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ABSTRACT: In the first paper under this title (1977), the first author utilized a duality identity
between the largest and smallest prime factors involving the Moebius function, to establish the following
result as a consequence of the Prime Number Theorem for Arithmetic Progressions: If k and ℓ are positive
integers, with 1 ≤ ℓ ≤ k and (ℓ, k) = 1, then∑

n≥2, p(n)≡ℓ(modk)

µ(n)

n
=

−1

ϕ(k)
,

where µ(n) is the Moebius function, p(n) is the smallest prime factor of n, and ϕ(k) is the Euler function.
Here we utilize the next level Duality identity between the second largest prime factor and the smallest prime
factor, involving the Moebius function and ω(n), the number of distinct prime factors of n, to establish the
following result as a consequence of the Prime Number Theorem for Arithmetic Progressions: For all ℓ and
k as above, ∑

n≥2, p(n)≡ℓ(modk)

µ(n)ω(n)

n
= 0.

A quantitative version of this result is proved.
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1 Background

Two famous results of Edmund Landau are that

M(x) :=
∑

1≤n≤x

µ(n) = o(x), as x → ∞ (1.1)

and
∞∑
n=1

µ(n)

n
= 0 (1.2)
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are (elementarily) equivalent to the Prime Number Theorem (PNT), where µ(n) is the Moebius function.
Similarly, there are results equivalent to the Prime Number Theorem for Arithmetic Progressions (PNTAP)
in which µ(n) is replaced by µ(n)χ(n), where χ(n) is a Dirichlet character modulo k, when the arithmetic
progression under consideration has common difference k.

In [2], the first author noticed the following interesting Duality identities involving the Moebius function
that connect the smallest and largest prime factors of integers:

∑
2≤d|n

µ(d)f(p(d)) = −f(P (n)), (1.3)

and ∑
2≤d|n

µ(d)f(P (d)) = −f(p(n)), (1.4)

where for d > 1, p(d) and P (d) denote the smallest and largest prime factors of d respectively, and f is
ANY function on the primes. Using (1.3) and properties of the Moebius function, it was shown in [2] that
if f is a bounded function on the primes such that

lim
x→∞

1

x

∑
1≤n≤x

f(P (n)) = c, (1.5)

then

∞∑
n=2

µ(n)f(p(n))

n
= −c, (1.6)

and vice-versa. This is a surprising generalization of Landau’s result (1.2). To realize this is a generalization,
rewrite (1.2) as

∞∑
n=2

µ(n)

n
= −1. (1.7)

Then (1.7) follows from (1.5) and (1.6) by taking f(p) = 1 for all primes p.
Next it was shown in [2] that the PNTAP implies that the sequence P (n) of largest prime factors is

uniformly distributed in the reduced residue classes modulo a positive integer k. So if f is chosen to be
the characteristic function of primes in an arithmetic progression ℓ(mod k), then for such f , (1.5) holds
with c = 1/ϕ(k), and therefore ∑

n≥2, p(n)≡ℓ(modk)

µ(n)

n
=

−1

ϕ(k)
, (1.8)

for ALL positive integers k and any ℓ satisfying (ℓ, k) = 1. This is even more surprising because it gives
a way of slicing the convergent series in (1.7) into ϕ(k) subseries all converging to the same value! As far
as we know, this is the first example of slicing convergent series into equal valued subseries. In the last
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few years, (1.8) has received considerable attention and has been generalized in the setting of algebraic
number theory (see [5], [8], [10], [16], [21], and [22]).

In [2], the following more general duality identities were noted: For a positive integer k let Pk(n) and
pk(n) denote the k-th largest and k-th smallest prime factors n respectively (defined by strict inequalities),
if n has at least k distinct prime factors. Also let ω(n) denote the number of distinct prime factors of n.
Then

∗∑
1<d|n

µ(d)f(Pk(d)) = (−1)k
(
ω(n)− 1

k − 1

)
f(p1(n)), (1.9)

and

∗∑
1<d|n

µ(d)f(pk(d)) = (−1)k
(
ω(n)− 1

k − 1

)
f(P1(n)), (1.10)

where the * over the summation means that if n has fewer than k distinct prime factors, then the sum is
zero. (NOTE: When k = 1, we often write p(n) and P (n) in place of p1(n) and P1(n), respectively.) From
(1.9) and (1.10), it follows by Moebius inversion that∑

1<d|n

µ(d)

(
ω(d)− 1

k − 1

)
f(P1(d)) = (−1)kf(pk(n)), (1.11)

and ∑
1<d|n

µ(d)

(
ω(d)− 1

k − 1

)
f(p1(d)) = (−1)kf(Pk(n)). (1.12)

In these identities, we adopt the convention that f(Pk(n)) = f(pk(n)) = 0 if ω(n) < k, that is, if n has
fewer than k distinct prime factors.

In this paper we will discuss consequences of (1.12) in the case k = 2, that is the identity∑
1<d|n

µ(d)(ω(d)− 1)f(p(d)) = f(P2(n)) (1.13)

and its implications.
As a start, analogous to (1.2), we establish (see Theorem 4 of §2)that

∞∑
n=1

µ(n)ω(n)

n
= 0. (1.14)

Since ω(1) = 0, (1.14) gives

∞∑
n=2

µ(n)ω(n)

n
= 0, (1.15)

unlike (1.7). Next we establish (see Theorem 7 of §5), that for each positive integer k, the sequence P2(n)
of second largest prime factors, is uniformly distributed in the reduced residue classes ℓ(mod k). From
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this uniform distribution result, (1.15), and by choosing f to be the characteristic function for primes
≡ ℓ(mod k), we prove (see Theorem 10 of §6) that∑

n≥2,p1(n)≡ℓ(modk)

µ(n)ω(n)

n
= 0, (1.16)

and this is the main result of the paper.
To establish Theorems 7 and 10, several auxiliary results are proved. All the theorems in this paper

are proved in quantitative form.
Notations and Conventions: In what follows, c, c1, c2, · · · are absolute positive constants whose

values will not concern us. The << and O notations are equivalent and will be used interchangeably as is
convenient. We also adopt the convention that

f(x) << g(x) means |f(x)| < K|g(x)|,

with x ranging in some domain, andK a positive constant. Implicit constants are absolute unless otherwise
indicated with a subscript. Although our results can be established with uniformity by allowing the
modulus k to grow slowly as a function of x, we only consider here an arbitrary but fixed modulus k.
The alphabet n whether used as the argument of a function, or in a summation, will always be a positive
integer. Also, any time we have a sum over p, or have p as an argument of a function, it is to be understood
that p is prime.

By E(x, k, ℓ) we mean the difference

E(x, k, ℓ) = π(x, k, ℓ)− ℓi(x)

ϕ(k)
,

where

π(x, k, ℓ) =
∑

p≤x,p≡ℓ(modk

1, and ℓi(x) =

∫ x

2

dt

log t
.

When k and ℓ are specific, we simply use E(x) in place of E(x, k, ℓ). Finally, by R(x) we mean any
decreasing function of x that tends to zero as x → ∞ and bounds from above the relative error in the
PNTAP; that is ∣∣∣∣π(x, k, ℓ)− ℓi(x)

ϕ(k)

∣∣∣∣ < ℓi(x)

ϕ(k)
R(x).

In what follows, we will choose
R(x) = e−c

√
log x,

where c can be any positive constant. Also T = T (x) will be a function which will be chosen optimally to
get suitable bounds in various estimates, but T will not necessarily be the same in different contexts. We
shall use the standard notation [x] for the integral part of a real number x, and {x}, where indicated, will
denote the fractional part of x, namely x− [x]. Finally, complex numbers will be denoted either by z, or
by s = σ + it when dealing with Dirichlet series.
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2 The Moebius function and the number of prime factors

Here and throughout, by C = C(x) we mean the rectangular contour whose corners in the complex plane
are given by

(1 +
1

log x
,−T ), (1 +

1

log x
, T ), (− 1

log T
, T ) (− 1

log T
,−T ), (2.1)

where x ≥ 3 and T = exp
√
log x. Inside and on this contour, we know that for some absolute constant

c1 > 0,

| 1

ζ(s)
| << (log x)c1 , (2.2)

where ζ(s) is the Riemann zeta function. Since

∞∑
n=1

µ(n)

ns
=

1

ζ(s)
, for Re(s) > 1, (2.3)

the Perron integral method applied to the contour C, together with (2.2) gives

M(x) :=
∑
n≤x

µ(n) << xe−c2
√
log x. (2.4)

Instead of summing over all positive integers n as in (2.3), if we sum only over those integers which are
not multiples of a certain prime p, then we have∑

n≥1, (n,p)=1

µ(n)

ns
= (1− 1

ps
)−1 1

ζ(s)
, for Re(s) > 1. (2.5)

Now on the contour C, we have the bound

|(1− 1

ps
)−1| ≤ (1− 1

pσ
)−1 ≤ (1− 1

2σ
)−1 ≤ (1− 1

2
√
log 3

)−1 (2.6)

valid uniformly for ALL primes p, where σ = 1 − 1/log T . Thus the Perron integral method that yielded
the bound for M(x) in (2.4), now gives in view of (2.6), the following bound

M (p)(x) :=
∑

n≤x,(n,p)=1

µ(n) << xe−c2
√
log x, (2.7)

valid uniformly for ALL primes p.
Next we consider the sum

Mω(x) :=
∑

1≤n≤x

µ(n)ω(n).

Even though our focus here is n square-free, for the purpose of employing the Moebius inversion formula, it
is convenient to also consider the function Ω(n), which is the (total) number of prime factors of n counted
with multiplicity, because the function Ω is a totally additive.
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If χP denotes the characteristic function of the prime powers, then

Ω(n) =
∑
d|n

χP (d).

Thus by Moebius inversion, we have

χP (n) =
∑
d|n

µ(d)Ω(
n

d
)

= Ω(n)
∑
d|n

µ(d)−
∑
d|n

µ(d)Ω(d) = −
∑
d|n

µ(d)Ω(d), (2.8)

because Ω(n)
∑

d|n µ(d) is identically zero. Since µ(d) = 0 if d is not square-free, we may rewrite (2.8) as∑
d|n

µ(d)ω(d) = −χP (n), (2.9)

and Moebius inversion applied to (2.9) yields

µ(n)ω(n) = −
∑
d|n

χP (d)µ(
n

d
). (2.10)

Our first result is:

Theorem 1: For x ≥ 2, we have

Mω(x) :=
∑
n≤x

µ(n)ω(n) <<
x

log x
.

Proof: Use

Mω(x) =
∑
n≤x

µ(n)ω(n) =
∑
n≤x

µ(n)
∑
p|n

1

=
∑
p≤x

∑
n≤x, n≡0(mod p)

µ(n). (2.11)

In (2.11), in the inner sum on the right, put n = mp, with (m, p) = 1, to rewrite it as

Mω(x) = −
∑
p≤x

∑
m≤x/p, (m,p)=1

µ(m) = −
∑
p≤x

M (p)(
x

p
) = Σ1 + Σ2, (2.12)

where

Σ1 =
∑
p≤T

M (p)(
x

p
) and Σ2 =

∑
T<p≤x

M (p)(
x

p
), (2.13)
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and T will be chosen optimally below.
To estimate Σ1 and Σ2 we use the well-known estimate∑

p≤x

1

p
= log log x+ c3 +O(e−c4

√
log x), for x ≥ 3, (2.14)

and its consequence∑
y<p≤x

1

p
= log log x− log log y +O(e−c4

√
log y), for 3 ≤ y ≤ x. (2.15)

So from (2.7) and (2.14) it follows that

Σ1 <<
∑
p≤T

x

p
e−c2

√
log(x/p) << x log log x e−c2

√
log(x/T ). (2.16)

To estimate Σ2, we break it up as follows:

Σ2 =
∑

m<(x/T )−1

∑
x

m+1
<p≤ x

m

, (2.17)

and denote the inner sum in (2.17) as Σ(m). We will set T = x1−ε and will choose ε → 0 optimally as
x → ∞. Thus we get the following bound for Σ(m) by using (2.7) and (2.15):

Σ(m) << xe−c2
√
log m{(log log x

m
− log log

x

m+ 1
) +O(e−c4

√
log(x/m))}

<< xe−c2
√
log m 1

m log x
+ xe−c2

√
log me−c4

√
log(x/m). (2.18)

Note that x
T
= xε, and that

∞∑
m=1

e−c2
√
log m

m
< ∞.

Thus by summing the expression on the right in (2.18) over m ≤ xε, we get

Σ2 <<
x

log x
+ x

∑
m<xε

e−c2
√
log me−c4

√
log(x/m)

<<
x

log x
+ x1+εe−

√
(1−ε) log x. (2.19)

Finally, we choose

ε = c5
(log log x)2

log x
, with c5 = 4c−2

2 . (2.20)

So (2.16), (2.19) and (2.20) yield

Σ1 <<
x log log x

log2 x
and Σ2 <<

x

log x
. (2.21)
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Theorem 1 follows from (2.12) and (2.21).

Remark: If we choose c5 = N2c−2
2 , with N arbitrarily large, then we would get

Σ1 <<N
x log log x

logN x
,

but this is of no use since Σ2 is bounded only by x/ log x, and not any better by the above method. For a
sharper estimate for Mω(x) due to Tenenbaum by analytic methods see (3.15) below.
Next, using Theorem 1 and following an idea of Axer, we prove:

Theorem 2: With {w} denoting the fractional part of w, we have

∑
n≤x

µ(n)ω(n){x
n
} <<

x
√
log log x√
log x

.

Proof: Begin by splitting ∑
n≤x

µ(n)ω(n){x
n
} =

∑
n≤T

+
∑

T<n≤x

= Σ3 + Σ4, (2.22)

with T = T (x) to be determined below.
For Σ3, we use the trivial bound

|Σ3| ≤
∑
n≤T

ω(n) << T log log T. (2.23)

To estimate Σ4, we use partial summation:

Σ4 =
∑

T<n≤x

(Mω(n)−Mω(n− 1)){x
n
}

=
∑

T<n≤x−1

Mω(n)({
x

n
} − { x

n+ 1
}) +O(|Mω(x)|) + (|Mω(

x

T
)|). (2.24)

From (2.24) and Theorem 1 we deduce that

|Σ4| <<
x

log x
+

∑
T<n≤x−1

|Mω(n)||{
x

n
} − { x

n+ 1
}| <<

x

log x

∑
T<n≤x−1

|{x
n
} − { x

n+ 1
}|. (2.25)

At this stage, we note that ∑
T<n≤x

|{x
n
} − { x

n+ 1
}| ≤ V{}[1,

x

T
] <<

x

T
, (2.26)

where V{}[a, b] is the total variation of {x} on [a, b]. So by (2.25) and (2.26) we have

Σ4 <<
x

log x

x

T
. (2.27)
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Thus (2.22), (2.23) and (2.27) yield∑
n≤x

µ(n)ω(n){x
n
} << T log log T +

x

log x

x

T
. (2.28)

We need to choose T optimally to minimize the right hand side of (2.28). The choice

T =
x√

log x log log x

in (2.28) yields ∑
n≤x

µ(n)ω(n){x
n
} <<

x
√
log log x√
log x

which proves Theorem 2.

Since Theorem 2 deals with the fractional part function as the weight, we establish next the corresponding
result with the weight as the integral part function:

Theorem 3: ∑
n≤x

µ(n)ω(n)[
x

n
] =

x

log x
+O(

x

log2 x
).

Proof: Note that (2.9) yields ∑
n≤x

µ(n)ω(n)[
x

n
] =

∑
n≤x

∑
d|n

µ(d)ω(d)

=
∑
n≤x

χP (n) =
x

log x
+O(

x

log2 x
),

which proves Theorem 3.
Theorems 2 and 3 lead to the the main result of this section:

Theorem 4:

mω(x) :=
∑
n≤x

µ(n)ω(n)

n
= O(

√
log log x√
log x

). (2.29)

In particular
∞∑
n=1

µ(n)ω(n)

n
=

∞∑
n=2

µ(n)ω(n)

n
= 0.

Proof: From Theorems 2 and 3, we get∑
n≤x

µ(n)ω(n)
x

n
=

∑
n≤x

µ(n)ω(n)[
x

n
] +

∑
n≤x

µ(n)ω(n){x
n
}

<<
x
√
log log x√
log x

+
x

log x
. (2.30)
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By cancelling x on both extremes of (2.30), we get (2.29) of Theorem 4. By letting x → ∞ in (2.29), we
get (1.14) and (1.15), which is the second assertion of Theorem 4.

Remark: When I communicated the results of this section to Tenenbaum, he responded [19] by say-
ing that he can establish stronger quantitative versions of the Theorems 1 and 4 by the Selberg-Delange
analytic method. We describe Tenenbaum’s approach and state his stronger quantitative results in the
next section. But we mention here that the actual results of §2 and §3 are not used to establish our main
result in §6, but the elementary method used in this section is what is employed in §6. The discussion on
Mω(x) and mω(x) in this and the next section provides a context to understand our main result.

3 Analytic approach to sums of µ(n)ω(n)

For a complex number z, represent the function ζ(s)z as a Dirichlet series

ζ(s)z =
∞∑
n=1

dz(n)

ns
, for Re(s) > 1. (3.1)

The function dz(n) is called the generalized divisor function because d2(n) = d(n) is the standard divisor
function. In a fundamental paper, Selberg [14] showed that∑

n≤x

dz(n) =
x(log x)z−1

Γ(z)
+OR(x(log x)z−2) (3.2)

is valid uniformly for |z| ≤ R.
In order to establish (3.2), Selberg used the Perron integral method, but since ζ(s)z has a branch point

singularity at s = 1 when z is not an integer, he modified the contour C(x) in §2 by replacing the short
line segment from b− i(2 log T )−1 to b+ i(log T )−1 on C(x) with the following lacet L around s = 1:

L starts at b − i(2 log x)−1, runs parallel to the x-axis until 1 − i(2 log x)−1, then encircles s = 1 in a
semi-circle of radius (2 log x)−1, and ends with a line segment from 1 + i(log x)−1 to b+ i(log x)−1.

The contribution around L leads to the Hankel contour for the Gamma function, and that explains the
presence of Γ(z) in (3.2).

Selberg’s method applies more generally to sums of coefficients of Dirichlet series representing functions
of the type

ζ(s)z.H(s),

where H(s) would be analytic in the half plane Re(s) > 1
2
, and indeed Selberg considered a few important

such H(s) in [14]. A case of interest to us here is the sum

S−z(x) :=
∑
n≤x

µ(n)zω(n) (3.3)

which can be viewed as the sum of the coefficients of the Dirichlet series

∞∑
n=1

µ(n)zω(n)

ns
=

∏
p

(1− z

ps
) for Re(s) > 1. (3.4)
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We could rewrite (3.4) as

∞∑
n=1

µ(n)zω(n)

ns
= ζ(s)−zG(s, z), (3.5)

where

G(s, z) =
∏
p

(1− z

ps
)(1− 1

ps
)−z, (3.6)

is analytic in Re(s) > 1
2
, and uniformly bounded in the half plane Re(s) ≥ 1

2
+ δ, for each δ > 0. So by

the Selberg method, one gets

S−z(x) =
x(log x)−z−1G(1, z)

Γ(−z)
+OR(x(log x)−z−2), (3.7)

is uniformly valid for |z| ≤ R, and indeed this is implicit in [13].
Selberg’s method was extended by Delange to deal with sums of coefficients of Dirichlet series convergent

in Re(s) > 1, and can be represented as

ζ(s)z(log ζ(s))kH(s), (3.8)

where k is a non-negative integer, andH(s) is analytic in Re(s) > 1
2
. This is a natural extension of Selberg’s

method (and one to be expected) because ζz(s) = ez log ζ(s), but it is a useful extension. Tenenbaum [18]
has a thorough account of the Selberg-Delange method in its most general form, and in doing so, has
improved on the quantitative aspects as well.

We can view Mω(x) as

Mω(x) =
d

dz
S−z(x)|z=1. (3.9)

So one may heuristically get from (3.7) that

Mω(x) ∼
d

dz
(
x(log x)−z−1G(1, z)

Γ(−z)
)|z=1. (3.10)

Note that,
G(1, z)

Γ(−z)

has a simple zero at z = 1, and so (3.10) would yield

Mω(x) ∼
c7x

(log x)2
, (3.11)

with some non-zero constant. But Tenenbaum in his letter [19] established (3.11) by the Selberg-Delange
method, as well as a precise series expansion as detailed below.

Observe that

∞∑
n=1

µ(n)ω(n)

ns
=

d

dz
(

∞∑
n=1

µ(n)zω(n)

ns
)|z=1, for Re(s) > 1, (3.12)
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because the term-by-term differentiation of the Dirichlet series on the right is valid in Re(s) > 1. So by
(3.5) and (3.12) we have

∞∑
n=1

µ(n)ω(n)

ns
=

d

dz
(ζ−z(s)G(s, z))|z=1

= −ζ−z(s) log ζ(s)G(s, z)|z=1 + ζ−z(s)G′(s, z)|z=1

= −ζ−1(s) log ζ(s)G(s, 1) + ζ−1(s)G′(s, 1), for Re(s) > 1. (3.13)

In view of the representation in (3.13) for the Dirichlet series, the Selberg-Delange method can be applied
using the function on the right in (3.13), to deduce that

Mω(x) =
c7x

log2 x
+O(

x

log3 x
). (3.14)

Tenenbaum [19] notes that Theorem 11.5.2 in his book [18] readily yields the following more precise
estimate:

Mω(x) = x
∑

0≤k≤N

λk

logk+2 x
+O(xRN+2(x)), (3.15)

where the λk are constants, with λ0 = 1 (consequently c7 = 1), and

RN(x) = e−
√
log x +O((

c8N + 1

log x
)N+1). (3.16)

But, as noted in the previous section, such a precise result as (3.16) for Mω(x) is not needed for us here.
It follows from (3.15) by partial summation that∑

n≤x

µ(n)ω(n)

n
= c9 +O(

1

log x
),

and so the series
∞∑
n=1

µ(n)ω(n)

n

is convergent to c9. If we call the expression on the right in (3.13) as F (s, 1), then Tenenbaum [19] notes
that

c9 = lim
σ→1+

F (σ, 1) = 0

and so ∑
n≤x

µ(n)ω(n)

n
<<

1

log x
(3.17)

which is stronger than our Theorem 4, which we derived elementarily from the strong form of the Prime
Number Theorem.
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Indeed, in the spirit of (3.15), Tenenbaum [19] proved the stronger result∑
n≤x

µ(n)ω(n)

n
=

∑
1≤k≤N

νk

logk x
+O(RN+1(x)). (3.18)

which follows by directly applying the Selberg-Delange method to evaluate the sum by considering the
associated Dirichlet series

∞∑
n=1

µ(n)zω(n)

ns+1
.

Some key differences:

Denote by

m(x) :=
∑
n≤x

µ(n)

n
. (3.19)

It is known by a theorem of Landau on Dirichlet series whose coefficients are eventually of the same sign
(with a similar result for Dirichlet type integrals), that M(x) changes sign infinitely often, and that m(x)
changes sign infinitely often as it converges to 0 as x → ∞. In contrast, in view of the fact that Mω(x)
can be estimated asymptotically with a leading term as in (3.14), Mω(x) will eventually be of the same
sign, and therefore will NOT change sign infinitely often. Similarly,

mω(x) :=
∑
n≤x

µ(n)ω(n)

n
(3.20)

will be eventually of the same sign as it tends to 0 when x → ∞, and so will NOT change sign infinitely
often.

The other key difference is in their sizes. Whereas the strong form of the Prime Number Theorem
implies that

M(x) = O(xe−c
√
log x) and m(x) = O(e−c

√
log x),

we have

Mω(x) ∼ c7
x

log2 x
and mω(x) ∼ c10

1

log x
.

It is however to be noted that by writing

∞∑
n=1

µ(n)ω(n)

n
=

∫ ∞

1−

dMω(x)

x
, (3.21)

and using integration-by-parts, we get

∞∑
n=1

µ(n)ω(n)

n
=

∫ ∞

1

Mω(x)

x2
dx = 0. (3.22)

Thus Mω(x) must change sign, even though it does not change sign infinitely often!
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4 The sizes of the largest and second largest prime factors

The fundamental counting function associated with the largest prime factor P (n) is

Ψ(x, y) =
∑

n≤x.P (n)≤y

1. (4.1)

Here and in what follows, we shall denote by α, the quantity log x
log y

. In an important paper [7], de Bruijn
showed that with some constant c > 0,

Ψ(x, y) << xe−cα, uniformly for 2 ≤ y ≤ x. (4.2)

Tenenbaum [19; Theorem III.5.1] has shown that (4.2) holds with c = 1/2. de Bruijn also proved that

Ψ(x, y) << x log2 ye−α log α−α log log α+O(α), for y > log2 x, (4.3)

and indeed the uniform asymptotic estimate

Ψ(x, y) ∼ xρ(α), for e(log x)3/5 ≤ y ≤ x, (4.4)

where ρ satisfies the integro-difference equation

ρ(α) = 1−
∫ α

1

ρ(u− 1)du

u

and (de Bruijn [6])

ρ(α) = e−α log α−α log log α+O(α).

Thus Ψ(x, y) is quite small in comparison with x when α is large.
Remark: Note that (4.3) is of no use when α > 1 is fixed, because trivially Ψ(x, y) ≤ x (!); so (4.3)

is used only when α → ∞ with x. Much better estimates for Ψ(x, y) are known including those that
significantly extend the range of the asymptotic formula (4.4); for such superior results, see Hildebrand
and Tenenbaum [9]. For our purpose here, these superior results on Ψ(x, y) are not needed; the above
bounds suffice.

Next consider P2(n), the second largest prime factor of n. Note that whereas P (n) is uniquely defined,
there are two ways to define the second largest prime factor. We could define P2(n) = P (n/P (n)) or
P2(n) as the largest prime factor of n strictly less than P (n). In the former definition, we set P2(n) = 1 if
Ω(n) < 2, and in the latter definition we set P2(n) = 1, if ω(n) < 2. From the point of view of asymptotic
estimates, there is little difference between the two ways of defining P2(n). This is made precise by:

Theorem 5: Let N(x) denote the number of positive integers n ≤ x for which P (n) repeats. Then

N(x) <<
x

e(
1
2
+o(1))

√
log x log log x

.

Proof: By (4.3),

Ψ(x, e
√
log x log log x) <<

x

e(
1
2
+o(1))

√
log x log log x

.
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So it suffices to consider those integers n for which P (n) > e
√

( log x log log x). Among these integers ≤ x, the
number of those with largest prime P (n) = p repeating, is trivially O(x/p2). Thus

N(x) << Ψ(x, e
√

( log x log log x)) +
∑

p>exp
√

( log x log log x)

x

p2

<<
x

e(
1
2
+o(1))

√
( log x log log x)

+
∑

n>exp
√

( log x log log x)

x

n2
<<

x

e(
1
2
+o(1))

√
( log x log log x)

,

which proves Theorem 5.

Here we shall use the definition for P2(n) as the largest prime factor strictly less than the largest prime
factor. From Theorem 5 we see that we can focus on those integers for which P (n) occurs square-free.

Consider the counting function

Ψ2(x, y) =
∑

n≤x, P2(n)≤y

1. (4.5)

In contrast to Ψ(x, y) which is very small in comparison with x when α is large, the function Ψ2(x, y) is
not that small. To realize this, observe that all integers of the form 2p ≤ x where p is prime, will have
P2(n) = 2, and so

Ψ2(x, y) ≥ Ψ2(x, 2) >>
x

log x
, for all y ≥ 2. (4.6)

What we need here is a quantitative version of the fact that for “almost all” integers, P2(n) is large. This
(and much more) is provided by a result of Tenenbaum [], on the size of Pk(n), when k ≥ 2. We state
Tenenbaum’s result for k = 2 (his eqns (1.5) and (1.6) in []) in the form of:

Theorem 6: (Tenenbaum) There exists a function ρ2(α) such that

Ψ2(x, y) = xρ2(α)(1 +O(
1

log y
)), uniformly for 2 ≤ y ≤ x. (4.7)

The function ρ2(α) satisfies

1

α
<< ρ2(α) <<

1

α
. (4.8)

Tenenbaum’s proof of his stronger quantitative result on the joint distribution of the Pk(n) for k ≥ 2, is
quite intricate, and makes use of sharp estimates for Ψ(x, y). He has a precise formula for ρ2(α) which we
do not need here. For our purpose, all we need is:

Theorem 6*: Uniformly for 2 ≤ T ≤ x, we have

Ψ2(x, T ) <<
x log T

log x
.

which follows from Theorem 6. But we point out that the bound in Theorem 6* for T ≤ exp{(log x)1−δ},
for any δ > 0, can be proved using the bounds in (4.2a) and (4.2b); the implicit constant will depend on
δ. Theorem 6* will be used in what follows.
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5 The uniform distribution of P2(n) modulo k

In this section, we shall prove:

Theorem 7 For each integer k ≥ 2, the sequence P2(n) of the second largest prime factors, is uniformly
distributed in the reduced residue classes modulo k. More precisely, for each fixed k ≥ 2, and any 1 ≤ ℓ < k
with (ℓ, k) = 1, we have

N2(x, k, ℓ) :=
∑

n≤x, P2(n)≡ ℓ(mod k)

1 =
x

ϕ(k)
+O(

x(log log x)2

log x
). (5.1)

Remark: Note that the number of positive integers up to x with ω(n) = 1 or Ω(n) = 1 is

π(x) +O(
√
x) =

x

log x
+O(

x

log2 x
) = o(x) (5.2)

Thus it does not matter in Theorem 7 whether the sum in (5.1) is taken over all integers n ≤ x for which
P2(n) ≡ ℓ(mod k), or restricted to integers for which ω(n) ≥ 2.

Proof: For a prime p, denote by S2(x, p) the set of integers n ≤ x for which P2(n) = p. Then∑
p≤

√
x

|S2(x, p)| = x− x

log x
+O(

x

log2 x
). (5.3)

Now if N ∈ S2(x, p), then we may write

N = mpq, where q ≥ p and P (m) ≤ p,

with q being prime. In particular m ≤ (x/p2). Thus

|S2(x, p)| =
∑

m≤(x/p2), P (m)≤p

∑
q>p,mpq≤x

1 =
∑

p<q≤x/p

∑
m≤x/(pq), P (m)≤p

1. (5.4)

Thus by summing the expression in (5.4) over p ≤
√
x, we get

∑
p≤

√
x

|S2(x, p)| =
∑
p≤

√
x

∑
p≤q≤x/p

Ψ(
x

pq
, p) =

∑
q≤(x/2)

∗∑
Ψ(

x

pq
, p), (5.5)

where the * over the inner sum on the right means that the conditions on p and q are

p ≤
√
x, p ≤ q, and p ≤ x

q
. (5.6)

To deal efficiently with the double sum on the right in (5.5), we consider two cases, namely q ≤
√
x and

q >
√
x, together with the inequalities in (5.6). This gives∑

p≤
√
x

|S2(x, p)| =
∑
q≤

√
x

∑
p≤q

Ψ(
x

pq
, p) +

∑
√
x<q≤(x/2)

∑
p≤(x/q)

Ψ(
x

pq
, p). (5.7)
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At this point we note that we have already established an effective version of the statement that P2(n)
is “almost always” large, namely, Theorem 6*. In view of Theorem 6*, we may consider in (5,7) only the
integers n ≤ x for which P2(n) > y, with y to be chosen later to satisfy log y = o(log x). Thus we modify
(5.7) to ∑

:=
∑

y<p≤
√
x

|S2(x, p)| =
∑

y<q≤
√
x

∑
y<p<q

Ψ(
x

pq
, p) +

∑
√
x<q≤(x/y)

∑
y<p≤(x/q)

Ψ(
x

pq
, p)

= x+O(
x log y

log x
). (5.8)

Next we shall compare
∑

with

I :=
∑

y<q≤
√
x

∫ q

y

Ψ(
x

tq
, t)

dt

log t
+

∑
√
x<q≤(x/y)

∫ x/q

y

Ψ(
x

tq
, t)

dt

log t
(5.9)

and estimate the difference (error) E =
∑

− I by using the strong form of the Prime Number Theorem.
We first consider the absolute value of the difference

E1 := |
∑

y<q≤
√
x

{
∑

y<p≤q

Ψ(
x

pq
, p)−

∫ q

y

Ψ(
x

tq
, t)

dt

log t
}|

= |
∑

y<q≤
√
x

{
∑

y<p<q

∑
n≤(x/pq),P (n)≤p

1−
∫ q

y

(
∑

n≤(x/tq),P (n)≤t

1)
dt

log t
}|

≤
∑

y<q≤
√
x

∑
n≤(x/yq)

|
∑

max(P (n),y)≤p≤min(x/nq,q)

1−
∫ min(x/nq,q)

max(P (n),y)

dt

log t
|. (5.10)

It is to be noted that for the final term in (5.10), we have dropped the condition on P (n) in the sum over
n on the right for simplicity since this will not lessen the effectiveness of the upper bound on E1 that we
will get. We now use the strong form of the Prime Number Theorem on the expression on the right in
(5.10) to deduce that

E1 <<
∑

y<q≤
√
x

∑
n≤(x/yq)

x

nq exp{
√
log (x/nq)}

≤ x

exp(
√
log y)

∑
y<q≤

√
x

1

q

∑
n≤(x/yq)

1

n

<<
x log x

exp(
√

log y)

∑
y<q≤

√
x

1

q
<<

x log x log log x

exp(
√

log y)
. (5.11)

In obtaining this upper bound for E1, we have used the fact that z/exp
√
log z is an increasing function of

z, and so in deriving (5.11) we only used the error term in the strong form of the Prime Number Theorem
with z = x/nq.
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Similarly, we bound the difference

E2 := |
∑

√
x<q≤(x/y)

{
∑

y<p<(x/q)

Ψ(
x

pq
, p)−

∫ x/q

y

Ψ(
x

tq
, t)

dt

log t
}|

= |
∑

√
x<q≤(x/y)

{
∑

y<p<(x/q)

∑
n≤(x/pq),P (n)≤p

1−
∫ x/q

y

(
∑

n≤(x/tq),P (n)≤t

1)
dt

log t
}|

≤
∑

√
x<q≤(x/y)

∑
n≤(x/yq)

|
∑

max(P (n),y)≤p≤(x/nq)

1−
∫ x/nq

max(P (n),y)

dt

log t
|

<<
∑

√
x<q≤(x/y)

∑
n≤(x/yq)

x

nq exp{
√

log (x/nq)}
≤ x

exp(
√

log y)

∑
√
x<q≤(x/y)

1

q

∑
n≤(x/yq)

1

n

<<
x log x

exp(
√

log y)

∑
√
x<q≤(x/y)

1

q
<<

x log x log log x

exp(
√
log y)

. (5.12)

So from (5.11) and (5.12), we see that

|E| = |
∑

− I| ≤ E1 + E2 <<
x log x log log x

exp(
√

log y)
. (5.13)

From (5.13) and (5.8) we deduce that

I = x+O(
x log y

log x
) +O(

x log x log log x

exp(
√
log y)

). (5.14)

At this stage, we make the choice

y = exp{(2 log log x)2}, (5.15)

to conclude that

I = x+O(
x(log log x)2

log x
) and

∑
= x+O(

x(log log x)2

log x
). (5.16)

This will be crucial in establishing Theorem 7.

Now for an arbitrary but fixed integer k ≥ 2, and for any 1 ≤ ℓ < k with (ℓ, k) = 1, we consider the
set Sk,ℓ

2 (x) of integers n ≤ x such that, ω(n) ≥ 2, and P2(n) ≡ ℓ(mod k). By classifying the members of
this set in terms of their second largest prime factor, we see that

N2(x, k, ℓ) = |Sk,ℓ
2 (x)| =

∑
p≤

√
x, p≡ℓ(modk)

|S2(x, p)|. (5.17)

In view of Theorem 6*, we have for any y ≤ exp(log x)1−δ

∑
p≤y, p≡ℓ(modk)

|S2(x, p)| ≤
∑
p≤y

|S2(x, p)| <<
x log y

log x
. (5.18)
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Thus

N2(x, k, ℓ) = |Sk,ℓ
2 (x)| =

∑
y<p≤

√
x, p≡ℓ(modk)

|S2(x, p)|+O(
x log y

log x
) (5.19)

Let us denote the sum on the right of (5.19) as
∑k,ℓ. Then by reasoning as above, we get

k,ℓ∑
=

∑
y<q≤

√
x

∑
y<p<q, p≡ℓ(modk)

Ψ(
x

pq
, p) +

∑
√
x<q≤(x/y)

∑
y<p≤(x/q), p≡ℓ(modk)

Ψ(
x

pq
, p). (5.20)

We now want to compare the expression in (5.20) with

Ik,ℓ :=
∑

y<q≤
√
x

1

ϕ(k)

∫ q

y

Ψ(
x

tq
, t)

dt

log t
+

∑
√
x<q≤(x/y)

1

ϕ(k)

∫ x/q

y

Ψ(
x

tq
, t)

dt

log t
(5.21)

Clearly

Ik,ℓ =
I

ϕ(k)
, (5.22)

with I as in (5.9). Just as we obtained the bound in (5.13) for the difference
∑

−I using the strong form
of the Prime Number Theorem, we can use the same reasoning together with the strong form of the Prime
Number Theorem for Arithmetic Progressions to deduce that

k,ℓ∑
− Ik,ℓ <<

x log x log log x

exp(
√
log y)

. (5.23)

So from the above estimates, we deduce that

N2(x, k, ℓ) = |Sk,ℓ
2 (x)| = x

ϕ(k)
+O(

x log y

log x
) +O(

x log x log log x

exp(
√
log y)

). (5.24)

Once again,we make the choice

y = exp{(2 log log x)2}, (5.25)

to deduce Theorem 7 from (5.24).

6 Proof of the Main Result

Theorem 7 paves the way to the proof of our main result (Theorem 10 below). Enroute to Theorem 10,
we establish two theorems, the first of which relies on Theorem 7:

Theorem 8: For integers ℓ, k satisfying 1 ≤ ℓ ≤ k with (ℓ, k) = 1, we have∑
n≤x, p(n)≡ℓ(modk)

µ(n)ω(n) <<
x(log log x)4

log x
.
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Proof: Let f be a function on the primes defined by

f(p) = 1 if p ≡ ℓ(mod k), f(p) = 0, otherwise. (6.1)

Then by taking k = 2 in (1.12), and by Moebius inversion, we get∑
1<n≤x, p(n)≡ℓ(modk)

µ(n)(ω(n)− 1) =
∑

1<n≤x

µ(n)(ω(n)− 1)f(p(n))

=
∑

1<n≤x

∑
d|n

µ(
n

d
)f(P2(d),

which we rewrite as∑
1<n≤x,p(n)≡ℓ(modk)

µ(n)ω(n) =
∑

1<n≤x

∑
d|n

µ(
n

d
)f(P2(d) +

∑
1<n≤x, p(n)≡ℓ(modk)

µ(n)

:= Σ5 + Σ6 respectively (6.2)

It was already established in [2] that

Σ6 << xexp{−(log x)(1/3)}. (6.3)

With regard to Σ5, we employ the hyperbola method and write it as

Σ5 =
∑
m≤T

µ(m)
∑

d≤(x/m)

f(P2(d)) +
∑

d≤(x/T )

f(P2(d))
∑

T≤m≤(x/d)

µ(m)

:= Σ7 + Σ8, respectively. (6.4)

Clearly from the strong form of the Prime Number Theorem, we get

Σ8 <<
∑

d≤(x/T )

f(P2(d)
x

d exp
√
log(x/d)

<<
x log x

exp
√
log T

. (6.5)

Regarding Σ7, Theorem 7 gives

Σ7 =
∑
m≤T

µ(m)(
x

ϕ(k)m
) +O(

x(log log x)2

m log(x/m)
)

which by the strong form of the Prime Number Theorem is

<<
x

ϕ(k)exp
√
( log T )

+
x log T (log log x)2

log(x/T )
. (6.6)

At this point we choose

T = exp{4(log log x)2} <=>
√
log T = 2 log log x. (6.7)

With this choice of T , we deduce from (6.2) - (6.6) that∑
n≤x, p(n)≡ℓ(modk)

µ(n)ω(n) <<
x(log log x)4

log x
(6.8)
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which proves Theorem 8.

We next prove:

Theorem 9: Let ℓ, k be integers satisfying 1 ≤ ℓ ≤ k with (ℓ, k) = 1. Then∑
1<n≤x, p(n)≡ℓ(modk)

µ(n)ω(n){x
n
} <<

x(log log x)5/2√
log x

,

where {y} denotes the fractional part of y.

Proof: Begin with the decomposition ∑
1<n≤x, p(n)≡ℓ(modk)

µ(n)ω(n){x
n
}

=
∑

1<n≤T, p(n)≡ℓ(modk)

µ(n)ω(n){x
n
}+

∑
T<n≤x, p(n)≡ℓ(modk)

µ(n)ω(n){x
n
}

:= Σ9 + Σ10 respectively, (6.9)

where T will be chosen optimally below.
Clearly

Σ9 << T log log T. (6.10)

To estimate Σ10, put

Mω(x, ℓ, k) =
∑

1<n≤x,p(n)≡ℓ(modk)

µ(n)ω(n). (6.11)

So we have

Σ10 =
∑

T≤n≤x

(Mω(n, ℓ, k)−Mω(n− 1, ℓ, k)){x
n
}

=
∑

T≤n≤x

Mω(n, ℓ, k)({
x

n
} − { x

n+ 1
})

<<
∑

T≤n≤x

|Mω(n, ℓ, k)||{
x

n
} − { x

n+ 1
}| <<

x(log log x)4

log x
V{}[1,

x

T
]

<<
x(log log x)4

log x

x

T
, (6.12)

using Theorem 8, where in (6.11), as in the proof of Theorem 2, V{}[a, b] denotes the total variation of {y}
in the interval [a, b].

On comparing the bounds in (6.9) and (6.11), we see that the optimal choice of T is given by setting

T log log T ∼ x(log log x)4

log x

x

T
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and this leads to the choice

T =
x(log log x)3/2√

log x
. (6.13)

With this value of T , we get the upper bound in Theorem 9.

We are now in a position to prove our main result:

Theorem 10: For integers ℓ, k satisfying 1 ≤ ℓ ≤ k and (ℓ, k) = 1, we have

mω(x; ℓ, k) :=
∑

n≤x, p(n)≡ℓ(modk)

µ(n)ω(n)

n
<<

(log log x)5/2√
log x

.

Letting x → ∞, we get ∑
n≥1, p(n)≡ℓ(modk)

µ(n)ω(n)

n
=

∑
n≥2, p(n)≡ℓ(modk)

µ(n)ω(n)

n
= 0

Proof: With f(p) defined on the primes as above, note that∑
1<d≤x

µ(d)(ω(d)− 1)f(p(d))[
x

d
] =

∑
n≤x

∑
1<d|n

µ(d)(ω(d)− 1)f(p(d))

=
∑
n≤x

f(P2(n)) =
x

ϕ(k)
+O(

x(log log x)2

log x
) (6.14)

by (1.12) and Theorem 7.
It was already established in [2] that∑

1<n≤x

µ(d)f(p(d))[
x

d
] =

∑
n≤x

∑
1<d|n

µ(d)f(p(d))

= −
∑
n≤x

f(P (n)) =
−x

ϕ(k)
+O(

x

exp{(log x)1/3}
). (6.15)

On comparing (6.13) and (6.14), we see that the main term x/ϕ(k) cancels, and this leads to∑
1<d≤x

µ(d)ω(d)f(p(d))[
x

d
] = O(

x(log log x)2

log x
). (6.16)

But we know by Theorem 9 that∑
1<n≤x

µ(d)ω(d)f(p(d)){x
d
} = O(

x(log log x)5/2√
log x

). (6.17)

Finally by adding the expressions in (6.15) and (6.16), we get

x
∑

1<n≤x

µ(d)ω(d)f(p(d))

d
= O(

x(log log x)5/2√
log x

). (6.18)
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On dividing both sides of (6.17) by x, we get Theorem 10.

Remarks: The estimates when k = 1

It is to be noted that when k = 1, the method of this section would yield quantitative estimates for
Mω(x), and mω(x), but these would be weaker than what we got in Theorems 1 and 4 in Section 2. First
observe that when k = 1, the uniform distribution of P2(n)(mod 1) is trivial, but then the error term in
Theorem 7 for k = 1 would be sharper. More precisely,

N2(x, 1, 1) = x+O(
x

log x
). (6.19)

If we work through the proof of Theorem 8 for k = 1 with f being the characteristic function of the primes,
and use (6.18), the following estimates would hold:

The bound in (6.3) would be

Σ6 << xexp{−c
√
log x}. (6.20)

The bound for Σ8 in (6.5) would not change, but the bound for Σ7 in (6.6) would be

Σ7 <<
x

exp
√
log T

+
x log T

log(x/T )
. (6.21)

With T chosen as in (6.7), the final estimate that we would get is

Mω(x) <<
x(log log x)2

log x
, (6.22)

which is sharper than Theorem 8 when k = 1, but weaker that Theorem 1 which was proved by a different
method.

If we now follow the proof of Theorem 9, and use (6.21) instead of Theorem 8 for k = 1, the optimal
choice of T would be

T =
x
√
log log x√
log x

(6.23)

in place of T in (6.12). This would then yield

∑
2≤n≤x

µ(n)ω(n){x
n
} <<

x(log log x)3/2√
log x

, (6.24)

which is stronger than Theorem 9 for k = 1, but weaker than Theorem 2.
Finally, if we use (6.23) in the proof of Theorem 10 for k = 1, we would get

mω(x) <<
(log log x)3/2√

log x
, (6.25)

which is sharper than Theorem 10 for k = 1, but weaker than Theorem 4.
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7 Sums involving the exceptional primes

In §2 we proved (Theorem 4) that

∞∑
n=2

µ(n)ω(n)

n
= 0, (7.1)

by establishing some preliminary results. Then using the methods of §2, and by establishing several results,
we proved in §6 that if k ≥ 2 is an arbitrary modulus, then for every ℓ that satisfies (ℓ, k) = 1

∞∑
n=2, p(n)≡ℓ(modk)

µ(n)ω(n)

n
= 0. (7.2)

When we sum the expression on the left in (7.2) over all 1 ≤ ℓ < k with (ℓ, k) = 1, we do not get the full
sum in (7.1) because the primes

p ≡ ℓ(mod k) with (ℓ, k) > 1, (7.3)

have not been accounted for. But there will be primes satisfying the conditions in (7.3), which we call
exceptional primes, if and only if ℓ is a prime divisor of k, and in this case there is just a single prime p
in the residue class ℓ(mod k), namely p = ℓ. It turns out that the sum in (7.2) is 0 when taken over n
satisfying p(n) = p for any fixed prime regardless of whether p divides k or not. That is we have:

Theorem 11: Let p be an arbitrary but fixed prime. Then

∞∑
n=1, p(n)=p

µ(n)ω(n)

n
=

∞∑
n=2, p(n)=p

µ(n)ω(n)

n
= 0 (7.4)

Proof: The square-free integers n with p(n) = p are those of the form

n = mp, with (m,Np) = 1, where Np =
∏

q≤p, q= prime

q. (7.5)

Thus using ω(mp) = ω(m) + 1, we get

∞∑
n=2, p(n)=p

µ(n)ω(n)

n
=

−1

p

∑
(m,Np)=1

µ(m)ω(mp)

m

= −1

p

∑
(m,Np)=1

µ(m)

m
− 1

p

∑
(m,Np)=1

µ(m)ω(m)

m

Σ11 + Σ12. (7.6)

It is a classical result the Σ11 = 0. The methods of §2 can be used to show that Σ12 = 0. Thus Theorem
11 follows from (7.5).
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Remarks:
(i) Since the exceptional primes, namely those that divide the modulus k, are finite in number, the sum
of the expression in Theorem 11 taken over all exceptional primes is 0 since it is a sum of a finite number
of zeros. Thus by Theorem 11, the exceptional primes are accounted for in the full sum in (7.1). When
(ℓ, k) = 1, there are infinitely many primes p ≡ ℓ(mod k), and for each p in the residue class ℓ(mod k), the
sum as in Theorem 11 is 0. What makes Theorem 10 interesting is that we are summing “infinitely many
zeros”, yet the sum is 0.
(ii) As was the case with our earlier theorems, a quantitative version of Theorem 11 can be established.

8 The case of general f

In the penultimate section of [2], it was shown that if f is ANY bounded function on the primes, then

Mf (x) :=
∑

2≤n≤x

µ(n)f(p(n)) = o(x). (8.1)

From (8.1), it follows by Axer’s theorem that∑
2≤n≤x

µ(n)f(p(n)){x
n
} = o(x), (8.2)

where {t} denotes the fractional part of t. Next, by the Duality identity (1.3) we have∑
2≤n≤x

µ(n)f(p(n))[
x

n
] = −

∑
2≤n≤x

f(P (n)). (8.3)

Hence by adding the expressions in (8.2) and (8,3), we get

x
∑

2≤n≤x

µ(n)f(p(n)

n
= −

∑
2≤n≤x

f(P (n)) + o(x). (8.4)

From (8.4), the equivalence of (1.5) and (1,6) follows, and this was how this equivalence was proved in [2].
In [2], the following simple bound

Mf (x) <<
x

log log log x
(8.5)

but was established, but subsequently in [3] it was refined to

max
|f |≤1|

|Mf (x)| ∼
2x

log x
. (8.6)

Of course, for specific functions f , such as f being the characteristic function of primes in an arithmetic
progression ℓ(mod k), where (ℓ, k) = 1, the bound for Mf (x) is vastly superior (see [2]).

Similar in spirit to (8.1), it can be shown that:

Theorem 12: If f is any bounded function on the primes, then

Mf,ω(x) :=
∑
n≤x

µ(n)ω(n)f(p(n)) = o(x).
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A proof of a quantitative version of Theorem 12 will be given in a subsequent paper []. From Theorem 12,
by Axer’s Theorem arguments, it will follow that∑

n≤

µ(n)ω(n)f(p(n)){x
n
} = o(x). (8.7)

While all this seems to be similar to (8.1) and (8,2), an important difference occurs here. In order to apply
the Duality identity (1.12) when k = 2, we have to consider the sum∑

2≤n≤x

µ(n)(ω(n)− 1)f(p(n))[
x

n
] =

∑
2≤n≤x

∑
1<d|n

µ(d)(ω(d)− 1)f(p)d) =
∑

2≤n≤x

f(P2(n)). (8.8)

We note that the first sum on the left hand side of (8.8) is∑
2≤n≤x

µ(n)ω(n)f(p(n))[
x

n
]−

∑
2≤n≤x

µ(n)f(p(n))[
x

n
]

=
∑

2≤n≤x

µ(n)ω(n)f(p(n))[
x

n
] +

∑
2≤n ex

f(P (n)) (8.9)

in view of (8.3). So from (8.7), (8.8), and (8.9), we get

x
∑

2≤n≤x

µ(n)ω(n)f(p(n))

n
=

∑
2≤n≤x

f(P2(n))−
∑

2≤n≤x

f(P (n)). (8.10)

Now (8.10) yields the following result:

Theorem 13: If f is a bounded function on the primes such that∑
2≤n≤x

f(P (n)) ∼ κx (8.11)

and ∑
2≤n≤x

f(P2(n)) ∼ κx, (8.12)

for some constant κ, then

∞∑
n=2

µ(n)ω(n)f(p(n))

n
= 0. (8.13)

Remarks: When f(p) defined on primes p is the characteristic function of primes in the residue class
ℓ(mod k), were (ℓ, k) = 1, then κ = 1/ϕ(k) in (8.11) and (8.12), in which case (8.13) is Theorem 10. If
instead of the same contant κ in (8.12) and (8.13), we had two different constants, κ1 in (8.11) and κ2 in
(8.12), then the sum in (8.13) will converge to κ2 − κ1. But we wish to stress that we know of no natural
example of a bounded function on the primes for which the constants κ1 and κ2 have different values. Thus
we pose:
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PROBLEM: Does there exist a bounded function f on the primes such that∑
2≤n≤x

f(P (n)) ∼ κ1x, and
∑

2≤n≤x

f(P2(n)) ∼ κ2x, with κ1 ̸= κ2.

Consider now the following situation: Given x arbitrarily large, define a function f on the primes as follows:

f(p) = 1 if
√
x < p ≤ x, f(p) = 0 if p ≤

√
x. (8.14)

With f as in (8.14), we have ∑
2≤n≤x

f(P (n)) =
∑

√
x<p≤x

∑
n≤x,P (n)=p

1

∑
√
x<p≤x

[
x

p
] = xlog 2 +O(

x

log x
). (8.15)

On the other hand, since P2(n) ≤
√
x if n ≤ x, we clearly have∑

2≤n≤x

f(P2(n)) = 0.

So in this example, κ1 = log 2, and κ2 = 0. But note that the definition of f in (8.14) depends on x,
whereas in Problem 1 we ask for a function f just defined on the primes (without dependency on x).

The importance of the consideration of general functions f in this section will be clear in the next
section when we will discuss algebraic analogues to the results of Alladi [2] by various authors, and algebraic
analogues of the results in this paper by Sengupta [15].

9 Algebraic and q-analogues, and higher order duality

The Duality identity (1.3), and the result (1.8) established in quantitative form in Alladi [2], have attracted
a lot of attention in the last decade. It all started with the paper [5] of Dawsey who obtained the following
algebraic analogue and extension of (1.8) to Galois extensions of the field of rationals Q:

Let K, be a Galois extension of Q, and OK the ring of integers in K. If p is a prime in the integers,
then let P denote the prime ideal that is contained in OK which lies above p. If p is unramified, let [K/Q

P
]

denote the Artin symbol. For simplicity, let

[
K/Q
p

] := [
K/Q
P

].

Then:

Theorem D (Dawsey): Let K be a finite Galois extension of Q with Galois group G = Gal(K/Q).
Let C be a conjugacy class in G. Then

−
∑

n≥2,[
K/Q
p(n)

]=C

µ(n)

n
=

|C|
|G|

.
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Dawsey notes that Theorem D is a generalization of (1.8), because in the special case whenK is a cyclotomic
extension of Q, the group Gal(K/Q) can be identified with Z∗

k, the set of reduced residues modulo k for
some positive integer k; since Z∗

k is Abelian, each conjugacy class has just one element and so

|C|
|G|

=
1

ϕ(k)
.

The way Dawsey proves Theorem D is to use the Chebotarev Density Theorem to show that∑
2≤n≤x,[

K/Q
P (n)

]=C

1 ∼ |C|
|G|

. (9.1)

With (9.1) established, then by the methods in [2] that involve Duality, Dawsey is able to get Theorem D.
Motivated by Dawsey’s work, Sweeting and Woo [16] obtained a generalization of Theorem D in which

the finite extensions K of Q are replaced by finite extensions L of an arbitrary albegraic number field K. In
discussing this more general situation, Sweeting and Woo consider a generalization of the Moebius function
defined in terms of products of prime ideals instead of product of primes, and establish a duality identity
that generalizes (1.3) appropriately. In this more general situation, the Chebotarev Density Theorem
applies, and so an analogue of Theorem D is established in [5].

While it is true that Theorem D generalizes (1.8), it is to be noted that the more general equivalence
of (1.5) and (1.6) is established as Theorem 6 in [2]. So what Dawsey confirmed is that if f is chosen

to be the characteristic function of primes p for which the Artin symbol [K/Q
P

] = C, then the average of
f(P (n)) exists. That is, in this case c in (1.5) is |C|/|G|. So the deduction of Theorem D from (9.1) is a
special case of the equivalence of (1.5) and (1.6). Since, the equivalence of (1.5) and (1.6) is extablished
in [2] for arbitrary bounded functions f , the bounds for the quantitative version of (1.6) is weak. For the
Chebotarev Density Theorem, Lagarias and Odlyzko [11] have established a strong form, with the error
term comparable to the error term in the strong form of the Prime Number Theorem. Thus utilizing the
Lagarias-Odlyzko theorem, Dawsey is able to get a superior quantitative version of Theorem D where the
bound is just as sharp as the quantitative version of (1.8) that is proved in [2] using the strong form of the
Prime Number Theorem.

The results of Sweeting and Woo have been extended by Kural, McDonald and Sah [10]. A general-
ization in a different direction, namely replacing the Moebius function by the more general Ramanujan
sum

cm(n) =
n∑

k=1,(k,n)=1

e2imkπ/n, (9.2)

is considered by Wang [21] (µ(n) = c1(n)). Also, Wang in collaboration with Duan and Yi [22] has
discussed analogues of Alladi’s duality in global function fields.

A fruitful way to generalize arithmetic results is to obtain suitable q-analogues. In two papers [12] and
[13], Ono-Schneider-Wagner have discussed a variety of q-analogues of arithmetic density results and their
partition implications.

With regard to the arithmetic consequences of the second order duality (namely consequences of (1.12)
in the case k = 2), recently Sengupta [15], motivated by the work of Dawsey, has obtained the extension
of Theorem 10 to the situtation when K is a finite Galois extension of Q. Like Dawsey, Sengupta uses the
strong form of the Chebotarev Density Theorem due to Lagarias and Odlyzko [11].
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We mention that Alladi and Sengupta [4] have very recently considered arithmetic consequences of
higher order dualities, namely (1.12) for k ≥ 3, and established analogues of all the results in this paper
for k ≥ 3. In this discussion of higher order dualities, it turns out that when k ≥ 3, the bounds for certain
terms have extra factors which are powers of logα, where α = log x/ log y; these factors are not present
in the case k = 2 treated here.

Finally, we point out that all the quantitative results in [2] were established with uniformity for the
moduli k of arithmetic progressions satisfying k ≤ logβ x, with implicit contants depending on β. This is
because in [2], we utilized the Siegel-Walfisz theorem for primes in arithmetic progressions. If we had used
the Siegel-Walfisz theorem here, then Theorem 10 would hold with uniformity for k ≤ logβ x.

10 Concluding Remarks

(i) Arithmetic density versions: The generalizations of (1.8) to algebraic number fields by various authors

starting with Dawsey [] was motivated by rewriting (1.8) as

−
∑

n≥2, p(n)≡ℓ(modk)

µ(n)

n
=

1

ϕ(k)
, (10.1)

and interpreting this as an arithmetic density result. Similarly, our Theorem 10 can be rewritten as∑
n≥2,p(n)≡ℓ(modk)

µ(n)(ω(n)− 1)

n
=

1

ϕ(k)
, (10.2)

and interpreted as an arithmetic density result, thereby lending itself to an arithmetic density generalization
to algebraic number fields using the Chebotarev density theorem (see Sengupta [15]). The consequence
of the general identity (1.12) for k ≥ 3 discussed in Alladi-Sengupta [4] also has an arithmetic density
formulation, namely

(−1)k
∑

n≥2,p(n)≡ℓ(mod j)

µ(n)

n

(
ω(n)− 1

k − 1

)
=

1

ϕ(j)
. (10.3)

This can be generalized to algebraic number fields using the Chebotarev density theorem.

Tenenbaum’s generalization of Theorem 10:
Very recently, Tenenbaum [20] has generalized Theorem 10 as follows:
Theorem T: Let P be a set of primes satisfying

ε(t) =
1

t
{

∑
p≤t, p∈P

log p} − κ = o(1), as t → ∞, (10.4)

with some κ ∈ [0, 1]. Then

∞∑
n≥2, p(n)∈P

µ(n)ω(n)

n
= 0. (10.5)
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Tenenbaum’s proof of a quantitative form of (9.7) is analytic and quite intricate. But the main thing is
that he is able to get (9.7) directly from (9.6) without relying on estimates like (8.11) and (8.12). But
then, our approach using Duality connecting sums involving µ(n)ω(n)f(p(n)) with f(P1(n)) and f(P2(n))
is of intrinsic interest, and that is the motivation of the present paper.

Acknowledgements: KA would like to thank Gerald Tenenbaum for several helpful suggestions and
critical comments.
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