## Extending Ramanujan’s Dyson rank function identity to all primes greater than 3

#### When/Where:

December 1, 2015, 3:00 — 3:50 pm at LIT 368.

#### Abstract:

Let \(R(z,q)\) be the two-variable generating function for Dyson’s rank function. In his lost notebook Ramanujan gives the 5-dissection of \(R(\zeta_p,q)\)

where \(\zeta_p\) is a primitive \(p\)-th root of unity and \(p=5\). This result is related to Dyson’s famous rank conjecture which was proved by Atkin

and Swinnerton-Dyer.

We show that there is an analogous result for the \(p\)-dissection of \(R(\zeta_p,q)\) when \(p\) is any prime greater than 3.

This extends previous work of Bringmann and Ono, and Ahlgren and Treneer.