂT Â)−1 + 2eTi SX|YĜA(ĜT
ASX|YĜA)−1

+ 2eTi S−1
X ĜA(ĜT

AS−1
X ĜA)−1 + λwi

âTi
‖âi‖2

.
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SUPPLEMENT TO ENVELOPE-BASED SPLS 11

Since Â, SX and SX|Y are
√
n-consistent estimators of A, ΣX and ΣX|Y,

then

−4eTi ĜA(Id + ÂT Â)−1 + 2eTi SX|YĜA(ĜT
ASX|YĜA)−1 + 2eTi S−1

X ĜA(ĜT
AS−1

X ĜA)−1

= −4eTi GA(Id + ATA)−1 + 2eTi ΣX|YGA(GT
AΣX|YGA)−1 + 2eTi Σ−1

X GA(GT
AΣ−1

X GA)−1

+Op(n
−1/2)

= −4eTi GA(Id + ATA)−1 + 2eTi ΣX|YΓΓ−1
1 (Γ−T1 ΓTΣX|YΓΓ−1

1 )−1

+2eTi Σ−1
X ΓΓ−1

1 (Γ−T1 ΓTΣ−1
X ΓΓ1)−1 +Op(n

−1/2)

= −4eTi GA(Id + ATA)−1 + 2eTi GAΓ1Γ
T
1 + 2eTi GAΓ1Γ

T
1 +Op(n

−1/2)

= Op(n
−1/2).

The last equality is because of (6). Then
(8)√
n
∥∥∥−4eTi ĜA(Id+ÂT Â)−1+2eTi SX|YĜA(ĜT

ASX|YĜA)−1+2eTi S−1
X ĜA(ĜT

AS−1
X ĜA)−1

∥∥∥
2

= Op(1).

On the other hand, for i = pA − d+ 1, . . . , p− d,

(9)
√
nλwi

∥∥∥ âTi
‖âi‖2

∥∥∥
2

=
√
nλwi ≥

√
nλI →∞.

With (7), (8) and (9) are contradictory to each other. So we have P (âi =
0)→ 1 for i = pA − d+ 1, . . . , p− d.

C.3. Proof of Proposition 1. Without the oracle information, the
objective function for A is (5). By considering the oracle information and
substituting the sparse structure of A to (5), we obtain the objective function
of AA as displayed in Proposition 1.

Since the oracle predictor envelope model (9) is over-parameterized, we
use Theorem 4.1 in Shapiro (1986) to derive the asymptotic distribution of
β̂A,O. We use ξ to denote the parameters in (9), and

ξ = (µTX,µ
T
Y, vech(ΣY|X)T , vec(βA)T , vech(ΣX)T )T ,

where vech is the vector-half operator that stacks the lower triangle of a
symmetric matrix to a vector. We use φ to denote the parameters under the
oracle predictor envelope model (9), and

φ = {µTX,µTY, vechT (ΣY|X), vecT (η), vecT (ΓA), vechT (Ω), vechT (Ω0)}T .

Let Cm ∈ Rm(m+1)/2×m2
and Em ∈ Rm(m+1)/2×m2

be contraction and
expansion matrices that connect vec and vech: for a symmetric matrix
M ∈ Rm×m, vec(M) = Em vech(M) and vech(M) = Cmvec(M).
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12 ZHU AND SU

The gradient matrix H = ∂ξ/∂φT is

H =

(
Ir+p+r(r+1)/2 0

0 H22

)
,

where H22 is a {pAr + p(p+ 1)/2} × {d(r − pI) + p(p+ 1)/2} matrix

H22 =

(
Ir ⊗ ΓA ηT ⊗ IpA 0 0

0 2Cp(ΓΩ⊗ Ip − Γ⊗ Γ0Ω0Γ
T
0 )L1 Cp(Γ⊗ Γ)Ed Cp(Γ0 ⊗ Γ0)Ep−d

)
,

and L1 = Id ⊗ (IpA , 0)T ∈ Rdp×dpA . The Fisher information of ξ is given by

J =


Σ−1

X|Y A12 0 0 0

A21 Σ−1
Y|X 0 0 0

0 0 1
2ET

r (Σ−1
Y|X ⊗Σ−1

Y|X)Er 0 0

0 0 0 Σ−1
Y|X ⊗ΣXA 0

0 0 0 0 1
2ET

p (Σ−1
X ⊗Σ−1

X )Ep

 ,

where A12 = AT
21 = −Σ−1

X ΣXYΣ−1
Y|X. Denote the estimator of ξ under the

envelope parameterization by ξ̂, and denote the estimator of φ under the
standard parameterization by φ̂. Then

√
n{vec(φ̂)− vec(φ)} d→ N(0,J−1).

Let l(X,Y) denote the joint likelihood function of X and Y,

l(X,Y) =− n(r + p)

2
log(2π)− n

2
log |ΣX|

− 1

2
tr
[
(X− 1nµ

T
X)Σ−1

X (X− 1nµ
T
X)T

]
− n

2
log |ΣY|X|

− 1

2
tr
{[

(Y− 1nµ
T
Y)− (X− 1nµ

T
X)β

]
Σ−1

Y|X[
(Y− 1nµ

T
Y)− (X− 1nµ

T
X)β

]T}
,

where X = (X1, . . . ,Xn)T ∈ Rn×p, Y = (Y1, . . . ,Yn)T ∈ Rn×r are data ma-
trices, X1, . . . ,Xn are i.i.d. samples of X and Y1, . . . ,Yn are i.i.d. samples
of Y. Then the oracle predictor envelope estimator is obtained by mini-
mizing the objective function lmax − l(X,Y), where lmax is the maximized
log-likelihood function under the standard model. The objective function
lmax− l(X,Y) satisfies Conditions 1–4 in Section 3 of Shapiro (1986). Further-

more, since J is full rank, rank(HTJH) =rank(H). Then all the conditions
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SUPPLEMENT TO ENVELOPE-BASED SPLS 13

in Proposition 4.1 of Shapiro (1986) are satisfied. Using this Proposition, we
have √

n{vec(ξ̂)− vec(ξ)} d→ N(0,H(HTJH)†HT ),

where † denotes the Moore-Penrose generalized inverse. After some straight-
forward calculations similar to those in Theorem 5.1 of Cook, Li and Chiaromonte
(2010), we have

√
n{vec(β̂A,O)− vec(βA)} d→ N(0,VO),

where VO = ΣY|XA ⊗ ΓAΩ−1ΓTA + (ηT ⊗ ΓA,0)T−1(η ⊗ ΓTA,0), and T =

(ηΣ−1
Y|XAη

T + Ω−1)⊗ Ω̃0,A + Ω⊗ Ω̃
−1

0,A|I − 2Id ⊗ IpA−d.

C.4. Proof of Theorem 3. Let ÂA denote the E-SPLS estimator
of AA. Suppose we can prove ÂA = ÂA,O + op(an), for a sequence an
that an = o(n−1/2), then ĜAA = ĜAA,O

+ op(an), β̂A = β̂A,O + op(an),

and
√
n{vec(β̂A) − vec(βA)} and

√
n{vec(β̂A,O) − vec(βA)} converge to

the same asymptotic distribution. Regarding the choice of an, we can take
an = (n−1/2λA)1/2.

Since the E-SPLS estimator enjoys the selection consistency, the objective
function to estimate AA is

fobj,A(AA) = −2 log |GT
AAGAA |+log |GT

AASXA|YGAA |+log |GT
AA(S−1

X )AGAA |+
pA−d∑
i=1

λwi‖ai‖2.

In order to prove ÂA = ÂA,O + op(an), it is sufficient to show that for any
small ε > 0, there exists a sufficiently large constant C, such that
(10)

lim
n
P

(
inf

∆∈R(pA−d)×d,‖∆‖F =C
fobj,A(ÂA,O + an∆) > fobj,A(ÂA,O)

)
> 1− ε.

We name the four summands in fobj,A(AA) as f1(AA), f2(AA), f3(AA) and
f4(AA), i.e.

f1(AA) = −2 log |GT
AAGAA |, f2(AA) = log |GT

AASXA|YGAA |,

f3(AA) = log |GT
AA(S−1

X )AGAA |, f4(AA) =

pA−d∑
i=1

λwi‖ai‖2.

Notice that the objective function of AA under the oracle predictor envelope
model (9) is f1(AA) + f2(AA) + f3(AA). So

(11)
df1(AA)

dAA

∣∣∣
AA=ÂA,O

+
df2(AA)

dAA

∣∣∣
AA=ÂA,O

+
df3(AA)

dAA

∣∣∣
AA=ÂA,O

= 0.
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14 ZHU AND SU

Now we compute fobj,A(ÂA,O+an∆)−fobj,A(ÂA,O) using Taylor expansion.

fobj,A(ÂA,O + an∆)− fobj,A(ÂA,O)

= an

{
→∆
df1 (ÂA,O) +

→∆
df2 (ÂA,O) +

→∆
df3 (ÂA,O)

}
+

1

2
a2
n

{
→∆

df2
1 (ÂA,O) +

→∆

df2
2 (ÂA,O) +

→∆

df2
3 (ÂA,O)

}
+f4(ÂA,O + an∆)− f4(ÂA,O) + op(a

2
n).

Because of (11), we have

(12)
→∆
df1 (ÂA,O) +

→∆
df2 (ÂA,O) +

→∆
df3 (ÂA,O) = 0.

Let ∆∗A = (0,∆T )T ∈ RpA×d. Following similar calculations as those in
proving (5), we have

→∆

df2
1 (ÂA,O) +

→∆

df2
2 (ÂA,O) +

→∆

df2
3 (ÂA,O)

=2 tr
{

(Ω−1 + ηΣ−1
Y|Xη

T )ΓT1 ∆T
∗AΓA,0Ω̃0,AΓTA,0∆∗AΓ1 + ΩΓT1 ∆T

∗AΓA,0Ω̃
−1

0,A|IΓ
T
A,0∆∗AΓ1

− 2(Id + AT
AAA)−1∆T

∗AΓA,0Γ
T
A,0∆

T
∗A

}
+ op(1),

(13)

and

(14) f4(ÂA,O + an∆)− f4(ÂA,O) ≥
pA−d∑
i=1

−(pA − d)anλA max
1≤i≤pA−d

‖δi‖2.

Since an = (n−1/2λA)1/2 and λA = o(n−1/2), then anλA = o(a2
n). The right-

hand side of (14) is dominated by a2
n.

Combining (12), (13) and (14),

fobj,A(ÂA,O + an∆)− fobj,A(ÂA,O)

= a2
n tr
{

(Ω−1 + ηΣ−1
Y|Xη

T )ΓT1 ∆T
∗AΓA,0Ω̃0,AΓTA,0∆∗AΓ1 + ΩΓT1 ∆T

∗AΓA,0Ω̃
−1

0,A|IΓ
T
A,0∆∗AΓ1

−2(Id + AT
AAA)−1∆T

∗AΓA,0Γ
T
A,0∆

T
∗A

}
+ op(a

2
n)

= a2
nvec(ΓTA,0∆∗AΓ1)TTvec(ΓTA,0∆∗AΓ1) + op(a

2
n),
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where T = (Ω−1 + ηΣ−1
Y|Xη

T )⊗ Ω̃0,A+ Ω⊗ Ω̃
−1

0,A|I − 2Id⊗ IpA−d is defined
in Proposition 1, and it is invertible. Because

T = Ω−1 ⊗ Ω̃0,A + Ω⊗ Ω̃
−1

0,A|I − 2Id ⊗ IpA−d + ηΣ−1
Y|Xη

T ⊗ Ω̃0,A

≥ Ω−1 ⊗ Ω̃0,A + Ω⊗ Ω̃
−1

0,A − 2Id ⊗ IpA−d + ηΣ−1
Y|Xη

T ⊗ Ω̃0,A

=
(
Ω−1/2 ⊗ Ω̃

1/2

0,A −Ω1/2 ⊗ Ω̃
−1/2

0,A

)2

+ ηΣ−1
Y|Xη

T ⊗ Ω̃0,A,

T is semi-positive definite. Since T is invertible, T is then positive definite.
Let m1 denote its smallest eigenvalue, then

vec(ΓTA,0∆∗AΓ1)TTvec(ΓTA,0∆∗AΓ1) ≥ m1‖ΓTA,0∆∗AΓ1‖2F .

Following the discussion at the end of the proof of Theorem 1, we also have

‖ΓTA,0∆∗AΓ1‖F ≥ m2
2‖∆‖2F ,

where m2 denote the smallest eigenvalue of (Id + AT
AAA)−1. Substituting

these results to fobj,A(ÂA,O + an∆)− fobj,A(ÂA,O), we have

fobj,A(ÂA,O + an∆)− fobj,A(ÂA,O) ≥ a2
nm1m

2
2‖∆‖2F + op(a

2
n).

Since fobj,A(ÂA,O + an∆) − fobj,A(ÂA,O) > 0 with probability tending to
1, we have established (10).

C.5. Proof of Theorem 4. We first show that

‖S−1
X,spice −Σ−1

X ‖F = Op[{(pn + s1) log pn/n}1/2],(15)

‖S−1
X|Y,spice −Σ−1

X|Y‖F = Op[{(pn + s2) log pn/n}1/2].(16)

Let ‖ ·‖max denotes the max norm of a matrix, which is the maximum of the
absolute values of all elements in the matrix. To establish (15) and (16), it
is sufficient to show that there exist positive constants CX and CX|Y such
that

‖SX−ΣX‖max ≤ CX{log(pn)/n}1/2, ‖SX|Y−ΣX|Y‖max ≤ CX|Y{log(pn)/n}1/2.

Let V = (XT − µTX, εT )T ∈ Rr+pn , µV denote the mean of V, ΣV denote
the covariance matrix of V and σ2 = max(σ2

1, σ
2
2). Then each Vi/

√
ΣV,ii,

i = 1, . . . , r + pn, follows a sub-Gaussian distribution with parameter σ2,
where Vi is the ith element in V. Let V̄ denote the sample mean of V and
SV denote the sample covariance matrix of V.
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16 ZHU AND SU

For a matrix A, let Aij denote the (i, j)th element in A. Then for δ > 0,

P (|SV,ij −ΣV,ij | > δ) ≤ P

(∣∣∣∣{ 1

n

n∑
k=1

(Vk − µV)(Vk − µV)T
}
ij
−ΣV,ij

∣∣∣∣ > δ

2

)

+ P

(∣∣∣{(V̄ − µV)(V̄ − µV)T
}
ij

∣∣∣ > δ

2

)
.

From Lemma 1 in Ravikumar et al. (2011), there exist positive constants C1

and C2 such that
(17)

P

(∣∣∣∣{ 1

n

n∑
k=1

(Vk − µV)(Vk − µV)T
}
ij
−ΣV,ij

∣∣∣∣ > δ

2

)
≤ C1 exp(−C2nδ

2)

for all δ ∈
(
0, 8k̄(1 + 4σ2)

)
. Let (V̄ − µV)i denote the ith element in the

vector V̄ − µV. Then we have

E
{
et(V̄−µV)i

}
≤

n∏
k=1

exp

(
t2σ2

2n2

)
= exp

(
t2σ2

2n

)
.

By the Chernoff’s bound, we have

P
(∣∣(V̄ − µV)i

∣∣ > δ
)
≤ 2 exp

(
−nδ

2

2σ2

)
.

For any δ ∈ (0, 1/2), we have δ2 < δ/2 and

P

(∣∣∣{(V̄ − µV)(V̄ − µV)T
}
ij

∣∣∣ > δ

2

)
≤P

(∣∣∣√{(V̄ − µV)(V̄ − µV)T
}
ii

√{
(V̄ − µV)(V̄ − µV)T

}
jj

∣∣∣ > δ

2

)
≤P

(∣∣∣{(V̄ − µV)(V̄ − µV)T
}
ii

∣∣∣ > δ

2

)
+ P

(∣∣∣{(V̄ − µV)(V̄ − µV)T
}
jj

∣∣∣ > δ

2

)
≤P

(∣∣∣{(V̄ − µV)(V̄ − µV)T
}
ii

∣∣∣ > δ2
)

+ P
(∣∣∣{(V̄ − µV)(V̄ − µV)T

}
jj

∣∣∣ > δ2
)

≤P
(∣∣(V̄ − µV)i

∣∣ > δ
)

+ P
(∣∣(V̄ − µV)j

∣∣ > δ
)

≤4 exp

(
−nδ

2

2σ2

)
.

(18)

By (17) and (18), there exists positive constants C3 and C4 such that

P (|SV,ij −ΣV,ij | > δ) ≤ C3 exp(−C4nδ
2).
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Let δ = C
√

log(pn)/n for some C > 0. By the union sum inequality, there
exists a positive constant CV such that

(19) ‖SV −ΣV‖max ≤ CV{log(pn)/n}1/2.

with probability tending to 1 as n tends to infinity. Let X1, . . . ,Xn be n
samples of X, Y1, . . . ,Yn be n samples of Y and e1, . . . , en be n samples of
ε. Then Yi = µ+βT (Xi−µX)+ei. Note that we only observe Xi and Yi, but
we cannot observe ei. Define ē =

∑n
i=1 ei/n, Sε =

∑n
i=1(ei− ē)T (ei− ē)/n

and SXε =
∑n

i=1(Xi − X̄)T (ei − ē)/n. Then from (19), we have

‖SX −ΣX‖max ≤ CV{log(pn)/n}1/2 ‖SXε −ΣXε‖max ≤ CV{log(pn)/n}1/2
‖Sε −Σε‖max ≤ CV{log(pn)/n}1/2.

By Proposition 1 in Li, Chun and Zhao (2012), if M ∈ Rd1×d2 , N ∈ Rd2×d3 ,
then

(20) ‖MN‖max ≤ d2‖M‖max‖N‖max.

Since SXY = SXβ
T + SXε and β has pAr nonzero elements, then

‖SXY −ΣXY‖max ≤ ‖SXβ
T −ΣXβ

T ‖max + ‖Sε −Σε‖max

≤ pA‖SX −ΣX‖max‖βT ‖max + ‖Sε −Σε‖max.

So there exists a positive constant C5 such that

‖SXY −ΣXY‖max ≤ C5{log(pn)/n}1/2.

Since ε has finite fourth moment and ε is independent of X, Y has finite
fourth moment. Then SY is a

√
n-consistent estimator of ΣY, i.e. SY =

ΣY+Op(n
−1/2), and S−1

Y = Σ−1
Y +Op(n

−1/2). Then for any positive constant
C6

‖SY −ΣY‖max ≤ C6[log(pn)/n]1/2

with probability tending to 1 as n tends to infinity. Because SX|Y = SX −
SXYS−1

Y STXY, we have

SX|Y −ΣX|Y =(SX −ΣX)− (SXY −ΣXY)Σ−1
Y ΣT

XY −ΣXY(S−1
Y −Σ−1

Y )ΣT
XY

−ΣXYΣ−1
Y (SXY −ΣXY)T − (SXY −ΣXY)(S−1

Y −Σ−1
Y )ΣT

XY

−ΣXY(S−1
Y −Σ−1

Y )(SXY −ΣXY)T − (SXY −ΣXY)Σ−1
Y (SXY −ΣXY)T

− (SXY −ΣXY)(S−1
Y −Σ−1

Y )(SXY −ΣXY)T .
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Note that ‖ΣX‖max ≤ k̄ and ‖ΣXY‖max = ‖ΣXβ‖max ≤ pAk̄‖β‖max. By
repeatedly using (20) in the expansion of SX|Y−ΣX|Y, there exists a positive

integer CX|Y such that ‖SX|Y − ΣX|Y‖max ≤ CX|Y{log(pn)/n}1/2. Take

CX = CV, then we have ‖SX−ΣX‖max ≤ CX{log(pn)/n}1/2. Then we have
established (15) and (16).

Let an =
√

(pn + s) log(pn)/n. Now we show ‖Â−A‖F = Op

(√
(pn + s) log(pn)/n

)
.

We denote the objective function in (8) as fobj,2. It is sufficient to show that
for any small ε > 0, there exists a sufficiently large constant C such that

(21) lim
n→∞

P

(
inf

∆∈R(pn−d)×d,‖∆‖F =C
fobj,2(A + an∆) > fobj,2(A)

)
> 1− ε.

Let ∆∗ = (0d×d,∆
T )T ∈ Rpn×d. Following the calculations as in Theorem 1,

we compute the Taylor expansion of fobj,2(A + an∆) at A, and get

fobj,2(A + an∆)− fobj,2(A)

≥ 2an tr
[
(GT

AΣX|YGA)−1GT
A(SX|Y,spice −ΣX|Y)∆∗

+{(GT
ASX|Y,spiceGA)−1 − (GT

AΣX|YGA)−1}GT
AΣX|Y∆∗

+{(GT
ASX|Y,spiceGA)−1 − (GT

AΣX|YGA)−1}GT
A(SX|Y,spice −ΣX|Y)∆∗

]
+2an tr

[
(GT

AΣ−1
X GA)−1GT

A(S−1
X,spice −Σ−1

X )∆∗

+{(GT
AS−1

X,spiceGA)−1 − (GT
AΣ−1

X GA)−1}GT
AΣ−1

X ∆∗

+{(GT
AS−1

X,spiceGA)−1 − (GT
AΣ−1

X GA)−1}GT
A(S−1

X,spice −Σ−1
X )∆∗

]
+a2

n tr
{

(Ω−1 + ηΣ−1
Y|Xη

T )ΓT1 ∆T
∗ Γ0Ω0Γ

T
0 ∆∗Γ1 + ΩΓT1 ∆T

∗ Γ0Ω
−1
0 ΓT0 ∆∗Γ1

−2(Id + ATA)−1∆T
∗ Γ0Γ

T
0 ∆T

∗

}
− a2

n(pA − d)a−1
n λA max

1≤i≤pA−d
‖δi‖2 + op(a

2
n).

Let ‖ · ‖ denote the spectral norm of a matrix. For any two matrices M ∈
Rd1×d2 and N ∈ Rd2×d3 ,

(22) ‖MN‖F ≤ ‖M‖‖N‖F .

Then by (22) and Cauchy-Schwartz inequality, the first term in the preceding
display can be lower bounded as follows: tr{(GT

AΣX|YGA)−1GT
A(SX|Y,spice−
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SUPPLEMENT TO ENVELOPE-BASED SPLS 19

ΣX|Y)∆∗} ≥ −‖SX|Y,spice −ΣX|Y‖F ‖∆‖F ‖(GT
AΣX|YGA)−1‖‖GA‖. Since

{(GT
ASX|Y,spiceGA)−1 − (GT

AΣX|YGA)−1}GT
AΣX|Y∆∗

= −(GT
AΣX|YGA)−1(GT

ASX|Y,spiceGA −GT
AΣX|YGA)(GT

AΣX|YGA)−1GT
AΣX|Y∆∗

+op(G
T
ASX|Y,spiceGA −GT

AΣX|YGA)

= (GT
AΣX|YGA)−1GT

AΣX|Y(S−1
X|Y,spice −Σ−1

X|Y)ΣX|YGA(GT
AΣX|YGA)−1GT

AΣX|Y∆∗

+op(an),

the second term can be lower bounded as follows

tr[{(GT
ASX|Y,spiceGA)−1 − (GT

AΣX|YGA)−1}GT
AΣX|Y∆∗]

≥ −‖S−1
X|Y,spice −Σ−1

X|Y‖F ‖∆‖F ‖PGA(ΣX|Y)‖‖ΣX|Y‖‖(GT
AΣX|YGA)−1GT

AΣX|Y‖.]

Following the same derivations and also using the fact that for any matrix A,
‖A‖ ≤ ‖A‖F , the third term can be lower bounded by {(GT

ASX|Y,spiceGA)−1−
(GT

AΣX|YGA)−1}GT
A(SX|Y,spice−ΣX|Y)∆∗ ≥ −‖S−1

X|Y,spice−Σ−1
X|Y‖F ‖SX|Y,spice−

ΣX|Y‖F ‖∆‖F ‖PGA(ΣX|Y)‖‖(GT
AΣX|YGA)−1GT

AΣX|Y‖. Based on the con-

vergence rate of SX|Y,spice and S−1
X|Y,spice, this lower bound is in the order of

a2
n. The bounds for the fourth till the sixth terms can be developed similarly.

Letm1 = ‖(GT
AΣX|YGA)−1‖‖GA‖,m2 = ‖PGA(ΣX|Y)‖‖ΣX|Y‖‖(GT

AΣX|YGA)−1GT
AΣX|Y‖,

m3 = ‖(GT
AΣ−1

X GA)−1‖‖GA‖ andm4 = ‖PGA(Σ−1
X )‖‖Σ−1

X ‖‖(GT
AΣ−1

X GA)−1GT
AΣ−1

X ‖.
We also notice that since λA = o(an), then a−1

n λA = o(1), and a2
n(pA −

d)a−1
n λAmax1≤i≤pA−d ‖δi‖2 = op(a

2
n). Collecting all these bounds and re-

sults together, we have

fobj,2(A + an∆)− fobj,2(A)

≥ −2an
(
m1‖SX|Y,spice −ΣX|Y‖F ‖∆‖F +m2‖S−1

X|Y,spice −Σ−1
X|Y‖F ‖∆‖F

+m3‖S−1
X,spice −Σ−1

X ‖F ‖∆‖F +m4‖SX,spice −ΣX‖F ‖∆‖F
)

+a2
n tr
{

(Ω−1 + ηΣ−1
Y|Xη

T )ΓT1 ∆T
∗ Γ0Ω0Γ

T
0 ∆∗Γ1 + ΩΓT1 ∆T

∗ Γ0Ω
−1
0 ΓT0 ∆∗Γ1

−2(Id + ATA)−1∆T
∗ Γ0Γ

T
0 ∆T

∗

}
+ op(a

2
n).

According to the proof at the end of Theorem 1, there exist a positive
constant k such that

tr
{

(Ω−1 + ηΣ−1
Y|Xη

T )ΓT1 ∆T
∗ Γ0Ω0Γ

T
0 ∆∗Γ1 + ΩΓT1 ∆T

∗ Γ0Ω
−1
0 ΓT0 ∆∗Γ1

−2(Id + ATA)−1∆T
∗ Γ0Γ

T
0 ∆T

∗

}
≥ k‖∆‖2F .
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20 ZHU AND SU

Then with sufficiently large C, the second order term of ‖∆‖F dominates
the first order term, and fobj,2(A + an∆) − fobj,2(A) > 0 with probability

tending to 1. Then we have established (21). So ‖Â−A‖F = Op (an), where
an =

√
(pn + s) log(pn)/n.

Since β̂ = Γ̂(Γ̂
T
SX,spiceΓ̂)−1Γ̂

T
SXY = P

ĜA(SX,spice)
S−1

X,spiceSXY,

‖β̂−β‖F = ‖P
ĜA(SX,spice)

(S−1
X,spiceSXY−Σ−1

X ΣXY)‖F+‖(P
ĜA(SX,spice)

−PGA(ΣX))Σ
−1
X ΣXY‖F .

Since ‖P
ĜA(SX,spice)

‖ = 1 and SXY is a
√
n-consistent estimator of ΣXY,

then

‖P
ĜA(SX,spice)

(S−1
X,spiceSXY −Σ−1

X ΣXY)‖F ≤ ‖S−1
X,spiceSXY −Σ−1

X ΣXY‖F
≤ ‖(S−1

X,spice −Σ−1
X )ΣXY‖F + ‖Σ−1

X (SXY −ΣXY)‖F + ‖(S−1
X,spice −Σ−1

X )(SXY −ΣXY)‖F
= Op(an),

and

‖(P
ĜA(SX,spice)

−PGA(ΣX))Σ
−1
X ΣXY‖F ≤ ‖PĜA(SX,spice)

−PGA(ΣX)‖‖β‖F .

Because ‖SX,spice−ΣX‖F = Op (an), ‖Â−A‖F = Op (an), then ‖P
ĜA(SX,spice)

−
PGA(ΣX)‖ = Op (an). So we have ‖β̂ − β‖F = Op(an).

C.6. Proof of Theorem 5. Because of the consistency results in Theo-
rem 4 that ‖Â−A‖F = Op(

√
(pn + s) log(pn)/n), then âi, i = 1, . . . , pA−d,

converges to ai with the rate
√
n/[(pn + s) log(pn)]. Therefore P (âi 6= 0)→

1 for i = 1, . . . , pA − d.
Now we prove the selection consistency P (âi = 0, i = pA−d+ 1, . . . , pn−

d)→ 1. Let fobj,2 be the objective function for A defined in (8). Let

AA =

 a1
...

apA−d

 ∈ R(pA−d)×d and AI =

 apA−d+1
...

apn−d

 ∈ RpI×d.

Then A = (AT
A,A

T
I )T . Let an =

√
(pn + s) log(pn)/n,

Â0 =

(
ÂA
0

)
∈ R(pn−d)×d and ∆0 =

(
0

ÂI

)
∈ R(pn−d)×d.

We need to show that for any constant C > 0, if ‖ÂA −AA‖F = Op(an),
then

(23) lim
n→∞

P

(
inf

‖ÂI‖F≤anC,ÂI 6=0
fobj,2(Â0 + ∆0) > fobj,2(Â0)

)
> 1− ε,
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for any small ε > 0.
Let ∆ = ∆0/an, then ‖∆‖F ≤ C. Let ∆∗ = (0d×d,∆

T )T ∈ Rpn×d. Using
the Taylor expansion of fobj,2(Â0 + an∆) at Â0, we have

fobj,2(Â0 + an∆)− fobj,2(Â0)

= 2an tr
[
(GT

ASX|Y,spiceGA)−1GT
ASX|Y,spice∆∗

+(GT
AS−1

X,spiceGA)−1GT
AS−1

X,spice∆∗ − 2(Id + ATA)−1AT∆
]

+a2
n tr
[
(Ω−1 + ηΣ−1

Y|Xη
T )ΓT1 ∆T

∗ Γ0Ω0Γ
T
0 ∆∗Γ1

+ΩΓT1 ∆T
∗ Γ0Ω

−1
0 ΓT0 ∆∗Γ1 − 2(Id + ATA)−1∆T

∗ Γ0Γ
T
0 ∆∗

]
+λ

pn−d∑
i=pA−d+1

wi‖âi‖2 + op(a
2
n).

First

λ

pn−d∑
i=pA−d+1

wi‖âi‖2 ≥ λI
pn−d∑

i=pA−d+1

‖âi‖2.

Using equations (15) and (16), SX|Y,spice = ΣX|Y +Op(an) and SX|Y,spice =
ΣX|Y +Op(an).

tr
[
(GT

ASX|Y,spiceGA)−1GT
ASX|Y,spice∆∗ + (GT

AS−1
X,spiceGA)−1GT

AS−1
X,spice∆∗

−2(Id + ATA)−1AT∆
]

= tr
[
(GT

AΣX|YGA)−1GT
AΣX|Y∆∗ + (GT

AΣ−1
X GA)−1GT

AΣ−1
X ∆∗

−2(Id + ATA)−1AT∆
]

+Op(an)

= Op(an).

Based on the calculation in Theorem 4, we also have

tr
{

(Ω−1 + ηΣ−1
Y|Xη

T )ΓT1 ∆T
∗ Γ0Ω0Γ

T
0 ∆∗Γ1 + ΩΓT1 ∆T

∗ Γ0Ω
−1
0 ΓT0 ∆∗Γ1

−2(Id + ATA)−1∆T
∗ Γ0Γ

T
0 ∆T

∗

}
≥ k‖∆‖2F ,

where k is a positive constant.
Combining all these results,

fobj,2(Â0+an∆)−fobj,2(Â0) ≥ Op(a2
n)+a2

nk‖∆‖2F+a2
n

λI
an

pn−d∑
i=pA−d+1

‖âi/an‖2.
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Since ÂI 6= 0 and ‖∆‖F ≤ C, we have 0 <
∑pn−d

i=pA−d+1
‖âi/an‖2 ≤ C. Be-

cause an = o(λI), then λI/an →∞. Therefore fobj,2(Â0+an∆) > fobj,2(Â0)
with probability tending to 1. In other words, we have established (23).

C.7. Proof of Theorem 6. Before we prove Theorem 6, we first intro-
duce some results on manifold theory, as well as the properties of the oracle
estimator.

Outline of manifold theory. We first introduce a few concepts and results
on Stiefel manifold and Grassmann manifold, which will play an important
role in this proof. A Stiefel manifold, denoted by St(p, d), is the set of all
p × d semi-orthogonal matrices. In other words, St(p, d) = {G ∈ Rp×d :
GTG = Id}. A Grassmann manifold is G(p, d) = {span(G) : G ∈ St(p, d)}.

Next we define neighborhood in manifolds, which is a key concept used
in our proofs. In preparation, we first introduce projection operator and
tangent space in manifolds. The projection operator onto a Stiefel manifold
R : Rp×d → St(p, d) is defined as

R(M) = arg min
G∈St(p,d)

‖M−G‖2F ,

where M ∈ Rp×d is an arbitrary matrix. By Proposition 7 in Manton (2002),
if M = LDRT is a singular value decomposition of M, then R(M) =
LIp,dR

T ∈ St(p, d), where Ip,d ∈ Rp×d is obtained by replacing all the
nonzero elements in D by 1. The tangent space TΓ(p, d) of G ∈ St(p, d)
is defined as

TG(p, d) = {Z ∈ Rp×d : Z = GA+G0B, where A ∈ Rd×d,A+AT = 0,B ∈ R(p−d)×d},
G0 is the completion of G such that (G,G0) is an orthogonal matrix
(Manton, 2002). Then for a point G on a Stiefel manifold, the neighbor-
hood around G is R(G + δM), where M ∈ Rp×d is an arbitrary ma-
trix, δ is a scalar, and R is the projection operator. Then for a point
span(G) on a Grassmann manifold, the neighborhood around span(G) is
span{R(G + δM)}. By Lemma 8 in (Manton, 2002), M can be decomposed
as M = GA+G0B+GC, where A ∈ Rd×d is skew symmetric, B ∈ R(p−d)×d,
and C ∈ Rd×d is symmetric. Notice that GA + G0B ∈ TG(p, d). Chen, Zou
and Cook (2010) showed that span{R(G+δM)} depends on M only through
G0B, so the neighborhood around span(G) on a Grassmann manifold only
depends on the tangent space.

Now we develop Taylor expansion of a differentiable function on a man-
ifold, which is essential to our techniques for handling a general objec-
tive function. In preparation, we first explain directional derivative. Let
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f(G) : Rp×d → R be a differentiable function, and let M ∈ Rp×d be an
arbitrary matrix. The directional derivative of f(G) in the direction M
evaluated at G is

→M
df (G) =

d

dδ

∣∣∣∣
δ=0

f(G + δM).

In other words, the directional derivative
→M
df (G) can be thought of the

slope of f(G) along the “line” {f(G + δM) : δ ∈ R} at δ = 0 (Dattorro,
2016). Similarly, the second directional derivative of f(G) in the direction
M evaluated at G is

→M

df2 (G) =
d2

dδ2

∣∣∣∣
δ=0

f(G + δM).

By Dattorro (2016), if f is second-order differentiable, then for some open
interval of δ, f has the following second-order Taylor series expansion

f(G + δM) = f(G) + δ
→M
df (G) +

1

2!
δ2
→M

df2 (G) + o(δ2).

Since a neighborhood on a Stiefel manifold can be written as

R(G + δM) = G + δM− 1

2
δ2GMTM + o(δ2)

(Manton, 2002, Proposition 12). Let M∗ = M − 1
2δGMTM + o(δ), then

for a second-order differentiable function f defined on a Stiefel manifold, we
have the following Taylor expansion

f{R(G + δM)} = f(G) + δ
→M∗

df (G) +
1

2
δ2
→M∗

df2 (G) + o(δ2).

Properties of oracle estimators. We first define the oracle model for a
standard generalized linear model and present the asymptotic variance of
its estimators.

In the generalized linear model (12), suppose we know in advance about
which predictors are active and which are inactive, the oracle model is de-
fined as
(24)
log(f(Y |θ)) = yθ−b(θ)+c(y) θ(α,βA) = (b′)−1{g−1(ζ)}, ζ = α+βTAXA.

Then α and βA can be estimated by fitting a generalized linear model of Y
on XA, and the Fisher information matrix for the parameters (α,βTA)T is

EX,Y

(
−D′′(ζ)

(
1 XT

A
XA XAXT

A

))
,
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where the expectation above is taken with respect to the joint distribution
(X, Y ). Define µ = b′(θ). Then µ = g−1(ζ). The first derivative of D(ζ) is

D′(ζ) =
dD(ζ)

dζ
=
dD(ζ)

dθ

dθ

dµ

dµ

dζ

= C′(θ) 1

b′′(θ)

1

g′(µ)

= {Y − b′(θ)} 1

b′′(θ)

1

g′(µ)

= (Y − µ)
1

b′′(θ)

1

g′(µ)
.

The second derivative of D(ζ) is

D′′(ζ) =
d2D(ζ)

dζ2
=
dD′(ζ)

dµ

dµ

dζ

=

[
− 1

b′′(θ)g′(µ)
+ (Y − µ)

d

dµ

(
1

b′′(θ)g′(µ)

)]
1

g′(µ)
.

Then the Fisher information matrix for the parameters (α,βTA)T is

EX,Y

(
−D′′(ζ)

(
1 XT

A
XA XAXT

A

))
= EX

[
EY |X

(
−D′′(ζ)

(
1 XT

A
XA XAXT

A

))]
= EX

[
1

b′′(θ)g′(µ)

(
1 XT

A
XA XAXT

A

)]
= EX

[
1

b′′[(b′)−1{g−1(ζ)}][g′{g−1(ζ)}]2
(

1 XT
A

XA XAXT
A

)]
.

The second equality is because EY |X(Y − µ) = 0. Let

I(ζ) =
1

b′′(θ)g′(µ)
=

1

b′′[(b′)−1{g−1(ζ)}][g′{g−1(ζ)}]2 .

Then

D′′(ζ) = −I(ζ) +
Y − µ
g′(µ)

d

dµ

(
1

b′′(θ)g′(µ)

)
.

From now on, when it does not raise confusion, we omit the subscript X
in the expectation to make the notation simpler. So the Fisher information
matrix for the parameters (α,βTA)T is denoted as

E

[
I(ζ)

(
1 XT

A
XA XAXT

A

)]
.
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Let W (ζ) = I(ζ)/E{I(ζ)}. Then

E

[
I(ζ)

(
1 XT

A
XA XAXT

A

)]
= E{I(ζ)}E

[
W (ζ)

(
1 XT

A
XA XAXT

A

)]
= E{I(ζ)}

[
E{W (ζ)} E{W (ζ)XT

A}
E{W (ζ)XA} E{W (ζ)XAXT

A}

]
= E{I(ζ)}

(
1 E(WXT

A)
E(WXA) E(WXAXT

A)

)
.

To facilitate the calculations in subsequent derivations, we transform the
original parameters to orthogonal parameters (Huzurbazar, 1956; Cox and
Reid, 1987). Let a = α+ βTAE(WXA), then ζ = α+ βTAX = a+ βTA(XA −
E(WXA)). After transforming the original parameter (α,βTA)T to (a,βTA)T ,
the Fisher information matrix for the new parameterization (a,βTA) is

E{I(ζ)}
(

1 0
−E(WXA) IpA

)(
1 E(WXT

A)
E(WXA) E(WXAXT

A)

)(
1 −E(WXT

A)
0 IpA

)
= E{I(ζ)}

(
1 0
0 ΣXA(W )

)
,

where ΣXA(W ) = E{W [XA − E(WXA)][XA − E(WXA)]T }. Therefore the
maximum likelihood estimator of βA has asymptotic distribution

√
n{vec(β̂A)− vec(βA)} d→ N(0,VO,βA),

where VO,βA = [E{I(ζ)}ΣXA(W )]
−1.

Based on the discussion, we have the following Lemma.

Lemma 2 Assume the oracle model (24) holds, and X follows a normal
distribution with mean µX and covariance matrix ΣX. Then the Fisher in-
formation matrix for (a,βTA, vech(ΣX)T )T is

J =

 E{I(ζ)} 0 0
0 E{I(ζ)}ΣXA(W )

0

0 0 1
2ET

p (Σ−1
X ⊗Σ−1

X )Ep

 .

The parameter ΣX is asymptotically independent of the other parameters
because the distribution of X is ancillary in the estimation and its parame-
ters are estimated independently.

Now we define the oracle envelope model under the context of generalized
linear regression and discuss the properties of its estimators. Under the
envelope model (13), suppose we have the information of which predictors
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are active and which predictors are inactive, we define the oracle envelope
model as

log(f(Y | θ)) =Y θ − b(θ) + c(Y ), θ(ζ) = (b′)−1{g−1(ζ)},

ζ(α,Γ,η) =α+ ηTΓTX, ΣX = ΓΩΓT + Γ0Ω0Γ
T
0 , Γ =

(
ΓA
0

)
.

(25)

The oracle envelope model seems to have the same form as the sparse enve-
lope model (15). The difference is that the oracle envelope model (25) has the
additional information of which predictors are active and which predictors
are inactive, while under the sparse envelope model (15), this information is
unknown and needs to be estimated.

Denote the maximum likelihood estimator of βA under the oracle envelope
model as β̂A,O. The next lemma gives the asymptotic distribution of β̂A,O
under normality. In preparation, under the oracle envelope model, Γ0 can
have the block diagonal structure

Γ0 =

(
ΓA,0 0

0 Ip−pA

)
where ΓA,0 ∈ RpA×(pA−d) is the completion of ΓA. As Ω0 = ΓT0 ΣXΓ0, when

Γ0 has this block diagonal structure, we denote the corresponding Ω0 as Ω̃0,
and Ω̃0 can be partitioned accordingly into

Ω̃0 =

(
Ω̃A,0 Ω̃AI,0
Ω̃IA,0 Ω̃I,0

)
.

Lemma 3 Assume the oracle envelope model (25) holds and the distribution
of X has finite fourth moments. Then

√
n(β̂A,O−βA) converges to a normal

distribution with mean 0. If we further assume that X follows a normal
distribution with mean µX and covariance matrix ΣX. Then the asymptotic
variance of β̂A,O has a closed form, i.e.

√
n(β̂A,O − βA)

d→ N(0,V),

where V = PΓAV−1
O,βA

PΓA+(ηT⊗ΓA,0)T−1(η⊗ΓTA,0), T = (η⊗ΓTA,0)V−1
O,βA

(ηT⊗
ΓA,0) + Ω ⊗ Ω̃

−1

0,A|I + Ω−1 ⊗ Ω̃0,A − 2Id ⊗ IpA−d, and VO,βA = [E{I(ζ)} ·
ΣXA(W )]

−1.
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Proof: We use Shapiro (1986) to derive the asymptotic variance of the oracle
envelope model estimator of (a,βTA, vech(ΣX)T )T . The parameters of the
oracle envelope model are

φ = {a,ηT , vecT (ΓA), vechT (Ω), vechT (Ω0)}T

≡ {φT1 ,φT2 ,φT3 ,φT4 ,φT5 }T ,

and the parameters under model (24) are

h(φ) = {a,βTA, vechT (ΣX)}T

≡ (hT1 (φ),hT2 (φ),hT3 (φ))T .

According to Proposition 4.1 in Shapiro (1986), the asymptotic covariance
of h(φ̂) is H(HTJH)†HT , where J is the Fisher information matrix of h(φ)
under the standard model (24) and is given in Lemma 2, and H = ∂h/∂φT

is the gradient matrix:

H =

1 0 0 0 0
0 ΓA ηT ⊗ Iq 0 0
0 0 H32 Cp(Γ⊗ Γ)Ed Cp(Γ0 ⊗ Γ0)Ep−d

 .

The expression of H32 is H32 = 2Cp[(ΓΩ) ⊗ Ip − Γ ⊗ (Γ0Ω0Γ
T
0 )]L, where

L = Id ⊗ Ip,pA and Ip,pA ∈ Rp×pA contains the first pA columns of Ip.
After some straightforward algebra, we find that the asymptotic variance
of vec(β̂A,O) is PΓAVO,βAPΓA + (ηT ⊗ ΓA,0)T−1(η ⊗ ΓTA,0), where T =

(η ⊗ ΓTA,0)V−1
O,βA

(ηT ⊗ ΓA,0) + Ω⊗ Ω̃
−1

0,A|I + Ω−1 ⊗ Ω̃0,A − 2Id ⊗ IpA−d.
Now we return to the proof of Theorem 6.

Proof of Theorem 6, part (a). As β̂ = Γ̂η̂, to prove the
√
n-consistency of

β̂, we only need to prove the
√
n-consistency of Γ̂ and η̂. We use an iterative

algorithm to estimate η̂ and Γ̂, and the starting value is
√
n-consistent.

So we will show that at each iteration, the estimators are
√
n-consistent.

Then the estimators we obtain at convergence are
√
n-consistent. Suppose

we have the
√
n-consistent estimator Γ̃(k) at the kth step (k = 1, 2 . . .),

we can get α̃(k) and η̃(k) by using scoring method McCullagh and Nelder

(1989) to fit the generalized linear model of Y on Γ̃
T

(k)X. Then α̃(k) and
η̃(k) are

√
n-consistent. The rest part of the proof shows that given the

√
n-

consistent estimators α̃(k) and β̃(k) = Γ̃(k)η̃(k), the estimator Γ̃(k+1) obtained
by minimizing the objective function (16) is also

√
n-consistent.

Denote the objective function in (16) by fobj(Γ). Let Γ̃(k)0 be a completion

of Γ̃(k). Since fobj depends on Γ only through its span, it is sufficient to show
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that for any small ε > 0, there exists a sufficiently large constant C, such
that

(26)

lim
n→∞

P

 inf
Z∈T

Γ̃(k)(p,d)
,

Z=Γ̃(k)A+Γ̃(k)0B, ‖B‖F =C

fobj(R(Γ̃(k) + n−1/2Z)) > fobj(Γ̃(k))

 > 1−ε.

We write fobj into four parts

fobj(Γ) = − 2

n

n∑
i=1

D(µV(k)(W(k)) + η̃T(k)Γ
T (Xi − µX(W(k))

))

+ log |ΓTSXΓ|+ log |ΓTS−1
X Γ|+

p∑
i=1

λi‖γi‖2

≡ f1(Γ) + f2(Γ) + f3(Γ) + f4(Γ),

where W(k) and V(k) denote the weight and pseudo-response at kth itera-
tion, and η̃(k) is the estimator of η at kth iteration. Let W(k),i and V(k),i

be the weight and pseudo-response for the ith observation at kth iteration,
µX(W(k)) =

∑n
i=1W(k),iXi/n, SX(W(k)) =

∑n
i=1W(k),i(Xi − µX(W(k))

)(Xi −
µX(W(k))

)T /n, SXV(k)(W(k)) =
∑n

i=1W(k),i(Xi−µX(W(k))
)(V(k),i−µV(k)(W(k)))/n.

With fixed Γ̃(k), η̃(k) is the estimated coefficients from the generalized linear

model of Y on Γ̃
T

(k)X. Then η̃(k) = (Γ̃
T

(k)SX(W(k))Γ̃(k))
−1Γ̃

T

(k)SXV(k)(W(k)), and

it is treated as a function of Γ̃(k) in the objective function. Let µV(k)(W(k)) =∑n
i=1W(k),iV(k),i/n and ζ̃(k),i(Γ) = µV(k)(W(k)) +η̃T(k)Γ

T (Xi−µX(W(k))
). Then

we update the weights and pseudo-responses for the next iterationW(k+1),i =

nI(ζ̃(k),i)/
∑n

i=1 I(ζ̃(k),i) and V(k+1),i = ζ̃(k),i + {Yi − g−1(ζ̃(k),i)}/W(k),i.

Expand f1{R(Γ̃(k) + n−1/2Z)}, we have

f1{R(Γ̃(k) + n−1/2Z)} =f1(Γ̃(k) + n−1/2Z∗)

=f1(Γ̃(k)) + n−1/2
→Z∗

df1 (Γ̃(k)) +
1

2
n−1

→Z∗

df2
1 (Γ̃(k)) + op(n

−1),

where Z∗ = Z−(1/2)n−1/2Γ̃(k)Z
TZ+op(n

−1/2). The first directional deriva-
tive is
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→Z∗

df1 (Γ̃(k)) = tr

{
df1(Γ)

dΓ

T

Z∗
}∣∣∣

Γ=Γ̃(k)

= − 2

n
tr

{ n∑
i=1

D′
(
ζ̃(k),i(Γ̃(k))

) [
η̃(k)(Xi − µX(W(k))

)T

+(Γ̃
T

(k)SX(W (k))Γ̃(k))
−1Γ̃

T

(k)(Xi − µX(W(k))
)ST

XṼ(k)(W
(k))

−η̃(k)(Xi − µX(W (k)))
T Γ̃(k)(Γ

T
(k)SX(W (k))Γ̃(k))

−1Γ̃
T

(k)SX(W (k))

−(ΓT(k)SX(W (k))Γ̃(k))
−1Γ̃

T

(k)(Xi − µX(W(k))
)η̃T(k)Γ̃

T

(k)SX(W (k))

]
Z∗
}

= − 2

n
tr

{ n∑
i=1

D′
(
ζ̃(k),i(Γ̃(k))

)
η̃(k)(Xi − µX(W(k))

)TZ∗
}

= − 2

n

n∑
i=1

D′
(
ζ̃(k),i(Γ̃(k))

)
(Xi − µX(W(k))

)TZ∗η̃(k)

= − 2

n

n∑
i=1

D′
(
ζ̃(k),i(Γ̃(k))

)
(Xi − µX(W(k))

)T [(Γ̃(k)A + Γ̃(k),0B)

−1

2
n−1/2Γ̃(k)Z

TZ]η̃(k) +Op(n
−1)

= − 2

n

n∑
i=1

D′
(
ζ̃(k),i(Γ̃(k))

)
(Xi − µX(W(k))

)T Γ̃(k),0Bη̃(k) +Op(n
−1).

The third and last equality are because that η̃(k) is the maximum likelihood

estimator of the coefficients from the generalized linear model of Y on Γ̃
T

(k)X,

with Γ̃
T

(k) being fixed. Then
∑n

i=1D′(ζ̃(k),i)Γ̃
T

(k)(Xi − µX(W(k))
) = 0. Taking

transpose on both sides, we have

n∑
i=1

D′
(
ζ̃(k),i(Γ̃(k))

)
(Xi − µX(W(k))

)T Γ̃(k) = 0.

Let β̂GLM and α̂GLM denote the maximum likelihood estimator of β and α
under the standard generalized linear model (12). Then β̂GLM and α̂GLM are
√
n-consistent estimator of α and β. Let α̃(k) = µV(k)(W(k))−η̃

T
(k)Γ̃

T

(k)µX(W(k))

and β̃(k) = Γ̃(k)η̃(k) be the estimator of α and β at kth iteration. Then α̃(k)

and β̃(k) are also
√
n-consistent estimator of α and β. Then there exists U1n
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and U2n such that

α̃(k) − α̂GLM = n−1/2U1n +Op(n
−1),

β̃(k) − β̂GLM = n−1/2U2n +Op(n
−1).

Notice that ζ̃(k),i(Γ̃(k)) can be written as ζ̃(k),i(Γ̃(k)) = α̃(k) + β̃
T

(k)Xi. Let

ζ̂GLM,i = α̂GLM + β̂
T

GLMXi. Then we have

ζ̃(k),i(Γ̃(k))− ζ̂GLM,i = n−1/2(U1n + UT
2nXi) +Op(n

−1).

Expand D′
(
ζ̃(k),i(Γ̃(k))

)
, we get

(27)

D′
(
ζ̃(k),i(Γ̃(k))

)
= D′(ζ̂GLM,i) + n−1/2D′′(ζ̂GLM,i)(U1n + UT

2nXi) +Op(n
−1).

We also have
∑n

i=1D′(ζ̂GLM,i) = 0 and
∑n

i=1D′(ζ̂GLM,i)Xi = 0 because the

derivative of D(ζ(α,β)) at α̂GLM and β̂GLM is 0. So

(28)

n∑
i=1

D′(ζ̂GLM,i)(Xi − µX(W(k))
) = 0.

Let Ŵ be the weight at convergence under the standard model, then µ
X(Ŵ )

is a
√
n-consistent estimator of µX(W ). Let µi = g−1(ζ̂GLM,i). Then

1

n

n∑
i=1

D′′(ζ̂GLM,i)(Xi − µX(W(k))
)(29)

= − 1

n

n∑
i=1

I(ζ̂GLM,i)(Xi − µX(W(k))
)

+
1

n

n∑
i=1

yi − µi
g′(µi)

d

dµi

( 1

b′′((b′)−1(µi))g′(µi)

)
(Xi − µX(W(k))

)

= − 1

n

n∑
i=1

I(ζ̂GLM,i)(Xi − µX(W(k))
) +Op(n

−1/2)

= − 1

n

n∑
i=1

I(ζ̂GLM,i)(Xi − µX(Ŵ )
)− 1

n

n∑
i=1

I(ζ̂GLM,i)(µX(Ŵ )
− µX(W(k))

)

= Op(n
−1/2).
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In the second equality, we use central limited theorem and the expecta-
tion of the second summand is zero. More specifically, the second summand
converges in distribution with rate of

√
n to

EX,Y

[
Y − µ
g′(µ)

d

dµ

(
1

b′′(θ)g′(µ)

)
(X− µX(W ))

]
= 0.

In the last equality,
∑n

i=1 I(ζ̂GLM,i)(Xi−µX(Ŵ )
) = 0 is because of I(ζ̂GLM,i) =

cŴi, where Ŵi’s are the sample weights, and c =
∑n

i=1 I(ζ̂GLM,i)/n. And

the second term has order Op(n
−1/2) since

∑n
i=1 I(ζ̂GLM,i)/n converges to

E{I(ζ)} in distribution.
Let Vβ be the asymptotic variance of β̂GLM. Using (29), we have

1

n

n∑
i=1

D′′(ζ̂GLM,i)X
T
i (Xi − µX(W(k))

)(30)

=
1

n

n∑
i=1

D′′(ζ̂GLM,i)(Xi − µX(W(k))
)T (Xi − µX(W(k))

) +Op(n
−1/2)

= −V−1
β +Op(n

−1/2).

The last equality is because
∑n

i=1(Xi−µX(W(k))
)D′′(ζ̂GLM,i)(Xi−µX(W(k))

)T /n

converges in distribution to EX,Y [D′′(ζ){X − E(WX)}{X − E(WX)}T ] =
−EX[I(ζ){X−E(WX)}{X−E(WX)}T ] = −E{I(ζ)}E[W{X−E(WX)}{X−
E(WX)}T ] = −E{I(ζ)}ΣX(W ) = −V−1

β with rate of
√
n.

Using (27), (28), (29) and (30), the first directional derivative of f1 is

→Z∗

df1 (Γ̃(k)) = − 2

n
tr

{ n∑
i=1

D′(ζ̂GLM,i)(Xi − µX(W(k))
)T Γ̃(k),0Bη̃(k)

}

− 2

n
tr
{
n−1/2

n∑
i=1

[
D′′(ζ̂GLM,i)U1n(Xi − µX(W(k))

)T

+D′′(ζ̂GLM,i)U
T
2nXi(Xi − µX(W(k))

)T
]
Γ̃(k),0Bη̃(k)

}
+Op(n

−1)

= − 2

n
n−1/2

n∑
i=1

UT
2n(Xi − µX(W(k))

)D′′(ζ̂GLM,i)(Xi − µX(W(k))
)T Γ̃(k),0Bη̃(k)

+Op(n
−1)

= 2n−1/2UT
2nV

−1
β Γ0Bη +Op(n

−1)

= 2n−1/2 tr(ηUT
2nV

−1
β Γ0B) +Op(n

−1)

≥ −2n−1/2‖B‖F ‖ηUT
2nV

−1
β Γ0‖F +Op(n

−1).
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The second directional derivative of f1 is

→Z∗

df2
1 (Γ̃(k)) = tr

{[
d
→Z∗

df1 (Γ)

dΓ

]T
Z∗
}∣∣∣∣

Γ=Γ̃(k)

=
2

n

n∑
i=1

tr

{
−D′

(
ζ̃(k),i(Γ̃(k))

) [
S

XṼ(k)(W(k))
(Xi − µX(W(k))

)TZ∗(Γ̃
T

(k)SX(W(k))Γ̃(k))
−1

−SX(W(k))Γ̃(k)(Γ̃
T

(k)SX(W(k))Γ̃(k))
−1Γ̃

T

(k)SXṼ(k)(W(k))
(Xi − µX(W(k))

)TZ∗(Γ̃
T

(k)SX(W(k))Γ̃(k))
−1

−SX(W(k))Γ̃(k)(Γ̃
T

(k)SX(W(k))Γ̃(k))
−1Z∗T (Xi − µX(W(k))

)ST
XṼ(k)(W(k))

Γ̃(k)(Γ̃
T

(k)SX(W(k))Γ̃(k))
−1
]T

Z∗

+η̃T(k)Z
∗T (Xi − µX(W(k))

)
(
−D′′(ζ̃(k),i)

) [
(Xi − µX(W(k))

)TZ∗η̃(k)

+(Xi − µX(W(k))
)T Γ̃(k)(Γ̃

T

(k)SX(W(k))Γ̃(k))
−1Z∗TS

XṼ(k)(W(k))

−(Xi − µX(W(k))
)T Γ̃(k)(Γ̃

T

(k)SX(W(k))Γ̃(k))
−1Γ̃

T

(k)SX(W(k))Z
∗η̃(k)

−(Xi − µX(W(k))
)T Γ̃(k)(Γ̃

T

(k)SX(W(k))Γ̃(k))
−1Z∗TSX(W(k))Γ̃(k)η̃(k)

]}
.

We focus on the first three terms, which all contains −D′
(
ζ̃(k),i(Γ̃(k))

)
. Since

ζ̃(k),i(Γ̃(k)) is
√
n-consistent, using (28), the first three terms can be written

as

2

n

n∑
i=1

tr

{
−D′(ζ̂GLM,i)

[
S

XṼ(k)(W(k))
(Xi − µX(W(k))

)TZ∗(Γ̃
T

(k)SX(W(k))Γ̃(k))
−1

−SX(W(k))Γ̃(k)(Γ̃
T

(k)SX(W(k))Γ̃(k))
−1Γ̃

T

(k)SXṼ(k)(W(k))
(Xi − µX(W(k))

)TZ∗(Γ̃
T

(k)SX(W(k))Γ̃(k))
−1

−SX(W(k))Γ̃(k)(Γ̃
T

(k)SX(W(k))Γ̃(k))
−1Z∗T (Xi − µX(W(k))

)ST
XṼ(k)(W(k))

Γ̃(k)(Γ̃
T

(k)SX(W(k))Γ̃(k))
−1
]T

Z∗
}

+op(1)

=op(1).

imsart-aos ver. 2014/10/16 file: supplement4.tex date: September 6, 2018



SUPPLEMENT TO ENVELOPE-BASED SPLS 33

Then

→Z∗

df2
1 (Γ̃(k)) = 2

{
ηTZTV−1

β Zη + E{−D′′(ζ)}ηTZTV−1
β Γ(ΓTV−1

β Γ)−1ZTΣXV (W )

−ηTZTV−1
β Γ(ΓTV−1

β Γ)−1ΓTV−1
β Zη

−E{−D′′(ζ)}ηTATΓTV−1
β Γ(ΓTV−1

β Γ)−1ZTV−1
β Γ(ΓTV−1

β Γ)−1ΓTΣXV (W )

}
+op(1)

= 2
{
ηTATΓTV−1

β ΓAη + ηTBTΓT0 V−1
β Γ0Bη

+E{−D′′(ζ)}ηTATΓTV−1
β Γ(ΓTV−1

β Γ)−1ATΓTΣXV (W )

−ηTATΓTV−1
β Γ(ΓTV−1

β Γ)−1ΓTV−1
β ΓAη

−E{−D′′(ζ)}ηTATΓTV−1
β Γ(ΓTV−1

β Γ)−1ATΓTV−1
β Γ(ΓTV−1

β Γ)−1ΓTΣXV (W )

}
+op(1)

= 2ηTBTΓT0 V−1
β Γ0Bη + op(1)

= 2vec(Γ0Bη)TV−1
β vec(Γ0Bη) + op(1)

= 2vec(B)T [(η ⊗ ΓT0 )V−1
β (ηT ⊗ Γ0)]vec(B) + op(1).

The first equality uses the facts η̃(k) = (Γ̃
T

(k)SX(W(k))Γ̃(k))
−1Γ̃

T

(k)SXV(k)(W(k))

and SX(W(k)) = ΣX(W(k))+op(1) = V−1
β E{I(ζ)}−1+op(1) = V−1

β E{−D′′(ζ)}−1+

op(1). The second equality uses the fact that ΓTVβΓ0 = 0. This is because
that when X follows an elliptically contoured distribution, span(Γ) also re-
duces Vβ (Cook and Zhang, 2015).

We substitute
→Z∗

df1 (Γ̃(k)) and
→Z∗

df2
1 (Γ̃(k)) into the expansion for f1 and get

f1{R(Γ̃(k) + n−1/2Z)} − f1(Γ̃(k))

≥ −2n−1‖B‖F ‖ηUT
2nV

−1
β Γ0‖F

+n−1vec(B)T [(η ⊗ ΓT0 )V−1
β (ηT ⊗ Γ0)]vec(B) + op(n

−1).

Now we expand f2{R(Γ̃(k) + n−1/2Z)},

f2{R(Γ̃(k)+n
−1/2Z)} = f2(Γ̃(k))+n

−1/2
→Z∗

df2 (Γ̃(k))+
1

2
n−1

→Z∗

df2
2 (Γ̃(k))+op(n

−1).

Let Γ̃(k),0 be a completion of Γ̃(k). Since Γ̃(k) is a
√
n-consistent estimator of

Γ, and Γ̃(k),0 is a continuous function of Γ̃(k), then Γ̃(k),0 is a
√
n-consistent

estimator of Γ0. Because that SX, Γ̃(k) and Γ̃(k),0 are
√
n-consistent estima-

tors of ΣX, Γ and Γ0. Then (Γ̃
T

(k)SXΓ̃(k))
−1Γ̃

T

(k)SXΓ̃(k),0 is a
√
n-consistent
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estimator of (ΓTΣXΓ)−1ΓTΣXΓ0, and we have

(Γ̃
T

(k)SXΓ̃(k))
−1Γ̃

T

(k)SXΓ̃(k),0 = (ΓTΣXΓ)−1ΓTΣXΓ0 + n−1/2Tn +Op(n
−1),

where Tn converges in distribution to a normal random matrix with mean
0. Then the first directional derivative of f2 is

→Z∗

df2 (Γ̃(k)) = tr

{
df2(Γ)

dΓ

T

Z∗
}∣∣∣

Γ=Γ̃(k)

= tr
{

2(Γ̃
T

(k)SXΓ̃(k))
−1Γ̃

T

(k)SXZ∗
}

= 2 tr
{

(Γ̃
T

(k)SXΓ̃(k))
−1Γ̃

T

(k)SXZ
}
− n−1/2 tr

{
(Γ̃

T

(k)SXΓ̃(k))
−1Γ̃

T

(k)SXΓ̃(k)Z
TZ
}

+Op(n
−1)

= 2 tr
{

A + (Γ̃
T

(k)SXΓ̃(k))
−1Γ̃

T

(k)SXΓ̃(k),0B
}
− n−1/2 tr(ATA + BTB) +Op(n

−1)

= 2 tr
{

(Γ̃
T

(k)SXΓ̃(k))
−1Γ̃

T

(k)SXΓ̃(k),0B
}
− n−1/2 tr(ATA + BTB) +Op(n

−1)

= 2 tr
{

(ΓTΣXΓ)−1ΓTΣXΓ0B + n−1/2TnB
}
− n−1/2 tr(ATA + BTB) +Op(n

−1)

= 2n−1/2 tr(TnB)− n−1/2 tr(ATA + BTB) +Op(n
−1).

The third equality in
→Z∗

df2 (Γ) is because that A+AT = 0 implies tr(A) = 0.
The second directional derivative is

→Z∗

df2
2 (Γ̃(k)) = tr

[d tr
{

2(ΓTSXΓ)−1ΓTSXZ∗
}

dΓ

]T
Z∗

∣∣∣∣
Γ=Γ̃(k)

= 2 tr
[{
− SXΓ̃(k)(Γ̃

T

(k)SXΓ̃(k))
−1(Γ̃

T

(k)SXZ∗ + Z∗
T
SXΓ̃(k))(Γ̃

T

(k)SXΓ̃(k))
−1

+SXZ∗(ΓTSXΓ)−1
}T

Z∗
]

= 2 tr
{

(Γ̃
T

(k)SXΓ̃(k))
−1ZTSXZ

−(Γ̃
T

(k)SXΓ̃(k))
−1(Γ̃

T

(k)SXZ + ZTSXΓ̃(k))(Γ̃
T

(k)SXΓ̃(k))
−1Γ̃

T

(k)SXZ
}

+ op(1)

= 2 tr
[
(ΓTΣXΓ)−1(ΓA + Γ0B)TΣX(ΓA + Γ0B)− (ΓTΣXΓ)−1

{
ΓTΣX(ΓA

+Γ0B) + (ΓA + Γ0B)TΣXΓ
}

(ΓTΣXΓ)−1ΓTΣX(ΓA + Γ0B)
]

+ op(1)

= 2 tr
{

(ΓTΣXΓ)−1BTΓT0 ΣXΓ0B−AA
}

+ op(1)

= 2 tr(Ω−1BTΩ0B−AA) + op(1).
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We substitute
→Z∗

df2 (Γ̃(k)) and
→Z∗

df2
2 (Γ̃(k)) into the expansion for f2{R(Γ̃(k) +

n−1/2Z)} and get

f2{R(Γ̃(k) + n−1/2Z)} − f2(Γ̃(k)) = 2n−1 tr(TnB)− n−1 tr(ATA + BTB)

+n−1 tr(Ω−1BTΩ0B−AA) + op(n
−1)

≥ −2n−1‖B‖F ‖Tn‖F − n−1 tr(BTB)

+n−1 tr(Ω−1BTΩ0B) + op(n
−1).

Since that f3 has similar structure as f2, the derivation above can be applied

to f3, with SX replaced by S−1
X . Since (Γ̃

T

(k)S
−1
X Γ̃(k))

−1Γ̃
T

(k)S
−1
X Γ̃(k),0 is a

√
n-

consistent estimator of (ΓTΣ−1
X Γ)−1ΓTΣ−1

X Γ0, then we have

(Γ̃
T

(k)S
−1
X Γ̃(k))

−1Γ̃
T

(k)S
−1
X Γ̃(k),0 = (ΓTΣ−1

X Γ)−1ΓTΣ−1
X Γ0+n−1/2T2n+Op(n

−1),

where T2n converges in distribution to a normal random matrix with mean
0. After some straightforward algebra, we have

f3{R(Γ̃(k) + n−1/2Z)} − f3(Γ̃(k)) = 2n−1 tr(T2nB)− n−1 tr(BTB)

+n−1 tr(ΩBTΩ−1
0 B) + op(n

−1)

≥ −2n−1‖B‖F ‖T2n‖F − n−1 tr(BTB)

+n−1 tr(ΩBTΩ−1
0 B) + op(n

−1).

With f4(Γ) =
∑p

i=1 λi‖γi‖2, we have

f4{R(Γ̃(k) + n−1/2Z)} − f4(Γ̃(k))

=

p∑
i=1

{
λi‖eTi (Γ̃(k) + n−1/2Z∗)‖2 − λi‖eTi Γ̃(k)‖2

}
≥

pA∑
i=1

{
λi‖eTi (Γ̃(k) + n−1/2Z∗)‖2 − λi‖eTi Γ̃(k)‖2

}
≥ −1

2
pAn

−1/2λA max
1≤i≤pA−d

(
‖eTi Γ̃(k)‖−1

2 ‖eTi Z∗‖2 +Op(n
−1/2)

)
= −1

2
pAn

−1/2λA max
1≤i≤pA−d

{‖eTi Γ‖−1
2 ‖eTi (Z− 1

2
n−1/2ΓZTZ)‖2}+ op(n

−1).

The third inequality is based on Taylor expansion at eTi Γ̃(k). Because
√
nλA →

0, f4{R(Γ̃(k) + n−1/2Z)} − f4(Γ̃(k)) = op(n
−1).
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Collecting all the results so far

fobj{R(Γ̃(k) + n−1/2Z)} − fobj(Γ̃(k))

≥ −2n−1‖B‖F ‖ηUT
2nV

−1
β Γ0‖F − 2n−1‖B‖F ‖Tn‖F − 2n−1‖B‖F ‖T2n‖F

+n−1vec(B)T [(η ⊗ ΓT0 )V−1
β (ηT ⊗ Γ0)]vec(B)

+n−1 tr(ΩBTΩ−1
0 B) + n−1 tr(Ω−1BTΩ0B)− 2n−1 tr(BTB)

−n
−1

2
pA
√
nλA max

1≤i≤pA−d
{‖eTi Γ‖−1

2 ‖eTi (Z− 1

2
n−1/2ΓZTZ)‖2}+ op(n

−1).

Notice that

vec(B)T [(η ⊗ ΓT0 )V−1
β (ηT ⊗ Γ0)]vec(B) + tr(ΩBTΩ−1

0 B) + tr(Ω−1BTΩ0B)− 2 tr(BTB)

= vec(B)T [(η ⊗ ΓT0 )V−1
β (ηT ⊗ Γ0) + Ω⊗Ω−1

0 + Ω−1 ⊗Ω0 − 2Id ⊗ Ip−d]vec(B)

= vec(B)TMvec(B)

≥ m‖B‖2F ,

where m is the smallest eigenvalue of M. Notice that M appears in Proposi-
tion 4 in Cook and Zhang (2015), by Shapiro (1986), M is a positive definite
matrix and m > 0. When ‖B‖F > C for sufficiently large C, the terms with
order ‖B‖2F dominate the terms with order ‖B‖F and the conclusion follows.

Proof of Theorem 6, part (b). From part (a) of Theorem 6 we know that
the E-SGPLS estimators Γ̂, α̂, η̂ are

√
n-consistent estimators of Γ, α, η.

Let
ζ̂i = α̂+ η̂T Γ̂

T
Xi.

We will prove the selection consistency by contradiction. Suppose that no
row in Γ̂ is zero, i.e., ‖γ̂i‖2 > 0 for pA + 1 ≤ i ≤ p. The derivative of fobj

with respect to γi should be 0 evaluated at γ̂i. By Adragni et al. (2012),
the derivative of fobj on the Grassmann manifold is(

∂fobj

∂Γ

)T
Γ0 =

{
− 2

n

n∑
i=1

D′(ζi)Xiη
T + 2SXΓ(ΓTSXΓ)−1

+ 2S−1
X Γ(ΓTS−1

X Γ)−1 + v(Γ)

}T
Γ0,

where

v(Γ) =


λ1

γT
1

‖γ1‖2
...

λp
γT

p

‖γp‖2

 .
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Let Ŵ be the weights when Γ = Γ̂. Then

(Ip − Γ̂Γ̂
T

)

{
− 2

n

n∑
i=1

D′(ζ̂i)Xiη̂
T + 2SXΓ̂(Γ̂

T
SXΓ̂)−1 + 2S−1

X Γ̂(Γ̂
T
S−1

X Γ̂)−1

+ v(Γ̂)

}
= 0.

(31)

Notice that β̂ = Γ̂η̂ and β̂GLM are both
√
n-consistent estimators of β, and α̂

and α̂GLM are both
√
n-consistent estimators of α. Since both

∑n
i=1D′(ζ̂i)Xi/n

and
∑n

i=1D′(ζ̂GLM,i)Xi/n are
√
n-consistent estimator of E(D′(ζ)X), we

have

1

n

n∑
i=1

D′(ζ̂i)Xi =
1

n

n∑
i=1

D′(ζ̂GLM,i)Xi +Op(n
−1/2) = Op(n

−1/2).

The last equality is because that
∑n

i=1D′(ζ̂GLM,i)Xi = 0, as we discussed
before (28).

Then

(Ip − Γ̂Γ̂
T

)

{
− 2

n

n∑
i=1

D′(ζ̂i)Xiη̂
T + 2SXΓ̂(Γ̂

T
SXΓ̂)−1 + 2S−1

X Γ̂(Γ̂
T
S−1

X Γ̂)−1

}
= (Ip − ΓΓT )

{
2ΣXΓ(ΓTΣXΓ)−1 + 2Σ−1

X Γ(ΓTΣ−1
X Γ)−1

}
+Op(n

−1/2)

= (Ip − ΓΓT )4Γ +Op(n
−1/2)

= Op(n
−1/2).

Therefore

√
n(Ip − Γ̂Γ̂

T
)

{
− 2

n

n∑
i=1

D′(ζ̂i)Xiη̂
T + 2SXΓ̂(Γ̂

T
SXΓ̂)−1

+ 2S−1
X Γ̂(Γ̂

T
S−1

X Γ̂)−1

}
= Op(1).

(32)
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On the other hand,

(Ip − Γ̂Γ̂
T

)v(Γ̂) =

Ip −

 γ̂T1 γ̂1 · · · γ̂T1 γ̂p
...

...
...

γ̂Tp γ̂1 · · · γ̂Tp γ̂p





λ1
γ̂T

1

‖γ̂1‖2
...

λp
γ̂T

p

‖γ̂p‖2



=


λ1

γ̂T
1

‖γ̂1‖2
−∑p

i=1 λi
γ̂T

1 γ̂iγ̂
T
i

‖γ̂i‖2
...

λp
γ̂T

p

‖γ̂p‖2
−∑p

i=1 λi
γ̂T

p γ̂iγ̂
T
i

‖γ̂i‖2

 .

Let λj∗ = max{λi, i > pA}. The j∗th row of (Ip − Γ̂Γ̂
T

)v(Γ̂) is

√
n

(
λj∗

γ̂Tj∗

‖γ̂j∗‖2
−

p∑
i=1

λi
γ̂Tj∗ γ̂iγ̂

T
i

‖γ̂i‖2

)

=
√
nλj∗

γ̂Tj∗

‖γ̂j∗‖2

1−
pA∑
i=1

λi
λj∗
‖γ̂j∗‖2‖γ̂i‖2 −

p∑
i=pA+1

λi
λj∗
‖γ̂j∗‖2‖γ̂i‖2


Since

√
nλA → 0 and

√
nλI → ∞, then λi/λj∗ → 0 for 1 ≤ j ≤ pA,

and 0 < λi/λj∗ ≤ 1 for 1 + pA ≤ j ≤ p. From part (a), Γ̂ is a consistent
estimator of Γ, so γ̂i = γi + Op(n

−1/2) for 1 ≤ j ≤ pA and γ̂i = Op(n
−1/2)

for 1 + pA ≤ j ≤ r. Then as n→∞,

pA∑
i=1

λi
λj∗
‖γ̂j∗‖2‖γ̂i‖2 → 0,

p∑
i=pA+1

λi
λj∗
‖γ̂j∗‖2‖γ̂i‖2 → 0.

Let m be the element in γ̂j∗ that has the largest absolute value, then

m/‖γ̂j∗‖2 >
√
d. Because we have

√
nλj∗ →∞, there is at least one element

in the j∗th row of (Ip − Γ̂Γ̂
T

)v(Γ̂) tends to infinity or negative infinity. To-
gether with (32), this is a contradiction to (31). Hence, there exists at least
one i, pA + 1 ≤ i ≤ p, such that ‖γ̂i‖2 = 0 with probability tending to 1.
Without loss of generality, we assume that ‖γ̂p‖2 = 0. We will prove that
γ̂i = 0, for pA + 1 ≤ i ≤ p− 1 by induction.

Suppose that for pA + 1 ≤ i ≤ p− 1, ‖γ̂i‖2 > 0. Let

Γ(1) =

 γ1
...

γp−1

 ∈ R(p−1)×d, Γ̂
(1)

=

 γ̂1
...

γ̂p−1

 ∈ R(p−1)×d,

imsart-aos ver. 2014/10/16 file: supplement4.tex date: September 6, 2018



SUPPLEMENT TO ENVELOPE-BASED SPLS 39

then

Γ =

(
Γ(1)

0

)
, Γ̂ =

(
Γ̂

(1)

0

)
.

Let Γ
(1)
0 ∈ R(p−1)×(p−d−1) be the completion of Γ(1). Given Γ, Γ0 is deter-

mined up to an orthogonal transformation. For simplicity, we take the Γ0

that has the following form

(33) Γ0 =

(
Γ

(1)
0 0
0 1

)
.

As Ω0 carries the coordinates of Σ with respect to Γ0, based on the structure
(33), we can partition Ω0 ∈ R(p−d)×(p−d) accordingly into

Ω0 =

(
Ω

(1)
0 Ω

(12)
0

Ω
(21)
0 Ω

(2)
0

)
,

where Ω
(1)
0 ∈ R(p−d−1)×(p−d−1), Ω

(12)
0 ∈ R(p−d−1), Ω

(21)
0 = (Ω

(12)
0 )T and

Ω
(2)
0 ∈ R. Then

ΣX = ΓΩΓT + Γ0Ω0Γ
T
0 =

(
Γ(1)Ω(Γ(1))T + Γ

(1)
0 Ω

(1)
0 (Γ

(1)
0 )T Γ

(1)
0 Ω

(12)
0

Ω
(21)
0 (Γ

(1)
0 )T Ω

(2)
0

)
.

Let S
(1)
X ∈ R(p−1)×(p−1) and Σ

(1)
X ∈ R(p−1)×(p−1) be the first p− 1 rows and

p− 1 columns of SX and ΣX, then Σ
(1)
X = Γ(1)Ω(Γ(1))T + Γ

(1)
0 Ω

(1)
0 (Γ

(1)
0 )T .

Since S
(1)
X is a

√
n-consistent estimator of Σ

(1)
X , S

(1)
X = Σ

(1)
X +Op(n

−1/2). Let
(S−1

X )(1) ∈ R(p−1)×(p−1) and (Σ−1
X )(1) ∈ R(p−1)×(p−1) be the first p − 1 rows

and first p− 1 columns of S−1
X and Σ−1

X . Then

(Σ−1
X )(1) = Γ(1)Ω−1(Γ(1))T + Γ

(1)
0 [Ω

(1)
0 −Ω

(12)
0 (Ω

(2)
0 )−1Ω

(21)
0 ]−1(Γ

(1)
0 )T

and (S−1
X )(1) = (Σ−1

X )(1) +Op(n
−1/2). We define the objective function f

(1)
obj

on the Grassmann manifold G(p− 1, d) as

f
(1)
obj(G) = − 2

n

n∑
i=1

D(ζi) + log |GTS
(1)
X G|+ log |GT (S−1

X )(1)G|+
p−1∑
i=1

λi‖gi‖2,

where G ∈ R(p−1)×d, GTG = Id, ζi = α+ ηTGTX(1), X(1) ∈ Rp−1 denotes
the first p−1 elements in X, and gi is the ith row of G, for i = 1, · · · , p−1.
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Since Γ̂ is a local minimum of fobj, Γ̂
(1)

is a local minimum of f
(1)
obj.

Taking the derivative of f
(1)
obj with respect to G on the Grassmann manifold

and evaluate it on Γ̂
(1)

, we have

(
− 2

n

n∑
i=1

D′(ζ̂i)X(1)
i η̂

T + 2S
(1)
X Γ̂

(1)
{

(Γ̂
(1)

)TS
(1)
X Γ̂

(1)
}−1

+ 2(S−1
X )(1)Γ̂

(1)
{

(Γ̂
(1)

)T (S−1
X )(1)Γ̂

(1)
}−1

+ v(1)(Γ̂
(1)

)

)T
Γ̂

(1)

0 = 0,

where

v(1)(Γ̂
(1)

) =


λ1

γ̂T
1

‖γ̂1‖2
...

λp−1
γ̂T

p−1

‖γ̂p−1‖2

 .

This is equivalent to{
Ip−1 − Γ̂

(1)
(Γ̂

(1)
)T
}[
− 2

n

n∑
i=1

D′(ζ̂i)X(1)
i η̂

T + 2S
(1)
X Γ̂

(1)
{

(Γ̂
(1)

)TS
(1)
X Γ̂

(1)
}−1

+2(S−1
X )(1)Γ̂

(1)
{

(Γ̂
(1)

)T (S−1
X )(1)Γ̂

(1)
}−1

+ v(1)(Γ̂
(1)

)
]

= 0.

Following the previous discussion of obtaining (32), we have

2
{

Ip−1 − Γ̂
(1)

(Γ̂
(1)

)T
}[
− 1

n

n∑
i=1

D′(ζ̂i)X(1)
i η̂

T + S
(1)
X Γ̂

(1)
{

(Γ̂
(1)

)TS
(1)
X Γ̂

(1)
}−1

+(S−1
X )(1)Γ̂

(1)
{

(Γ̂
(1)

)T (S−1
X )(1)Γ̂

(1)
}−1 ]

= 2
{

Ip−1 − Γ(1)(Γ(1))T
}[

Σ
(1)
X Γ(1)

{
(Γ(1))TΣ

(1)
X Γ(1)

}−1

+(Σ−1
X )(1)Γ(1)

{
(Γ(1))T (Σ−1

X )(1)Γ(1)
}−1 ]

+Op(n
−1/2)

= Op(n
−1/2).

Parallel to the derivation with
√
n(Ip − Γ̂Γ̂

T
)v(Γ̂), we can show that at

least one element in the p− 1 vector
√
n{I− Γ̂

(1)
(Γ̂

(1)
)T }v(1)(Γ̂

(1)
) goes to

∞ or −∞ as n increases. This is a contradiction. So there is at least one i,
pA + 1 ≤ i ≤ p− 1, such that ‖γ̂i‖2 = 0 with probability tending to 1.
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By induction, we have ‖γ̂i‖2 = 0 with probability tending to 1 for pA+1 ≤
i ≤ p.

Proof of Theorem 6, part (c). Now we derive the asymptotic distribution
of the E-SGPLS estimator β̂A, and prove that it has the same asymptotic
variance as the oracle envelope estimator β̂A,O. If for some an = o(n−1/2),

Γ̂A = Γ̂O + Op(an) and η̂ = η̂O + Op(an), since βA = ΓAη, then β̂A =

β̂A,O+Op(an). By Slutsky’s theorem,
√
n(β̂A−βA) has the same asymptotic

distribution as
√
n(β̂A,O −βA). Therefore the conclusion in part (c) follows

if we can prove P
Γ̂A

= P
Γ̂O

+Op(an). We take an = (n−1/2λA)1/2. Because√
nλA → 0, we have an = o(n−1/2). Let

fobj,A(α,η,G) =− 2

n

n∑
i=1

D(α+ ηTGTXi,A) + log |GTSXAG|

+ log |GT (S−1
X )AG|+

pA∑
i=1

λi‖gi‖2,

where G ∈ RpA×d, and gi is the ith row of G. The function fobj,A(α,η,G)
is the objective function of all the parameters, i.e., α,η and ΓA. When
maximizing the joint likelihood function of Y and X, the estimators of
the parameters µX, Ω and Ω0 can be written as closed-form functions of
α,η and ΓA: µ̂X = X̄, Ω̂ = ΓTASXAΓA and Ω̂0 = ΓT0 SXΓ0. After substi-

tuting µ̂X, Ω̂ and Ω̂0 in the likelihood, we obtain the objective function
fobj,A(α,η,G). Because of the selection consistency of the E-SGPLS esti-

mator, (α̂, η̂, Γ̂A) = arg min fobj,A(α,η,G). Let α̂O, η̂O and Γ̂A,O be the

oracle envelope estimator of α, η and ΓA. Then (α̂O, η̂O, Γ̂A,O) is a local
minimum of the objective function

JO(α,η,G) =− 2

n

n∑
i=1

D(α+ ηTGTXi,A) + log |GTSXAG|+ log |GT (S−1
X )AG|

≡fO1(α,η,G) + fO2(G) + fO3(G).

(34)

Let Γ̂A0,O ∈ RpA×(pA−d) be a completion of Γ̂A,O. To establish Theorem 6
part (c), it is enough to show that for arbitrarily small ε > 0, there exist
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sufficiently large constants C0, C1 and C2, such that

lim
n→∞

P

[
inf

|δ0|=C0,∆1∈Rd×1,‖∆1‖F =C1

Z∈TΓ(pA,d),Z=Γ̂A,OA+Γ̂A0,OB,‖B‖F =C2

fobj,A{α̂O + anδ0, η̂O + an∆1, R(Γ̂A,O + anZ)}

> fobj,A(α̂O, η̂O, Γ̂A,O)

]
> 1− ε.

(35)

Because (α̂O, η̂O, Γ̂A,O) is a local minimum of objective function (34), the

derivative of JO should be 0 evaluated at the (α̂O, η̂O, Γ̂A,O), i.e.

n∑
i=1

D′(ζ̂O,i) = 0,
n∑
i=1

D′(ζ̂O,i)Γ̂
T

A,OXi,A = 0,

(
∂fO1

∂G
+
∂fO2

∂G
+
∂fO3

∂G

)T
G0

∣∣∣∣
G=Γ̂A,O

= 0,(36)

where ζ̂O,i = α̂O + η̂TOΓ̂
T

A,OXi,A.
We write fobj,A as fobj,A(α,η,G) = fA1(α,η,G) + fA2(G) + fA3(G) +

fA4(G), where fA1, fA2, fA3 and fA4 corresponds to the four summands in
fobj,A. Similar to the proof of Theorem 6 part (a), we expand fobj,A

(
α̂O +

anδ0, η̂O + an∆1, R(Γ̂A,O + anZ)
)

and compute

fobj,A
(
α̂O + anδ0, η̂O + an∆1, R(Γ̂A,O + anZ)

)
− fobj,A(α̂O, η̂O, Γ̂A,O).

After some calculations that are parallel to those in Theorem 6 part (a), we
have

→δ0
dfA1(α̂O) = − 2

n

n∑
i=1

D′(ζ̂O,i)δ0 = 0,

→∆1

dfA1(η̂O) = − 2

n

n∑
i=1

D′(ζ̂O,i)XT
i,AΓ̂A,O∆1 = 0,
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→Z∗

dfA1(Γ̂A,O) = tr

{(∂fA1

∂G

)T
Z∗
∣∣∣∣
G=Γ̂A,O

}
= − 2

n

n∑
i=1

D′(ζ̂O,i) tr(η̂OXT
i,AZ∗)

= − 2

n

n∑
i=1

D′(ζ̂O,i)XT
i,AZ∗η̂O

= − 2

n

n∑
i=1

D′(ζ̂O,i)XT
i,AΓ̂A0,OBη̂O +Op(an)

= tr

{[(∂fO1

∂G

)T
G0

]∣∣∣∣
G=Γ̂A,O

B

}
+Op(an),

where Z∗ = Z− (1/2)anΓ̂A,OZTZ + op(an), Z = Γ̂A,OA + Γ̂A0,OB, Γ̂A0,O ∈
RpA×(pA−d) is a completion of Γ̂A,O and Xi,A denotes the ith observation of
XA. The penultimate equation is based on the second equation in (36).

The second order directional derivatives of fA1 are

→Z∗

df2
A1(Γ̂A,O) = tr

{[
∂
→Z∗

dfA1(G)

∂G

∣∣∣∣
G=Γ̂A,O

]T
Z∗
}

= − 2

n

n∑
i=1

D′′(ζ̂O,i)(XT
i,AZ∗η̂O)2

= − 2

n

n∑
i=1

D′′(ζi)[XT
i,A(ΓAA + ΓA,0B)η]2 + op(1),

→δ0
df2
A1(α̂O) = − 2

n

n∑
i=1

D′′(ζ̂O,i)δ2
0 = − 2

n

n∑
i=1

D′′(ζi)δ2
0 + op(1),

→∆1

df2
A1(η̂O) = − 2

n

n∑
i=1

D′′(ζ̂O,i)(XT
i,AΓ̂A,O∆1)2

= − 2

n

n∑
i=1

D′′(ζi)(XT
i,AΓA∆1)2 + op(1),

→δ0,→∆1

df2
A1 (α̂O, η̂O) = − 2

n

n∑
i=1

D′′(ζ̂O,i)δ0(XT
i,AΓ̂A,O∆1)

= − 2

n

n∑
i=1

D′′(ζi)δ0(XT
i,AΓA∆1) + op(1),
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→δ0,→Z∗

df2
A1 (α̂O, Γ̂A,O) = − 2

n

n∑
i=1

D′′(ζ̂O,i)δ0(XT
i,AZ∗η̂O)

= − 2

n

n∑
i=1

D′′(ζ̂O,i)δ0

[
XT
i,A(Γ̂A,OA + Γ̂A0,OB)η̂O

]
+ op(1)

= − 2

n

n∑
i=1

D′′(ζi)δ0

[
XT
i,A(ΓAA + ΓA,0B)η

]
+ op(1),

→∆1,→Z∗

df2
A1 (η̂O, Γ̂A,O) = − 2

n

n∑
i=1

D′′(ζ̂O,i)(XT
i,AΓ̂A,O∆1)(XT

i,AZ∗η̂O)

= − 2

n

n∑
i=1

D′′(ζ̂O,i)(XT
i,AΓ̂A,O∆1)

[
XT
i,A(Γ̂A,OA + Γ̂A0,OB)η̂O

]
+ op(1)

= − 2

n

n∑
i=1

D′′(ζi)(XT
i,AΓA∆1)

[
XT
i,A(ΓAA + ΓA,0B)η

]
+ op(1).

Then the second directional derivative of fA1 with respect to all parameters
is

→δ0
df2
A1(α̂O) +

→∆1

df2
A1(η̂O) +

→Z∗

df2
A1(Γ̂A,O) + 2

→δ0,→∆1

df2
A1 (α̂O, η̂O) + 2

→δ0,→Z∗

df2
A1 (α̂O, Γ̂A,O)

+2
→∆1,→Z∗

df2
A1 (η̂O, Γ̂A,O)

= − 2

n

n∑
i=1

D′′(ζi)
[
δ0 + XT

i,AΓA∆1 + XT
i,A(ΓAA + ΓA,0B)η

]2
+ op(1)

= − 2

n

n∑
i=1

D′′(ζi)
[
δ0 + XT

i,AΓA(∆1 + Aη) + XT
i,AΓA,0Bη]2 + op(1).
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We substitute
→Z∗

dfA1(Γ) and
→Z∗

df2
A1(Γ) into the expansion for fA1 and get

fA1(α̂O + anδ0, η̂O + an∆1, R(Γ̂A,O + anZ))− fA1(α̂O, η̂O, Γ̂A,O)

= an tr

{[(∂fO1

∂G

)T
G0

]∣∣∣∣
G=Γ̂A,O

B

}
− a2

n

1

n

n∑
i=1

{
D′′(ζi)[δ0 + XT

i,AΓA(∆1 + Aη)

+XT
i,AΓA,0Bη]2

}
+ op(a

2
n)

= an tr

{[(∂fO1

∂G

)T
G0

]∣∣∣∣
G=Γ̂A,O

B

}
+a2

nE{I(ζ)}[δ0 + µTXA(W )ΓA(∆1 + Aη) + µTXA(W )ΓA,0Bη]2

+a2
n(∆1 + Aη)TΓTAV−1

O,βA
ΓA(∆1 + Aη)

+a2
nvec(B)T [(η ⊗ ΓTA,0)V−1

O,βA
(ηT ⊗ ΓA,0)]vec(B) + op(a

2
n).

The second equality is because

1

n

n∑
i=1

−D′′(ζi)
[
δ0 + XT

i,AΓA(∆1 + Aη) + XT
i,AΓA,0Bη

]2
=

1

n

n∑
i=1

−D′′(ζi)
[
δ∗0 + (Xi,A − µXA(W ))

TΓA(∆1 + Aη)

+(Xi,A − µXA(W ))
TΓA,0Bη

]2
=

1

n

n∑
i=1

{
I(ζi)−

yi − µi
g′(µi)

d

dµi

( 1

b′′((b′)−1(µi))g′(µi)

)}
[
δ∗0 + (Xi,A − µXA(W ))

TΓA(∆1 + Aη) + (Xi,A − µXA(W ))
TΓA,0Bη

]2
= E{I(ζ)}δ∗02 + (∆1 + Aη)TΓTAV−1

O,βA
ΓA(∆1 + Aη)

+vec(B)T [(η ⊗ ΓTA,0)V−1
O,βA

(ηT ⊗ ΓA,0)]vec(B) + op(1).

where δ∗0 = δ0 +µTXA(W )ΓA(∆1 + Aη) +µTXA(W )ΓA,0Bη. The last equality

uses similar reasoning as in (29) and (30), as well as the facts
∑n

i=1 I(ζi)(Xi,A−
µXA(W ))

T = 0 and ΓTAV−1
O,βA

ΓA,0 = 0.
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Similar to the proof of Theorem 6 part (a), we have

fA2{R(Γ̂A,O + anZ)} − fA2(Γ̂A,O) = 2an tr
{

(Γ̂
T

A,OSXAΓ̂A,O)−1Γ̂
T

A,OSXAΓ̂A0,OB
}

−a2
n‖B‖2F + a2

n tr(Ω−1BT Ω̃0,AB) + op(a
2
n),

= an tr

{[(∂fO2

∂G

)T
G0

]∣∣∣∣
G=Γ̂A,O

B

}
−a2

n‖B‖2F + a2
n tr(Ω−1BT Ω̃0,AB) + op(a

2
n),

fA3{R(Γ̂A,O + anZ)} − fA3(Γ̂A,O) = 2an tr

{[
Γ̂
T

A,O(S−1
X )AΓ̂A,O

]−1
Γ̂
T

A,O(S−1
X )AΓ̂A0,OB

}
−a2

n‖B‖2F + a2
n tr

(
ΩBΩ̃

−1

0,A|IB
)

+ op(a
2
n)

= an tr

{[(∂fO3

∂G

)T
G0

]∣∣∣∣
G=Γ̂A,O

B

}
−a2

n‖B‖2F + a2
n tr

(
ΩBΩ̃

−1

0,A|IB
)

+ op(a
2
n),

fA4{R(Γ̂A,O + anZ)} − fA4(Γ̂A,O)

≥ −1

2
anpAλAmax{‖eTi ΓA‖−1

2 ‖eTi (Z− 0.5anΓAZTZ)‖2}(1 + op(1)).

Collecting all the results so far

fobj,A(α̂O + anδ0, η̂O + an∆1, R(Γ̂A,O + anZ))− fobj,A(α̂O, η̂O, Γ̂A,O)

≥ an tr

{[(∂fO1

∂G
+
∂fO2

∂G
+
∂fO3

∂G

)T
G0

]∣∣∣∣
G=Γ̂A,O

B

}
+a2

nE{I(ζ)}[δ0 + µTXA(W )ΓA(∆1 + Aη) + µTXA(W )ΓA,0Bη]2

+a2
n(∆1 + Aη)TΓTAV−1

O,βA
ΓA(∆1 + Aη)

+a2
nvec(B)T [(η ⊗ ΓTA,0)V−1

O,βA
(ηT ⊗ ΓA,0)]vec(B)

−2a2
n‖B‖2F + a2

n tr(Ω−1BT Ω̃0,AB) + a2
n tr(ΩBΩ̃

−1

0,A|IB)

−1

2
anpAλAmax{‖eTi ΓA‖−1

2 ‖eTi Z− 0.5anΓAZTZ‖2}(1 + op(1))

= a2
nE{I(ζ)}[δ0 + µTXA(W )ΓA(∆1 + Aη) + µTXA(W )ΓA,0Bη]2

+a2
n(∆1 + Aη)TΓTAV−1

O,βA
ΓA(∆1 + Aη)

+a2
nvec(B)T

{
(η ⊗ ΓTA,0)V−1

O,βA
(ηT ⊗ ΓA,0) + Ω⊗ Ω̃

−1

0,A|I

+Ω−1 ⊗ Ω̃0,A − 2Id ⊗ IpA−d
}

vec(B) + op(a
2
n).
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Let TA = (η⊗ΓTA,0)V−1
O,βA

(ηT⊗ΓA,0)+Ω⊗Ω̃
−1

0,A|I+Ω−1⊗Ω̃0,A−2Id⊗IpA−d.
According to Lemma 3, TA is positive definite. Therefore

vec(B)T [(η ⊗ ΓTA,0)V−1
O,βA

(ηT ⊗ ΓA,0) + Ω⊗ Ω̃
−1

0,A|I

+Ω−1 ⊗ Ω̃0,A − 2Id ⊗ IpA−d]vec(B)

= vec(B)TTAvec(B)

≥ m‖B‖2F ,

where m is the smallest eigenvalue of TA and m > 0 due to positive defi-
niteness. Since E{I(ζ)} ≥ 0, we have

fobj,A(α̂O + anδ0, η̂O + an∆1, R(Γ̂A,O + anZ))− fobj,A(α̂O, η̂O, Γ̂A,O) > 0

with probability tending to 1, which establishes (35).

APPENDIX D: ADDITIONAL SIMULATIONS

D.1. The effect of inactive predictors on efficiency. The follow-
ing simulation was set up to provide numerical support for the Remark on
page 12. We fixed p = 10, r = 3, pA = 4, d = 2 and set the first four
predictors to be active predictors. The matrix ΓA was obtained by orthogo-
nalizing a pA by d matrix of independent standard normal random variates.
The elements in η were independent N(0, 4) variates. The predictors were
generated from multivariate normal distribution with mean 0 and covariance
matrix ΣX = ΓΩΓT + Γ0Ω0Γ

T
0 , where Ω = 25Id and

Ω0 =

(
IpA−d 2.7O
2.7OT 9IpI

)
.

The matrix O was obtained by orthogonalizing a pA − d by pI matrix of
independent standard normal random variates. We computed the eigenval-
ues of Ω0, and they ranged from 0.17 to 9.83. The canonical correlation
between the two sources of the immaterial part QΓAXA and XI was 0.9.
The intercept was a zero vector. And the errors followed a multivariate
normal distribution with mean 0 and covariance matrix MTM, where the
elements in M were independent uniform (0, 1) variates. We used normal
errors just for easy comparison, since we can obtain the theoretical value of
the asymptotic standard deviation for the standard estimator and the enve-
lope estimator under normality. We generated 200 datasets for each sample
size of 20, 40, 60, 80, 100, 150 and 200. For each dataset, we fit the stan-
dard model with only the active predictor (SMA), the standard model with
all the predictors (SM), the predictor envelope model only using the active
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predictor (EMA), the oracle predictor envelope model (EMO) which uses
all the predictors and the E-SPLS model. Then we computed the estimation
standard deviation for every elements in β for all the estimators. The results
for a randomly selected element in β are summarized in Figure 1. The other
elements follow the same pattern.

From the results, we can see that for the standard model, SMA is more
efficient than SM. This means that if we include the inactive predictors in
the standard model, we will lose efficiency. The asymptotic standard devi-
ation is 0.073 for the SM estimator and 0.032 for the SMA estimator. This
justifies the standard practice in predictor selection: if a predictor is found
to be inactive, we eliminate it from the subsequent analysis. However, under
the envelope model, the situation is different. We notice that the E-SPLS
estimator and the EMO estimator (both include the inactive predictors) are
more efficient than the EMA estimator, which excludes the inactive predic-
tors. The asymptotic standard deviation is 0.014 for the EMA estimator and
0.007 for both the EMO estimator and E-SPLS estimator. This is due to the
structure of the covariance matrix of ΣX and its connection with β. In the
envelope model, since β is related only to the material part of X, identifying
the immaterial part of X is important in subsequent analysis. The inactive
predictors make the identification easier through its canonical correlation
with the active predictors.

0.00

0.05

0.10

0.15

0.20

Sample size

S
ta
n
d
ar
d
d
ev
ia
ti
on

40 60 80 100 150 200

Fig 1. Comparison of estimation standard deviations. Line · · · marks the SM estimator.
Line – · – marks the SMA estimator. Line – – marks the EMA estimator. Line — marks
the E-SPLS estimator. Line – – with + marks the EMO estimator. The horizontal lines
mark the asymptotic standard deviation of the corresponding estimator. (The asymptotic
standard deviations of the EMO estimator and the E-SPLS estimator are the same.)
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D.2. E-SPLS estimator under model violation. We investigate the
performance of the E-SPLS estimator under model violation. We set p = 10,
r = 2 and n = 20. We also let pA = p so that there is no sparsity in β.
The elements in β were independent standard normal variates. The predic-
tor vector X was normally distributed with mean 0 and covariance matrix
M1M

T
1 , where elements in M1 ∈ Rp×p were independent uniform (0, 1) vari-

ates. The errors were sampled from normal distribution with mean 0 and
covariance matrix M2M

T
2 , where elements in M2 ∈ Rr×r were independent

uniform (0, 3) variates. The intercept was 0. Note that neither the envelope
assumption (3) nor the sparsity assumption (6) holds in this setting. We
generated 200 datasets from this setting and computed the OLS, SIMPLS,
SPLS and E-SPLS estimators from each dataset. For each model the av-
erage of ‖β̂ − β‖F was calculated for d varying from 1 to p. The criterion
‖β̂−β‖F measures the sum of the MSE for all elements in β. The results are
summarized in Figure 2. The E-SPLS estimator has the smallest ‖β̂ − β‖F
at all dimensions. The E-SPLS estimator attains its smallest ‖β̂−β‖F 4.19
at d = 5. It achieves 60.43% reduction compared to the OLS estimator
(‖β̂ols − β‖F = 10.59), 11.21% reduction compared to the SPLS estima-
tor (‖β̂spls − β‖F = 4.72) and 7.04% reduction compared to the SIMPLS

estimator(‖β̂pls − β‖F = 4.51). Although the E-SPLS estimator has bias in
this case, its variance is much smaller than that of the OLS estimator, and
overall its MSE is much smaller than that of the OLS estimator.

4
5

6
7

8
9

10

d

‖β̂
−
β
‖ F

1 2 3 4 5 6 7 8 9 10

Fig 2. Line — marks the E-SPLS estimator. Line – – marks the SPLS estimator. Line
· · · marks the SIMPLS estimator.

We also compared the true positive rate (TPR) between SPLS and E-
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SPLS. Since we do not have sparsity in the setting, TNR is not relevant.
The results are included in Table 1. From this table, we notice that the
E-SPLS estimator identifies more active variables than the SPLS estimator
for all dimensions.

Table 1
TPR for the SPLS estimator and E-SPLS estimator

d 1 2 3 4 5 6 7 8 9 10

SPLS 0.440 0.707 0.740 0.787 0.826 0.862 0.905 0.937 0.977 1.000
E-SPLS 0.962 0.919 0.924 0.952 0.960 0.976 0.973 0.984 0.997 1.000

D.3. E-SPLS estimator with varying r. The scenario of r → ∞
does not change the E-SPLS model, but will change its objective function if
n < r. We first assume that n > p. The original objective function is

Â = arg min
A∈R(p−d)×d

−2 log |GT
AGA|+ log |GT

ASX|YGA|

+ log |GAS−1
X GA|+ λ

p−d∑
i=1

wi‖ai‖2,
(37)

where SX|Y = SX − SXYS−1
Y STXY, SX and SY are sample covariance ma-

trices of X and Y, SXY is the sample covariance matrix of X and Y. When
r > n, SY is not invertible. We fitted a multivariate response lasso regression
of X on Y, and computed the residual covariance matrix S∗X|Y. Then we

replace SX|Y by S∗X|Y in (37). Therefore, when n < r the objective function
becomes

Â = arg min
A∈R(p−d)×d

−2 log |GT
AGA|+ log |GT

AS∗X|YGA|

+ log |GAS−1
X GA|+ λ

p−d∑
i=1

wi‖ai‖2.
(38)

We performed the following simulation to investigate the performance of the
E-SPLS estimator with varying r. We set n = 40, p = 10, d = 2, pA = 5 and
varied r from 1, 5, 10, 20, 40, 60, 80 and 100. The matrix ΓA was obtained
by orthogonalizing a pA by d matrix of independent standard normal ran-
dom variates. The elements in η were independent standard normal variates
with mean 0 and variance 4. The predictor vector X followed a multivariate
normal distribution with µX = 0 and covariance matrix having the struc-
ture ΣX = ΓΩΓT + Γ0Ω0Γ

T
0 , where Ω = 4Id and Ω0 was a block diagonal

matrix with the upper left block being IpA−d and lower right block being
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25IpI . The errors were normally distributed with mean 0 and covariance
matrix MTM, where the elements in M were independent uniform (0, 2)
variates. The elements in µ were independent uniform (0, 1) variates. For
each value of r, we generated 200 replications and computed ‖β̂ − β‖F for
the E-SPLS estimator, the SPLS estimator and the SIMPLS estimator. The
average of ‖β̂ − β‖F estimates the sum of the mean squared errors from all
the elements in β. The results are summarized in Figure 3.

0 20 40 60 80 100

0

5

10

15

20

25

r

‖β̂
−
β
‖ F

Fig 3. Comparison of ‖β̂ − β‖F . Line — marks the E-SPLS estimator, line – – marks
SPLS and line · · · marks the SIMPLS estimator.

We notice that the SPLS estimator and the SIMPLS estimator are very
close, while the E-SPLS estimator has the smallest ‖β̂ − β‖F . As r in-
creases, we notice that the difference between E-SPLS and SPLS becomes
larger. This is because the coefficient matrix β has dimension p× r. When
r increases, the dimension of β becomes larger which amplifies ‖β‖F . We
adjusted for the increase of ‖β‖F and plotted ‖β̂ − β‖F /‖β‖F in Figure 4.
From Figure 4, we notice that E-SPLS estimator still has the smallest mean
squared error adjusted by ‖β‖F for all value of r. For example, when r = 100,
‖β̂ − β‖F /‖β‖F is 0.943 for the SIMPLS estimator, 0.991 for the SPLS es-
timator and 0.485 for the E-SPLS estimator. We also investigated selection
performance. Table 2 shows that the E-SPLS estimator has a better selec-
tion performance than the SPLS estimator for all values of r in this setting.
Also, as r increases, the selection performance of E-SPLS becomes better.
This might be because there are more responses that carry the information
on which predictors are active and which predictors are inactive. To be more
specific, β can be written as β = (b1, . . . ,br), where bj denotes the jth col-
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Fig 4. Comparison of ‖β̂ − β‖F /‖β‖F . Line — marks the E-SPLS estimator, line – –
marks SPLS and line · · · marks the SIMPLS estimator.

umn of β. If the ith predictor is inactive, then the ith element in each bj is
zero. When we have more columns in β, it is easier to identify the inactive
predictor since the ith element in each bj , j = 1, . . . , r, is zero.

Table 2
Comparison of selection performances of the E-SPLS estimator and the SPLS estimator.

E-SPLS SPLS
r TPR TNR Accuracy TPR TNR Accuracy

1 96.80 47.10 30.50 31.30 74.20 0.00
5 100.00 98.00 92.00 49.50 63.30 0.00
10 100.00 98.90 95.00 57.20 50.90 0.00
20 99.90 100.00 99.50 51.00 44.30 0.00
40 99.50 99.80 96.50 47.50 37.70 0.00
60 99.60 99.90 97.50 34.20 45.20 0.00
80 99.90 99.60 98.00 39.20 37.30 0.00
100 100.00 99.60 98.50 32.00 40.50 0.00

Now we consider the case n < p. The matrices S∗X|Y and SX both become

singular. The inverse of SX is needed in the objective function (38) and
the inverse of S∗X|Y is needed in the estimation algorithm. We can use a

covariance estimator such as the SPICE estimator (Rothman et al. 2008)
to get the inverse of these matrices. We denote the SPICE estimators of
the inverses as S−1

X,spice and S∗X|Y,spice
−1. And S∗X|Y,spice is the inverse of

S∗X|Y,spice
−1.

We repeated the simulation that generated Figures 3, 4 and Table 2,
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but changed p to 60 and the error covariance matrix as MTM, where the
elements in M were independent uniform (0, 1) variates. We plotted ‖β̂−β‖F
and ‖β̂ − β‖F /‖β‖F in Figures 5 and 6. The results are similar to the case
of n > p: The estimated mean squared errors of the SPLS estimator and the
SIMPLS estimator are similar, but the E-SPLS has a much smaller estimated
mean squared error. For example, when r = 100, ‖β̂ − β‖F /‖β‖F is 0.989
for the SIMPLS estimator, 1.001 for the SPLS estimator and 0.297 for the
E-SPLS estimator. The selection performance is summarized in Table 3. For
all values of r, the E-SPLS estimator has a better selection performance
than the SPLS estimator.
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Fig 5. Comparison of ‖β̂ − β‖F . Line — marks the E-SPLS estimator, line – – marks
the SPLS estimator and line · · · marks the SIMPLS estimator.

Table 3
Comparison of selection performances of the E-SPLS estimator and the SPLS estimator.

E-SPLS SPLS
r TPR TNR Accuracy TPR TNR Accuracy

1 95.70 87.95 0.50 34.30 60.82 0.00
5 100.00 99.80 89.50 63.70 42.99 0.00
10 100.00 99.84 91.50 65.20 42.07 0.00
20 100.00 99.56 77.50 60.80 44.48 0.00
40 99.90 98.15 33.50 54.50 49.76 0.00
60 99.80 96.76 16.50 47.90 49.04 0.00
80 99.80 97.29 18.00 46.80 50.44 0.00
100 99.70 97.78 31.50 44.20 48.97 0.00

From the numerical results discussed above, we believe that the E-SPLS
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Fig 6. Comparison of ‖β̂ − β‖F /‖β‖F . Line — marks the E-SPLS estimator, line – –
marks the SPLS estimator and line · · · marks the SIMPLS estimator.

estimator can maintain its advantage in estimation and variable selection
with varying r. The results also indicate that the E-SPLS estimator may
enjoy selection consistency when r tends to infinity with n under some mild
or moderate conditions.

D.4. E-SGPLS with non-canonical link. We conducted a simula-
tion to investigate the performance of variable selection and efficiency gains
of the E-SGPLS estimator under the general link function. We repeated the
simulation that produced Figure 7 and Table 5, but changed the link func-
tion to probit link, i.e. P (Y = 1 | X) = Φ(α + βTX). We fit the data with
both the standard probit model, envelope-based sparse probit model, i.e.
model (13) with g(·) = Φ−1(·), as well as the oracle envelope model, which
is model (13) with g(·) = Φ−1(·) and the extra information on which pre-
dictors are active. Under this setting, the estimator of the envelope-based
sparse probit model is the E-SGPLS estimator. The standard deviation of
the estimator of β was calculated based on 200 replications. The standard
deviations of a randomly chosen element in β are displayed in Figure 7.
The results for other elements in β follow the same pattern. From the plot,
we noticed that the envelope-based sparse probit model achieves substantial
efficiency gain compared with the standard probit model. For example, at
sample size 1000, the standard deviation of the standard probit model esti-
mator is 3.90 times that of the envelope-based sparse probit model. At sam-
ple size 400, the difference between the envelope-based sparse probit model

imsart-aos ver. 2014/10/16 file: supplement4.tex date: September 6, 2018



SUPPLEMENT TO ENVELOPE-BASED SPLS 55

and the oracle envelope model becomes indistinguishable. The variable selec-
tion performance of the envelope-based sparse probit model is summarized
in Table 4. We noticed that the envelope-based sparse probit model is se-
lection consistent and enjoys the oracle property as indicated in Theorem 6.
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Fig 7. Comparison of standard deviations of three estimators: Line — marks the envelope-
based sparse probit model, line – – marks the oracle envelope model and line · · · marks
standard probit model estimator.

Table 4
TPR, TNR and accuracy of the envelope-based sparse probit model.

n TPR TNR Accuracy

100 94.70 99.10 76.00
200 98.80 99.80 95.50
300 99.40 99.50 98.00
400 100.00 100.00 100.00
500 100.00 100.00 100.00

1000 100.00 100.00 100.00
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