
MAT 6932 — Seminar in Number Theory — Homework Problems

Problems (41a, 41b, 49, 52, 53g, and 55) for the final due 9:35 a.m. April 23 are this color.

Please report any typos to grizzell@ufl.edu and/or alexb@ufl.edu.

Last updated: Friday 18th April, 2014 at 09:00

1. Prove that Ep(q) ≡ E(qp) (mod p) for any prime p, where E(q) := (q; q)∞ and
En(q) := (E(q))n.

Is it possible to replace p with p2 or with p3 and still have a valid statement?

2. Use Euler’s Pentagonal Number Theorem (EPNT) to show that

p(n) =
∑

0<ωj≤n

(−1)j+1p(n− ωj),

where ωj :=
j(3j − 1)

2
and p(n) is the number of partitions of n.

3. Use the fact that
E3(q) =

∑
n≥0

(2n+ 1)(−1)nq(
n+1
2 )

to prove that
E3(q) ≡ J0(q

5) + qJ1(q
5) (mod 5),

where J0(q) and J1(q) are q-series with integer coefficients.

4. Use
1

E(q)
=
E6(q)

E7(q)
≡ (E3(q))

2

E(q7)
(mod 7)

to prove that 7 | p(7n+ 5).

5. Use a combinatorial argument to show that

(zt)∞
(z)∞

=
∑
n≥0

(t)n
(q)n

zn.

6. Show that
E(q) ≡ K0(q

5) + qK1(q
5) + q2K2(q

5) (mod 5),

where K0(q), K1(q), and K2(q) are q-series with integer coefficients. Then, use this
result to prove that

J2
0 (q) ≡ E(q)K0(q) (mod 5).



7. Show that [
L+ 1

n

]
q

=

[
L

n

]
q

qn +

[
L

n− 1

]
q

=

[
L

n

]
q

+

[
L

n− 1

]
q

qL+1−n,

and then use these recurrence relations to prove that, for n,m ∈ Z≥0,
[
n+m
n

]
q

is the

generating function for partitions into parts such that the largest part is ≤ n and the
number of parts is ≤ m.

8. Problem 7 implies that [
n+m

n

]
q

:=
(qm+1)n

(q)n

is a polynomial in q. Use this definition to show that this polynomial has degree nm.

9. Prove that [
−L
n

]
q

=
(qL)n
(q)n

(−1)nq−(n
2)−Ln =

[
L− 1 + n

n

]
q

(−1)nq−(n
2)−Ln.

10. Use the q-Chu-Vandermonde summation identity (for N ∈ Z≥0)

2φ1

[
a, q−N

c
; q,

cqN

a

]
=

(c/a)N
(c)N

to show that, for j ∈ Z and a ∈ {0, 1},
L∑
r=0

qr
2+ar(q)2L+a

(q)L−r(q)2r+a

[
2r + a

r − j

]
q

= qj
2+aj

[
2L+ a

L− j

]
q

.

11. Use the q-Chu-Vandermonde summation identity from problem 10 to show that

2φ1

[
a, q−N

c
; q, q

]
=

(c/a)N
(c)N

aN .

(Hint: the formula only involves a finite sum.)

12. Use the q-binomial theorem to evaluate 1Ψ1

[
a
b
; q, z

]
for b = qN , N ∈ Z>0.

13. a. Use the q-Gauss summation identity,

2φ1

[
a, b

c
; q,

c

ab

]
=

(
c
a
, c
b

)
∞(

c, c
ab

)
∞
, |q| < 1,

∣∣∣ c
ab

∣∣∣ < 1,

to prove that ∑
n≥0

q2n
2−n(−q; q4)n
(q2; q2)2n

=
(−q; q4)∞
(q2; q4)∞

.

(Hint:
(ρ)k
ρk
→ q(

k
2)(−1)k as ρ→∞.)



b. Find a partition theoretic interpretation of the summand

q2n
2−n(−q; q4)n
(q2; q2)2n

.

14. Use the q-Pfaff-Saalschütz summation identity,

3φ2

[
a, b, q−N

c, ab
c
q1−N

; q, q

]
=

(
c
a
, c
b

)
N(

c, c
ab

)
N

to prove that∑
r≥0

[
M −m

r

]
q

[
N +m

m+ r

]
q

[
m+ n+ r

M +N

]
q

q(N−r)(M−m−r) =

[
m+ n

M

]
q

[
n

N

]
q

.

15. In class, we saw how we could use a “seed” of the form (for a = 0, 1)

Ba(r) =
r∑

j=−r−a

A(j)

[
2r + a

r − j

]
q

,

apply some “water” in the form of the identity

L∑
r=0

qr
2+ar(q)2L+a

(q)L−r(q)2r+a

[
2r + a

r − j

]
q

= qj
2+aj

[
2L+ a

L− j

]
q

and get “growth” in the form of

B̃a(L) =
L∑

j=−L−a

Ã(j)

[
2L+ a

L− j

]
q

,

where

Ã(j) = A(j)qj
2+aj

and

B̃a(L) =
L∑
r=0

qr
2+ar(q)2L+a

(q)L−r(q)2r+a
Ba(r).

When the “water” was applied to the “seed”

(q)aδL,0 =
L∑

j=−L−a

(−1)jq(
j
2)
[
2L+ a

L− j

]
q

,

we were able to conclude that

(q)2L+a
(q)L

=
L∑

j=−L−a

(−1)jq
3j2−j

2
+aj

[
2L+ a

L− j

]
q

,

which we saw (by letting L→∞) is a finitized version of the EPNT. Now, apply the
“water” two more times to obtain finitized versions of the Rogers-Ramanujan (modulo
5) and Andrews-Gordon (modulo 7) identities.



16. a. Show that for j ≥ 0, a ∈ {0, 1}, n ≥ 0, and (a, n) 6= (0, 0),

n∑
r=0

1− q2n+a

1− qn+r+a

[
n+ r + a

2r + a

]
q

[
2r + a

r − j

]
q

(−1)n+rq(
n−r
2 ) = δn,j.

b. Show that if

Ba(r) =
∑
j≥0

A(j)

[
2r + a

r − j

]
q

then
n∑
r=0

1− q2n+a

1− qn+r+a

[
n+ r + a

2r + a

]
q

(−1)n+rq(
n−r
2 )Ba(r) = A(n),

provided (a, n) 6= (0, 0).

c. Determine the A(j)’s if B0(r) = (−q; q2)r. (Hint: there are two cases to consider.)

17. Use the Andrews-Gordon identities to prove that Pv,s+1 < Pv,s, for v ∈ Z>0 and
1 ≤ s ≤ v, where

Pv,s :=
∏
j>0

j 6≡0,±s
(mod 2v+3)

1

1− qj
.

(We say that
∑
anq

n <
∑
bnq

n iff an − bn ≥ 0 for all n ≥ 0.)

18. We proved
L∑

j=−L−a

(−1)jqj
2

[
2L+ a

L− j

]
q

= (q; q2)L+a

when a = 0 in class; prove the formula when a = 1.

19. a. Prove that (for v ∈ Z>0)

(q)2Lq
L

∑
n1,...,nv≥0

qN
2
1+···+N2

v+N1+···+Nv

(q)L−N1(q)n1 · · · (q)nv

=
L∑

j=−L

(−1)jq(2v+3)(j
2)
[

2L

L− j

]
q

,

where

Ni :=
v∑
j=i

nj.

b. Use the identity from 19a to prove all v + 1 Andrews-Gordon identities (modulo
2v + 3).

20. Use the Bressoud identities to prove that Bv,s+1 < Bv,s, for v ∈ Z>0 and 1 ≤ s < v,
where

Bv,s :=
∏
j>0

j 6≡0,±s
(mod 2v+2)

1

1− qj
.

What is the relationship between the identity in problem 18 and the Bressoud identi-
ties?



21. a. Prove that (for v ∈ Z>0)

qL
∑

n1,...,nv≥0

(q)2Lq
N2

2+···+N2
v+N1+···+Nv

(q)L−N1(q)n1 · · · (q)nv−1(q
2; q2)nv

=
L∑

j=−L

(−1)jq(2v+2)(j
2)
[

2L

L− j

]
q

,

where

Ni :=
v∑
j=i

nj.

b. Use the identity from 21a to prove all v + 1 Bressoud identities (modulo 2v + 2).

22. Apply the Berkovich-Garvan injection to the partition 〈22
1, 2

3
3, 73, 7

2
10〉 to get its image.

How does this compare with the example on page 32 of the presentation notes from
Keith Grizzell?

23. Use the anti-telescoping technique presented by Mitchell Harris, i.e.

1

P (L)
− 1

Q(L)
=

L∑
i=1

Q(i)
Q(i−1) −

P (i)
P (i−1)

P (i) · Q(L)
Q(i−1)

,

where P (0) = Q(0) = 1, to show that

1

(q, q2, q5, q6; q7)L
<

1

(q, q3, q4, q6; q7)L
<

1

(q2, q3, q4, q5; q7)L
.

24. Determine n1, n2, (λ1, . . . ), and (Λ1, . . . ) for the path space corresponding to frequen-
cies

fi =


2 if i = 3,

1 if i ∈ {5, 7, 8, 9, 11, 12, 13, 14, 16},
0 otherwise.

1

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

25. Verify the following theorem for m = 6, s = 1, and 1 ≤ n ≤ 10. (If you’re ambitious,
feel free to verify it when s = 2 and s = 3 as well!)

The number of partitions of n into parts incongruent with −s, 0, and s
(modulo m), where 0 < s ≤ m/2, is equal to the number of partitions of n
whose successive ranks lie in the interval [2− s,m− s− 2].

(The set of successive ranks of a partition with Fröbenius symbol

(
a1, a2, . . . , ar
b1, b2, . . . , br

)
is

given by {ai − bi | 1 ≤ i ≤ r}.)



26. Use ∑
N1+N2+N3=3

qN
2
1+N

2
2+N

2
3
[
L̂+n1−2N1

n1

]
q

[
2L̂+n2−2(N1+N2)

n2

]
q

[
3L̂+n3−2(N1+N2+N3)

n3

]
q

= q3
[
3+L−1

3

]
q

to show that, for L ≥ 3,
[
L
3

]
q

is a unimodal, palindromic polynomial of degree 3(L−3).

(Here, L̂ := L+ 1 and Ni :=
∑3

j=i nj for 1 ≤ i ≤ 3.)

27. a. Use the binomial recurrences given in problem 7 to prove the following finitizations
of EPNT and the Rogers-Ramanujan identities due to Issai Schur.

i.

1 =
∞∑

j=−∞

(−1)jq
3j2+j

2

[
L⌊

L−3j
2

⌋]
q

ii.
∞∑
n=0

qn
2

[
L− n
n

]
q

=
∞∑

j=−∞

(−1)jq
5j2+j

2

[
L⌊

L−5j
2

⌋]
q

iii.
∞∑
n=0

qn
2+n

[
L− n− 1

n

]
q

=
∞∑

j=−∞

(−1)jq
5j2+3j

2

[
L⌊

L−5j−1
2

⌋]
q

b. Apply “water” (see problem 15) to each of the finitizations in part a and see what
happens.

c. For each of the right-hand sides of i–iii in part a, find values for K, i, n, m, α,
and β to interpret the right-hand side as GK,i(n,m, α, β), where

GK,i(n,m, α, β) =
∞∑

j=−∞

{
qj(Kj+i)(α+β)−Kβj

[
n+m

n−Kj

]
q

−qj(Kj−i)(α+β)−Kβj+βi
[

n+m

n−Kj + i

]
q

}
.

28. We make the following definitions.

• An RR partition is a partition in which the difference between parts is at least 2.

• A chain of an RR partition is a ⊆-maximal subpartition with parts differing by
exactly 2.

• A chain of an RR partition is even (resp. odd) iff it has all even (resp. odd) parts.

• Ri(n) := the set of all RR partitions of n with smallest part ≥ i.

• Ri :=
⋃
n∈N Ri(n).

• Ak,i(n) := the number of partitions of n into parts 6≡ 0,±i (mod k).

• ω1(π) := 2k(π), where π ∈ R2 and k(π) is the number of even chains (of π) in R4.



• ω2(π) := 2k(π), where π ∈ R1 and k(π) is the number of odd chains (of π) in R3.

• ω3(π) := 2k(π), where π ∈ R1 and k(π) is the number of even chains (of π) in R2.

Prove the following:

a. ∑
π∈R2(n)

ω1(π) = A6,1(n).

b. ∑
π∈R1(n)

ω2(π) = A6,2(n).

c. ∑
π∈R1(n)

ω3(π) = A6,3(n).

29. Taking the definitions from problem 28, we add the following new definitions.

• A string of an RR partition is a ⊆-maximal subpartition with parts differing by
≤ 3.

• η(ψ) := the number of times the difference is 3 between successive parts in the
string ψ.

• ω5(ψ) :=

{
Fη(ψ)+3 if ψ ∈ R2,

Fη(ψ)+2 otherwise,
where ψ is a string and Fk represents the kth

Fibonacci number (F1 = F2 = 1 and Fj = Fj−1 + Fj−2 for all j > 2).

• ω5(π) :=
∏r

i=1 ω5(ψi), where π ∈ R1; ψ1, . . . , ψr are distinct strings (of π); and
π =

⋃r
i=1 ψi.

Prove that ∑
π∈R1(n)

ω5(π) = A7,3(n).

30. Let QL
m be the generating function for partitions with rank at least m and largest part

no more than L. Prove the following.

a. If L > m, then

QL
m +QL−m

1−m + 1 =

[
2L−m

L

]
q

.

b. If L > m ≥ 0, then
QL
m = qm+1

(
QL−1−m
−2−m + 1

)
.

c. 30a and 30b together imply 27(a)i.



31. Use Heine’s transformation to prove that, for m > 0,

(1− q)
∑
k≥0

q(k+1)(k+m)+k

(q)k(q)k+m
=
∑
j≥1

(−1)j−1qTj−1+mj
1− qj

(q)∞
.

32. We define a pair of sequences (αL(a, q), βL(a, q)) to be a Bailey pair relative to a iff

βL(a, q) =
L∑
r=0

αr(a, q)

(q)L−r(aq)L+r
.

Let

β̃L(a, q) :=

(
aq
ρ1ρ2

)
L(

q, aq
ρ1
, aq
ρ2

)
L

L∑
r=0

(ρ1, ρ2, q
−L)rq

r(
ρ1ρ2
aqL

)
r

βr(a, q)

and

α̃L(a, q) :=
(ρ1, ρ2)L(
aq
ρ1
, aq
ρ2

)
L

(
aq

ρ1ρ2

)L
αL(a, q).

Then Bailey’s Lemma says that if (αL(a, q), βL(a, q)) is a Bailey pair, then so must
(α̃L(a, q), β̃L(a, q)) be.

a. Take ρ1 →∞ and ρ2 →∞ in Bailey’s Lemma and compare with problem 15.

b. Take ρ1 →∞ and ρ2 = −√aq in Bailey’s Lemma and determine the result.

c. Starting with a Bailey pair relative to 1 (which is associated with the penultimate
identity in problem 15 with a = 0), use Bailey’s Lemma v ≥ 1 times with ρ1 →∞
and ρ2 → ∞, and then use Bailey’s Lemma one more time with ρ1 → ∞ and
ρ2 = −√q; determine the result.

33. Ramanujan showed that

1Ψ1

[a
b

; q, z
]

=

(
q, b

a
, az, q

az

)
∞(

z, b
az
, b, q

a

)
∞

for
∣∣ b
a

∣∣ < |z| < 1, |q| < 1. Use this identity to prove that

∞∑
n=−∞

xn

1− yqn
=

(
xy, q

xy
, q, q

)
∞(

y, q
y
, x, q

x

)
∞

for |q| < |x| < 1.

34. Use the prime factorization of n to find a formula, in terms of those primes and their
multiplicities, for the number of ways to represent n ≥ 1 as each of the following:



a. the sum of a square plus two times a square,

r�+2�(n) = 2
∑
0<d|n

(
−2

d

)
,

b. the sum of a square plus three times a square,

r�+3�(n) = 4 (d4,12(n)− d8,12(n)) + 2 (d1,3(n)− d2,3(n)) ,

where di,j(n) is the number of divisors of n congruent to i (mod j).

Freeman Dyson

35. Prove that
∞∑

n=−∞

(3n+ 1)q3n
2+2n = ψ(q2)E2(q),

where ψ(q) :=
∑
n≥0

qn(n+1)/2 =
E2(q2)

E(q)
.

36. Prove that the discriminants ∆ = −3, ∆ = −4, ∆ = −8, and ∆ = −12 each admit
exactly one class.

37. Determine the class group for the discriminant ∆ = −23.

38. Let CL(∆) denote the class group for the discriminant ∆, let cl(∆) := |CL(∆)|, let
SQ(∆) := {f 2 | f ∈ CL(∆)}, and let sq(∆) := | SQ(∆)|.

a. Show that sq(∆) divides cl(∆).

b. Is there an odd prime p such that p divides
cl(∆)

sq(∆)
?

39. Show that
1

2
φ(q)φ(q5) =

∞∑
n=−∞

(
q3n

1 + q10n
+

q5n+1

1 + q10n+2

)
,

where φ(q) :=
∞∑

n=−∞

qn
2

.



40. Use the fact that

φ(−q)φ(−q3) = 1 + 2
∞∑
n=1

(−q)n + (−q2)n

1 + q3n

to prove that

φ(q)φ(q3) = 1 + 2
∞∑
n=1

(n
3

) qn

1− qn
+ 4

∞∑
n=1

(n
3

) q4n

1− q4n
.

Note that
(•
•

)
denotes the Jacobi symbol.

41. Define the r modulo m projection operator, Pm,r, by

Pm,r

(
∞∑

k=−∞

akq
k

)
:=

∞∑
i=−∞

ami+rq
mi+r,

and note that

Pm,r

(∑
n≥0

anq
n

)
=
∑
k≥0

akm+rq
km+r

for 0 ≤ r < m.

a. Show that

3
∑
x,y

qx
2+xy+7y2 = 3

∑
x,y

q9(x
2+xy+y2) + P3,1

(∑
x,y

qx
2+xy+y2

)
.

b. Determine (1, 1, 7;n).

c. Prove that

3
∑
x,y

qx
2+xy+7y2 =

∑
x,y

qx
2+xy+y2 −

∑
x,y

q3(x
2+xy+y2) + 3

∑
x,y

q9(x
2+xy+y2).

42. For each genus of ∆ = −119, find a set of rational transformations that relate the
elements in the genus to each other.

43. Determine the associated characters for each form with discriminant ∆ = −96: (1, 0, 24),
(3, 0, 8), (4, 4, 7), (5, 2, 5).

44. Suppose that p ∈ {7, 17} (the prime factors from ∆ = −119); then the following
statements are true.

I. (1, 1, 30; pn) = (6, 5, 6;n) and (6, 5, 6; pn) = (1, 1, 30;n).

II. (2, 1, 15; pn) = (3, 1, 10;n) and (3, 1, 10; pn) = (2, 1, 15;n).

III. (4, 3, 8; pn) = (5, 1, 6;n) and (5, 1, 6; pn) = (4, 3, 8;n).

Choose one of I, II, and III, and prove it.



45. Determine the number of representations by the principle genus of discriminant ∆ =
−231 = −3 · 7 · 11 for any positive integer n. Your answer should be in terms of the
prime factors of n.

46. Prove that every positive ternary form F with H(F ) = 16 and min(F ) = 3 is equivalent
to

3x2 + 3y2 + 3z2 + 2yz + 2xz − 2xy.

(Recall that if F = ax2+by2+cz2+2ryz+2sxz+2txy, then H(F ) := det

a t s
t b r
s r c

.)

47. Prove that every positive integer is representable either as the sum of three squares
(�+�+�) or as the sum of four squares with two of the four squares being identical
(�+�+ 2 ·�).

48. Prove that x2 + 2y2 + 4z2 represents all positive integers not of the form 4k(16m+ 14).

49. Prove that 3x2+3y2+3z2+2yz+2xz−2xy is regular. (Recall that a ternary quadratic
form is regular iff it represents all positive integers except for those in some arithmetic
progressions.)

Peter Paule

50. Prove that the following diagonal quaternary forms are universal. (Recall that a form
is universal iff it represents all positive integers.)

a. x2 + y2 + 2z2 + du2, where 2 ≤ d ≤ 14

b. x2 + 2y2 + 5z2 + du2, where 6 ≤ d ≤ 10

51. a. Prove that x2 + y2 + 10z2 represents all even positive integers except those of the
form 2 · 4k · (8m+ 3).

b. Is it proven that the set of odd positive integers not represented by x2 + y2 + 10z2

is finite?

c. Prove that x2 +y2 +10z2 represents all positive integers congruent to 5 (mod 10).

52. Show that if F is a ternary quadratic form with H(F ) = 5, then minF = 1. (See
problem 46 for the definition of H.)



53. Assuming that the following forms are regular, determine for each form the sequences
of integers it does not represent.

a. (3, 6, 14, 4, 2, 2)

b. (1, 5, 13, 2, 1, 1)

c. (1, 6, 13, 3, 1, 0)

d. (2, 5, 11, 2, 2, 1)

e. (3, 5, 15, 3, 3, 3)

f. (1, 10, 29, 5, 1, 0)

g. (5, 8, 11,−4, 1, 2)

h. (5, 9, 15, 9, 3, 3)

i. (5, 9, 17, 6, 5, 3)

j. (2, 15, 32, 15, 1, 0)

k. (5, 9, 27, 0, 3, 3)

l. (5, 13, 33,−6, 3, 1)

m. (9, 11, 29,−4, 3, 6)

n. (11, 15, 39,−3, 6, 3)

54. Prove that x2 + 2y2 + 7z2 + 13w2 represents all positive integers except 5.

55. Prove that x2 +2y2 +cz2 is irregular if c is a positive odd integer greater than 5. (Hint:
use the following theorem.)

Theorem: Let a, b, and c be positive integers, not all even, such that no odd
prime divides any pair of them. Then ax2 + by2 + cz2 is irregular if there is
a positive odd integer k such that

(i) gcd(k, abc) = 1,

(ii) k is not represented by ax2 + by2 + cz2, and

(iii) ax2 + by2 + cz2 ≡ k (mod 8) is solvable.



BONUS PROBLEM

B1. Prove bijectively that, for every positive integer N ,

the number of partitions of N into parts with the difference between parts
≥ 2 and no consecutive odd parts

equals

the number of partitions ofN into distinct parts such that all all even-indexed
parts are even.

(We assume the parts are indexed by consecutive positive integers, beginning with 1,
starting from the largest part on down to the smallest part.)



Some Useful Formulae
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1(
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; q
)
n

(U1)
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a
; q
)
k
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a
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