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so. Introduction

In this paper we obtain upper bounds, and in some cases even asymptotic estimates,

for the moments of additive functions f(n), where n belongs to a subset S of the posi­

tive integers ;Z+ satisfying some properties to be specified later. We also discuss certain

consequences of these estimates. The theorems stated in §2 extend various classical results

to such subsets; nevertheless the main point here is the method we employ, which is new.

Our method stems from a recent technique due to Elliott [6] who obtained uniform upper

bounds for the moments of arbitrary additive functions in the case S = ;Z+. We will show

that by employing the combinatorial sieve and the bilateral Laplace transform along with

some of Elliott's ideas one obtains a substantially improved method. For a class of sets

S we can derive similar upper bounds for the absolute moments of all complex valued addi­

tive functions. In addition we can evaluate the moments asymptotically provided the f(n)

satisfy some conditions. From these asymptotic estimates we get information concerning

the distribution function of such f(n), for n € S.

There is a vast literature on the distribution of additive functions and a variety

of methods available (see Elliott [5], Vols. I and 11). One approach, which is due to Halber­

stam[l3: I, II, Ill], makes use of the method of moments to determine the limiting distribution

of certain additive functions. Despite the difficult calculations it involved, this method

had the attraction of being elementary and so capable of wide application. Subsequently

this method underwent simplification and refinement by Delange [3], [4].

Being based upon the combinatorial sieve, which is an elementary tool, our method

retains the applicability of Halberstam's approach, but without the latter's complications,

since our use of the bilateral Laplace transform introduces the necessary simplification.
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Also, uniform upper bounds like those of Elliott [6], can be derived quite easily.

Classical results, some of which are surveyed in §3, mostly relate to the situation

5 z". Particular subsets such as

and

{p + alp 2, 3, 5, primes}, where a € z'

have certainly evinced a lot of interest, but the situation regarding general subsets of has

not been given much attention. It is known that the methods underlying the fundamental

results of Erdos-Kac [8] and Kubilius [I8] described in §3, can be applied to any set 5 for

which the so-called 'Brun Fundamental Lemma' from Sieve Theory holds. These methods,

however, yield little information about moments, for which not much is known apart from

+certain cases relating to particular sets such as , 51 and 52.

resul ts are of interest.

Hence our method and

While work was in progress I had several useful discussions with Professors E.

Bombieri, P.D.T.A. Elliott, P. Erdos, H.L. Montgomery and A. Selberg. In particular, Prof.

Erdos always provided the advice and encouragement I needed. am grateful to Prof.

Montgomery for having suggested on the basis of some earlier work of mine [I], that it would

be worthwhile to study in a fairly general setting, the moments of additive functions among

subsets of the positive integers. Finally, I had the pleasure of being a visiting member at

The Institute for Advanced Study, Princeton, during the period most of this work was done.

§t. Notation and statement of results

Recall that an additive function f(n) is an arithmetical function that satisfies

t Imn ) I Irn) + f f n ) for (m, n ) (1. 1)

Similarly a multiplicative (arithmetic) function g(n) is one satisfying

g Irnn ) g(m)g(n) for (rn, n ) = 1. ( 1. 2)

Thus additive and multiplicative functions are completely determined by their values on

prime powers pe, e € z".

For the sake of convenience we concentrate only on strongly additive functions f(n)
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which are given by

( 1. 3)f(n) I f (p )

pin
p epr irne

and subsets 5 of :<2:+ which satisfy conditions (j) and (ii) below. It is possible to apply

our method to general additive functions as well and this is briefly indicated in §11. We can

treat an even wider class of sets which will then contain 5 I and 52 as special cases;

but due to technical reasons we postpone this discussion to a subsequent paper. We need

some notation now before we can state our results.

For any set 5C:<2:+ we let 5(x) = 5 () [I, x], We associate with 5 a sequence

A = {a} 5 of positive numbers called 'weights'. If an:::: I, we simply denote this byn n€

A = 1. For d € Z+ we denote by

( 1. It)

n€5(x)
n::::O(mod d)

and for convenience write X 5 I (x), We will always assume that log x« X « log x,

The set 5 is called 'special' if it also satisfies

(i) There exists a multiplicative function w(d) such that

o .s. w(p)« I for all primes p, and Sd(x) « Xw(d)!d

for all d € :<2:+.

(ii) There is a constant c > 0 for which there corresponds

to any b > 0 a number a > 0 such that

L IRd(x) I «b

d5.-Xc!logaX

X

10gbX

where

For a special set S and a strongly additive f we define sums

r
p<x

f(p)w(p)
p

( 1 • 5)

and
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for k > 2 • ( 1 .6)

The class..A A(S) is the collection of all strongly additive functions that satisfy the

following conditions:

(iii) There exists c
f

such that

trnax IHp) I} < c £TXT
2
( x ) for all x >

< l o g P - f
p_x

(iv) There exists a a ( x ) ----? <X> with x such that

lim
x"'OO

B
k
( x) - B

k
( y)

B
2(x)k/2

0, for k = I, 2, 3, •.••• ,

where y = x 1I a

Our first main result is the following:

Theorem 1: (a) Let S be a special set, f > 0 belong to ..... ,and Bix) ---+ <X> with x.

For real v define

I
P2X

f(p)2v! B2 ( x )

Assume that there is a probability distribution function K(v) such that

Kx(V) -+ K(v) as .r -+ <X> ,almost surely in v.

In addition assume that there exists R > 0 such that for all x

(1. 7)

(I.8)

<X>

f
-<X>

- 1 - uv
v 2

o < u < R ( 1. 9)

where in (1. 9) and in what follows, (euv- 1 - uv)/v2 is set equal to u2/ 2 at v = O. Then

XB (x)k/2
2

Lan (f ( n ) -B1 ( x ) }k

neS(x)

( 1. 10)

exists for k =: 0, 1, 2, •••, and is finite.

(b) Let S, t. K
x

and K be as in part (a). Define

(1.11)
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Then there exists a probability distribution F(v) such that

and

( 1. 12)

F(v) weakly as x 00 (1.13)

(c) Let S, F, Kx and K be as in part (a). Then for Iz 1< R

L(z) exp (1.14)

is an analytic function. Furthermore

d k
---;( L(z) Iz=o for k
dz

We have the following Corollaries to Theorem 1.

0, 1, 2, ... ( 1. 15)

Corollary 1: Let f, S, K
x

be as in Theorem Ito}, Then F(v) in (1. 12) is the Gaussian

distribution

( 2
G( v ) e- u /2d u

I2lf _00

if and only if

= t if v < 0
K( v )

if v > 0

Corollary 2 : Let S be special and f > 0 satisfy-

{
max f(P») /IB2(x) 0 as x 00

P5.x

Then (1. 10), (1. 12), and (1. 13) hold with F ( v ) = G( v ) •

Our next theorem is for the case when B
2(x)

tends to a finite limit.

Theorem 2: (a) Let S be a special set, f 0 belong to A- , and

(1.16)

(1.17)

( 1• 1s)

For real v define

U .19)

P5.x
f(p)5. v

and assume that there is R* > 0 such that for all x



Then

f
-00

- uv

6

° u < R
* ( 1. 20)

lim
x+oo

1
X L a

n{f(n)-B1(x)}kn€S(x)
(1.21)

exists for k 0, 1, 2, 3, ... , and is finite.

*(b) Let S, t, Kx be as in part (a). Define

1
X

n e Sex)

*Then there is a probability distribution F (v) such that

( 1 .22)

and

Finally

where

* *Fx(v) F t v )

*

k = 0, 1, 2, 3, ...

weakly as x -----;> 00 •

(1.23)

( 1 .24)

(1.25)

*L (z) n
p

(e z f ( P ) - l ) w( ) -zf(p)w(p)/p
1 + e .

p
( 1. 26)

Without imposing any growth conditions upon f, the following result provides

a uniform upper bound.

Theorem 3: Let S be a special set and f any complex valued strongly additive function.

Then

L
neS(x)

The implicit constant depends only on Sand k:
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Except for the implicit constant Theorem 3 is best possible • So, f rom Theorems

I and 2 we see that the presence of B2
(X)k/ 2 .

IS necessary. By considering a strongly

additive f which vanishes on all primes except a single fixed prime, we see that the term

Bk(x) cannot be dispensed with. The implicit constant is effectively computable in terms

of k and the implicit constants in (i) and (ii).

Note that Theorems I and 2 have been stated only for 0.2 f €,,4- but then tr ivi-

ally these results hold for similar negative f also. This has been the main limitation with

our method so far; the sieve has restricted our discussion of asyrnptotics to additive funct-

ions which do not change sign. On the basis of Theorem 3 and certain ideas of Kubilius

to be mentioned in the sequel, it is possible to extend Theorems I and 2 to similar real f

as well and this is indicated in § 11. This is not completely satisfactory since we have

to be dependent on Kubilius' method for our derivation. It is therefore desirable to extend

our method directly to bring real valued functions within the scope of Theorems 1 andz.

As to what extent the growth conditions (iii) and (iv) are necessary for the validity

of Theorems 1 and 2, remains at present open. These conditions arise naturally in our

method. On the basis of earlier results in the subject we feel that such conditions cannot

be relaxed considerably. For more on this see §lO.

All notation introduced so far will be retained. The « and '0' notations are

equivalent and will be used interchangeably as is convenient. Implicit constants depend

only on 5 unless otherwise indicated. As usual empty sums mean zero and empty products

one. A strongly multiplicative function g

totally multiplicative, if in addition to (J

is one given by g(n) =n g(p). We say g is
e pin e

• 2) we have g(p) = gtp) for each p and all

e € Z:+. The Moebius function u (n ) is the multiplicative function given by u(p ) = - 1 and

u ( pe) = 0 for each p, and e > 2. In addition, ptn) denotes the smallest prime

00. Finally P( v ) TT p.
p<y

We shall (as we have done before) refer to probability distributions like F(v) in

factor of n if n > 1, and p ( 1 )

*( 1 • 13) and F (v) in (I. 24) as limiting distributions or limit laws.

In what follows it will often be necessary to refer to various statements in this

paper, such as Theorems, Corollaries and numbered expressions, in the special case 5 = ;:z+

A = I. For convenience such references shall always be indicated by attaching a super

-script ',to that statement - e.g.: Theorem I', or (J .12').
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Before proving our theorems it will be appropriate to describe briefly certain earlier

approaches and results and compare them with ours. This is done in the next section.

§2. Some earlier approaches - a comparison

The study of additive functions originated in 19 I 7 with the result due to Hardy and

Ramanujan [15], that vf n ) , the number of prime divisors of n, is almost always nearly

of size log log n, Their proof depended on an inductive procedure used to bound uniformly

the quantity

L
l<n<x
v(n)=k

In 1934, Turan gave a short proof of this result [22] by showing that

L {v (n ) - log log x }2 « x I og log x

n<x

( 2 • 1 )

using only the simplest results on primes. This gave the first indication of the probabilistic

nature of the problem since (2. 1) is essentiaJly an estimate for the second moment of v(n).

In 1939 Erdos and Kac [8] established a remarkable distribution result for real

strongly additive functions satisfying some mild conditions. More precisely when f is real

f ( p ) = 0 ( 1) and

they established (1. 13') with F ( v )

B
2
( x ) 00 (2.2)

= G( v I , They considered additive functions as

sums of nearly independent random variables, one for each prime p, in the interval [I, x],

The Gaussian distribution was a consequence of the Central Limit Theorem which arises

naturally when f is compared to a sum of independent random variables. Their ideas

provided the impetus for much of the later work in this area.

Motivated by these developments and a remark by Kac [16] (see also § 13), Halber-

stam [13: I] established in 1955 our CoroJlary 2' for aJl real strongly additive functions

satisfying (2. 2). He actually expanded the left side of (1.10') and carried out the calcula-

tions in an elementary manner. This involved great complications but it enabled him to

extend his results to 51 [13: II] and 52 [13: III], by which time it was realised that (2. 2)

could be replaced by the weaker condition (I. I8).

Renyi and Turan [19] took an analytic approach. They considered the problem

of determining the limiting distribution as equivalent to finding the limit of the characteristic
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functions (Fourier transforms). The characteristic function is given in terms of the sum

n<x

(2.3)

. h iu
Wit z = e , u real. This sum of a multiplicative function can be treated by well-known

analytic methods provided the f(p) enjoy some regular behaviour. In particular the method

applies nicely to f ( n ) = v ( n ), and for this case they obtained the best estimate for

the rate of convergence in ( 1 .13') to the Gaussian distribution. Independently, Selberg

[20] demonstrated that asymptotic estimates for (2. 3) with Izl..s r in the case f(n) v(n) ,

enables one to quickly derive asymptotic estimates for vk(x), where k could vary with x,

Previously Sathe following the inductive procedure of Hardy - Ramanujan had obtained

similar uniform estimates for vk(x) in a rather complicated fashion. These ideas of Renyi-

Turan and Selberg have subsequently been applied to other additive functions also.

All results referred to so far in this section are for the case Bix) "'" with the

limiting distribution as the Gaussian law. The first instance of B2(x) cc and limiting

distributions other than the Gaussian, was provided by Kubilius [17] who, amongst other

things, successfully combined the ideas of Erdcs-Kac [8] and Renyi-Turan [19]. He estab-

lished rather general distribution results in the situation S =z ', A = I, for a large class

of strongly additive functions which he called the class • This class comprises of all

real f for which Bix) co and (iv}' needs to hold only for k = 2. By employing tech-

niques from probability theory, such as independent random variables, infinitely divisible

distributions, and characteristic functions, he proved the striking result that for the class

condition O. 8') is both necessary and sufficient for (1.13') to hold. He even succeeded

in determining the characteristic function of Ftv) and thus in principle determined F.

This method of Kubilius, and that of Erdos-Kac, applies to any set for which 'Brun's Funda-

mental Lemma' (see §4) holds. It should be noted however, that these methods do not

yield information regarding moments. But then, Theorem guarantees in this situation

that if one imposes certain conditions upon f , then (j.IO) holds in special sets for every

integer k > O.

If f is a real strongly additive function for which B2(x) B < cc , then condi-

tion (iv) for k 2 is redundant. So Kubilius [18] observed that here 0.24') holds without

imposing any more conditions upon f. If in addition Bj(x) converges as x -> cc .then rt he
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frequencies

x
\'
I.
n<x

f (n) <v

also converge weakly to a limiting distribution. Previously Erdos [7: 1, ll, Ill] had considered

such questions and established distribution results unders weaker conditions. His efforts

culminated in the celebrated Erdcs-Wmtner Theorem, which gives necessary and sufficient

conditions for the frequencies in (2. 4) to converge; the sufficiency part was obtained by

Erdos [7: Ill], and the necessity jointly established by Erdos-Wintner [9]. But none of these

results deal with moments. Theorem 2 on the other hand provides sufficient conditions for

(1.21) to hold in special sets, when B2(x) tends to a finite limit.

In 1962 Kubilius wrote a monograph (English translation [I8] in 1964), where he

described his methods in detail and compared them to earlier approaches. He mentioned

([I 8], p.71) that the method of moments which had previously been employed to determine

the limiting distribution of additive functions, had been used only in the situation when

the limit was the Gaussian distribution. Apparently, Kubilius had overlooked Delange's

announcement [4] even though he referred to it in [18]: It is true that Halberstam always

made use of conditions such as (2. 2) or (l.18) and in such situations the limiting contribution

is Gaussian. Delange, who had previously investigated [2] the moments of \I(n), showed in [3]

that Halberstam's method could be simplified by introducing suitable generating functions

and interpreting the quantities arising out of the expansion of the left side of (1.10') in terms

of the derivatives of these functions. After Kubilius established his general distribution

theorems in 1956 [I 7], Delange [4] observed that such results could fit in his method also

provided one imposed certain conditions upon (his conditions were slightly stronger than

ours). Delange only announced his results and did not give any details since the method was

clearly an extension of what he used for the Gaussian case. We have recently come to know

that Delange has verified that his generating function method also yields Halberstam's

results for polynomials, in which case the limiting distribution is Gaussian.

Realising that a complete generalization of (2. 1) would be useful, Kubilius showed

in 1956 (see [5], Vol.L, Ch.4), that for arbitrary complex

If(n) - B (x)1 2 « xB (x )
1 2

n<x
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Recently Elliott [6] by employing sums similar to (2. 3) derived in an elegant fashion the

inequality

for 0 < k < 2

I
n<x

(2.6)

and thus extended (2. 5) to arbitrary exponents. The method we describe in this paper is an

improvement of this technique due to Elliott.

We interpret certain sums similar to those considered by Elliott, in terms of the

bilateral Laplace transform of the distribution of f(n), n e S. We use the combinatorial

sieve to estimate this sum involving multiplicative functions, in certain cases. The sieve

yields a crucial improvement over Elliott's method for the following reasons First it

permits treatment of a reasonably wide class of sets. The combinatorial sieve also yields

in some cases, asymptotic estimates for the Laplace transform, and from this we derive

Theorems I and 2 without much trouble because the Laplace transform retains some of

the elegance of the Fourier transform. In addition we can derive a general upper bound

like that in Theorem 3, which incidentally extends (2. 6). We shall point out the exact

differences between Eliott's method and ours in §12.

Theorems I and 3 are proved in sections 7 and 9 respectively. We omit the proof

of Theorem 2 since it is similar to Theorem I, and in fact simpler. We shall in sections

3, 4, 5 and 6 establish the necessary preliminaries.

S3. The bilateral Laplace transform

The aim of this section is to prove

Lemma 1: (a) Let <px ( v) be a sequence of probability distributions for which there is

RO > 0 such that

Then

00

f
-co

uve d<px(v)« 1 for (3. I)

f Iv Ikd<p (v) «'5.l for k
x Rk

o
0, 1, 2,

If in addition to (3. 1) we have



lim
x+oo

12

a>

1 euvdqJx(v) = R,(u) < a> for -R
O

< u < 0 (3.3)

where the convergence is uniform in u, then

lim
x+oo

(3.4)

exists and is finite for k = 0, 1, 2, ...

(b) Let cpx (v) satisfy (3. 1) and (3. 3 ). Then there is a probability distribution

cp ( v ) such that

and

f
_a>

kv dcp(v) for k 0, 1, 2, 3, ... (3.5)

cp x ( v) -----i>- cp ( v ) weakly as x a> •

(c) Let cp x (v) satisfy (3. 1) and (3. 3). Then R,(uJ can be extended to an analytic

function in I z I <RO Therefore

k 0, 1, 2, 3, ... (3.7)

Proof of part (a): The assertions are trivial for k

Note that

0, so assume k € z".

-8
+ e for all k €;;Z+ and real 8 (3.8)

Therefore by O. 8) and O. 1) we get

R k

f

and this proves O. 2).

From O. 2) we deduce that

By the Cauchy-Scwartz inequality, O. 1) and (3. 9) we have

n I, 2, ••• • (3.9)

f
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for 1u 1_ R
O
/ 2. Similarly

( )

1/2
J drp (v ) «

x
(3.11)

for all integers k, n, 2 1.

From O. 3) we see that given any € > 0, there exists Xo such that for all x, x' 2

Xo we have

(3.12)

Therefore from 0.10) and 0.12) we deduce that

IJ Teuvdrp (v ) - J \uv drp ,(v)l« c + r", for _ RO <u<O. (3.13)
_T x _T x n , R

O
2 -

Observe that if u, v are real numbers such that uv is bounded then

k 1, 2, 3, '" (3.14)

Given a negative number u close to zero, we choose T in (3.13) such that Tlul=RO/2k •

With this choice of T, we see from (3.13), (3.14), (3. 2) and (3.11) that

« €+
k,n,R

O
+ U, k = 1, 2, 3,.(3.15)

In 0.15) we choose n = 2k, and uk = IE. Then the right side of (3.15) can be arbitrarily

small. Thus for each k E Z+, the sequence of kth moments of <p (v ) is a C a u c h y
x

sequence. Hence this sequence converges to a value llk' giving O. 4). That proves part (a).

Proof of part (b): By the theorem of Frechet and Shohat [11], it follows from (3. 4) that

there exists a probability distribution rp ( v ) such that O. 5) holds, and that there is

and so I Illk I t k / k: has a non-zero radius of convergence. There-
k

p. 224 and p, 487) these moments determine a unique probability distri-

a subsequence <p ,jx.
lk

that llk « k :lRO

fore (see Feller [10],

= 1, 2, 3, .•• , which converges weakly to rp(v). From (3. 2) we see

bution, and so (3. 6) holds.

Proof of part (c): From (3. 1), (3. 3) and (3. 4) we can see that R, extends to an analytic

function in [z] <RO' To prove O. 7) we now observe that, instead of 0.13) we can write

Unknown
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T

II eUvrp (v ) - 1« R e + r" for
-T x n , 0

_ ROT < u < O. (3.16)

This follows from O. 3) and 0.10). If we combine 0.16) with 0.11) and 0.14-) we get

I
co k k k . kl e+T-

n
+I v drp {v ) - I (-1»)« --k- , k € Z .(3.17)

c co x j=O ) k k,n,RO u
u

We choose n, T, u as in part (b), and let e --;.- O. Then the right side of O. 17) tends to

zero, with e. Also, since is analytic, we have

k
L

j 0

,with arguments as multiples of

d

because the sum in 0.18) is the k th -difference of

( z ) Iz = 0 (as U --3>- 0). (3.18)

u, So O. 7) for k e 22+ follows from 0.18). Since O. 7) is trivial for k = 0, this proves

part (c), and completes the proof of Lemma 1.

§4. The combinatorial sieve

The earliest sieve method, now known as the Eratosthenes-Legendre sieve, rests on

the use of the identity

d!O"(d) {
Le t Slx.y) {n.s.xl Then we have

if n

if n > I.

l
n€S(x,y)

a - I
n - n€S(x)

an J. •
dT(n,P(y»

(If .1)

While rearranging the right hand side one has to consider error terms arising out of all the

divisors of P(y), and these are too numerous if y is large. In such a situation the method

becomes unwieldy.

To compensate for this the combinatorial sieve considers functions Xl' X2 which

have the properties

(4.2)

and

< for n = 1, 2 , 3 , • •• (If. 3 )
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The X1 are chosen to vanish quite often on the divisors of P(y), in order to keep the

number of error terms in check. The sum in (4. 3) involving X 1 when used in conjunction

with (4. 1) provides an upper bound, while the sum involving X
2

supplies a lower bound.

If for a suitable choice of XI' X2, these bounds turn out to be close, then one has an asymp­

totic estimate for the quantity in (4. 1).

Viggo Brun, who first introduced this idea, treated the sum (4. 1) in a large number

of cases by suitable choices of Xl ' Subsequently, Brun's method has been considerably

improved and it is known (see Halberstam and Richert [14], p. 83) that for special sets the

combinatorial sieve yields

L a
n€S(x,y) n

x IT ­ w(p)\ {I + n (x,y)},
p<y \ p I <y<x, (4.4)

where rt.x, y) is a bounded function that tends to zero as log x/log y = Cl tends to infinity.

In particular from (4. 4) we see that

L
nES(x,y)

a
n «xITp<y ( _ , I < y < x , (4.5)

holds uniformly. An estimate such as (4. 4), which is asymptotic for large a, is known in

sieve theory as "Brun's Fundamental Lemma".

We are going to employ the combinatorial sieve in a new way to estimate sums

of certain multiplicative functions g(n), fer n € S. Our method rests on the following

crucial inequalities.

* * +Lemma 2: Let g (n) be a multiplicative function satisfying 0 < g (n) 2 1 for all n € 7L •

Let Xl' X2 satisfy (4. 2) and (4. 3). Then for all positive integers n we have

1. Il(d) X
2(d)g

* (d) 2. 1. Il(d)g * (d) <
dTn dTn

Proof: We only prove one of these inequalities, the other being similar. We may assume

without loss of generality that n is square free. We let

o l n ) = 1. Il(d}) 1 (d)
dTn

Then

o ( I) = 0 and 0 ( n ) > 0 for n > I •

By Moebius inversion and (4. 6) we have

(4.6)

(4.7)

Unknown


Unknown
1
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We separate the term corresponding to <5 = I in (4. 8) and arrive at

= 1. )l(d)g*(d)
dTn

2:. 1. )l(d)g*(d)
dTn

because of (4. 7) and the fact that

for all n € Z:::+. (4.9)

This proves Lemma 2.

Let g(n) be a given strongly multiplicative function such that 0.s. g (n ) <

for all n € Z:::+. We associate with g, the function g* as in (4. 9). Then

f g(p) = L )l(d)g*(d).
pin dl(n,P(y»
p.s.y

Instead of the sum in (4. I) we now consider

(4.10)

Lag (n) =
n€S(x) n y

( 4. 11 )

Our idea is to use Lemma 2 to treat (4.11).

The error terms that will arise here are bounded by

and this is smaller than the sum

which bounds the error terms arising out of (4. J) and (4. 3). Our main term is

X ( _

p.s.y \

and this is

> X ( _ ,
p.s.y '\ )

which is the main term in (4. 4). Thus by using Lemma 2 and following the derivation of

Unknown


Unknown


Unknown


Unknown


Unknown
d

Unknown
d | (n, P(y))



(4.12)

(4.13)
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(4. 4) by the cemblnatorial sieve (see [14], Ch, 2, for details), we arrive at

*Lemma 3: Let S be a special set and g(n), 9 (n), gin) as in (4. 9) and (4.10), where

05. 9 5. 1. Then for 0 <Y5. x we have

X n G. - {l + O(n(x,y»},
p::.y \ )

where r{x,y) is as in (4. 4). Since g(n) < 9 (n), we have from (4.12)- Y

L a g(n) « Xrt (1 - 9*
n€S(x) n p::.x )I

Remarks: If we choose gtn) in Lemma 3 to satisfy, g(p) = 0 for p < y and g(p)

for p > y, then (4.12) and (4.13) correspond to (4. 4) and (4. 5) respectively. The useful-

ness of Lemma 3 lies in the unformity with respect to all strongly multiplicative g, satis-

fying O::.g::.1 . Estimate (4.12) will be used to establish Theorems I and 2, whereas inequal-

ity (4.13)wil! be employed in the proof of Theorem 3. The idea is that from estimates

such as these for multiplicative functions, one can extract information concerning additive

functions.

For a strongly additive function f, we define

f (n) = Y f(p) •
y pTn

P::'y

Next, for real u, we let

(5.1)

u{f (n)-B j ( y ) } / !B2TYT
T (x,y) = T (x,y,f,S) = L a e y (5.2)
u u n€S(x) n

and set Tu(x,x) = T)x). Suppose S is special and f > O. We consider two cases.

Case I: u5.0.

Here 0::. g(n) < I, where g is the strongly multiplicative function

g(n) = g(n,y)

Note that (5. 3), (5. I), and (4.10) give

e n I, 2, ••• ( 5.3)

u f (n ) /1--p;;rYT
g (ri ) = e y
y

(5.4)
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Therefore by (5. 2), (5. 3), (5. 4) and Lemma 2 we have

-uB (*e 1 2 .X.IT 1 _ g (p)w{p) {I + 0) (5.5)
p

and

T (x )
u

« e .X

Case 2: u> O.

Consider strongly multiplicative functions

uf (n)/1fSTYT
h{n) = h{n,y) = e , hy{n) = e y , (5.7)

*and note that these are always > 1. Let h be the unique function satisfying

h I n ) = J: h*{d) •
d rn

Then h* is multiplicative, 20, and h*(pe) 0 for all p, and e > 2. Also

h (n) =
y

*)' h (d) •
d!(n,P(y»

(5.8)

50 from (i) and (5. 8) we see that

*= L h (d)5
d{x)

( + (5.9)

*h (d)L an L
n s Sf x ) dl{n,P(y»

a h (n ) =
n yL

ne5{x)

*« X L h (dJw{ d) X IT
d2x,dlp(y)

Therefore from (5. 7), (5. 9) and (5. 2) we deduce that

-uBI (h*{P)W(P»)Tu{x,y)« e X IT 1 + 0). (5.l0)
p

If we put y x in (5.l0), we get an upper bound for Tu{x).

Observe that inequalities (5. 6) and (5.10) are similar, although they were derived

differently.

§6. Auxilliary upper bounds.

The bounds supplied by Lemma 4 below will be useful in the sequel for two rea-

sons. First, while proving Theorems 1 and 2 it will enable us to estimate the moments

of f{n) from those of f (n), Next, in the proof of Theorem 3, Lemma 4 will be used toy
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control the contribution due to large values of Hp), which have to be considered separately.

*Lemma 4: (a) Let S be a special set. Let E be an arbitrary set of primes and f

an strongly additive fWlction -': 0 for which f*(p)

Also for each non-negative integer k define

o if ptE-equivalently len) = I r* f p)
pln,pEE

Then

I
* kf (p) w(p)

p
( 6 • I)

* k * * k-1L a f (n) «k X Bk (x)BO(x)
nES(x) n

(b) Let S be special, and E = {p I where y is as in (iv). Let f E A
*and f (n) *L f (p) ,-equivalently f (n)

pln,pEE

* k k/2I anf (n) = o(X B(x) ) as x
nES(x)

Then

"', for k = 1, 2, . .. .

Proof of part (a): The assertion is trivial for k" 0, so assume k E :;Z+. By expansion and

reaarangement we have

* kI a f (ri )
n eSf x } n

I
nES(x) an k

j I j rL HPI) ••• f(P r)
PI""PrEE
distinct primes

(6.2)

I an
nES(x)
n:= 0 (mod PI' •• P r )

In (6. 2) the outer summation on the extreme right is over all ordered partitions (cornposi-

tions) of k, From (i), (6. I) and (6. 2) we get

L
PI"",PrEE
distinct primes

* j I * j r
f (PI) ... f (P r) w(PI)"w(P r)

PI' •• P r

.s X L B*
jl+ ... +jr"k J I
. z+
J i E

By the HoJder-Minkowski inequality

(x ) ...B* (x).
J r

(6.3)

follows from (6. 3) and (6. 4) the

* * j/k * I-j/kB
j
(x) Bk(x) BO(x) ,

Note that in (6. 3) we have r k, Lemma 4 (a)

for 1 j k. (6.4)
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implicit constant being given in terms of the number of compositions of k, and the constant

in rn,
Proof of part (b): In this case also expressions (6. 2) and (6. 3) hold, because according

*to our notation f(p) = f (p) for p e E. So by (6. 1), O. 5), O. 6) and (iv) we get

(6.5)

Part (b) follows from (6. 3) and (6. 5), because j I + ••• + i
r
= k, Lemma 4 is proved.

57. Proof of Theorem 1

Let f and 5 satisfy the hypothesis of Theorem I, and x, y, C1 as in (iv). With

these choices, we let

F (v) =.1 L a
x,y X n€S(x) n

fy(n)-BI(y) <v/B2(y)

From (5. 2) and (7. 1) we get

(7.1)

( 7 .2)

So, using (5. 5) we see that as x ------l> 00, the expression in (7. 2) is

(,1 _ g*(Pp)W(P)\,'\ J for u.:: 0, (7.3)

*where the value of g (p) in (7. 3) is given by (5. 3) and (4. 9) to be

*g (p) = I - g(p) = I - e (7.4)

Condition (I) along with (7. 4) implies that there exists R I > 0 such that

*o < g (p) w( p) <.1
p 2 for -R I .:: u .:: 0 • (7.5)

Furthermore, condition (iii) guarantees that there exists R
2

> 0 such that

We now choose

I
R2 f(p) 3 log ' for p < Y • (7.6)

(7.7)

where R is as in the hypothesis of Theorem 1. We will estimate the expression in (7•. 2)

for lui.:: R
O

by making use of the estimate
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for t > - 1/2 • (7.8)

u f ( p ) /1B;1YT
(e - I )w ( p)

p
+

(7.9)

Estimate (7. 9), for u 0 follows from (7. 8), and for u..:.- 0 is a consequence of (7. 8)

and (7. 5). We shall bound I
2

first. For this we choose Y tending to infinity with y

such that

(7. 10)

and decompose

I + respective Iy (7.11)

Note that condition (iii) implies that f(p) < c
f

log p/B
2(p).

So from (i) and (7.10)

we get

(7.12 )

On the other hand from (7. 6) and (7. 7) we deduce that

(7.13)= 0 ( I)« I -in
P2Y P

(7.9), (7.10), (7.12) and (7.13) yield

(e p -l)w(pl = II + 0(1), (y -+00; -R02u2RO)'

(7.14 )

Thus estimates

(7.16)

By expansion of I I and O. 7) we have

uBI(y) 00 ukf(p)kw(p) uBI(y) fooeuv_I_uvI I = + I I - - + dK (v). (7. I 5 )
P2Y k=2 k:P.B

2(y)k/2
= _00 v 2 Y

So by (7. 3), (7. 4), (7.14) and (7.15), the quantity in (7. 2) is

-exp{C eUV)_uv dKy(V)}

The quantities (euv_I_uv)/i, treated as functions of v, for v E [0,(0), and parametrized

by u, for u € [-RO'O], form an equicontinuous family, which is uniformly bounded.



22

Since K (v) 0 for v < 0, it follows from hypothesis of Theorem I, and by a result ony

convergence of measures (see Feller [10], p. 245) that

lim J
uv 00 uv

e -I-uv dK (v) = J e dK(v) = L(u)
uv y 0

_00 v uniformly for -R
O..":

u..": •
(7.17)

Therefore combining (7.16), (7.17), (7. 3) and (7. 2) we arrive at

lim
X -----7 00

J
00

uniformly for -RO..": u < 0 • (7.18 )

On the other hand, by (5.10) and (7. 2) we have

where

«

p<y
+ h* (p w( p , for 0 ..": u ..": RO' ( 7 • I 9 )

*h (p ) =
u f ( P ) / IB2 ( Y)

e I. (7.20)

In this case, by (7.14), (7.15), (7.20), (7.19) and (L, 9) we arrive at

00

J e uvdF (v)« I, ·f If 0< <Ruru orm y or _ U _ 0
_00 x,y

(7.21)

Thus by setting F (v) q> x(v) we see from (7.18) and (7.21) that q>x satis-
x,y

Iies the conditions of Lemma I, part (a). Consequently part (a) of Theorem holds with

f (n) in the place of f(n), Similarly part (b) of Theorem 1 for f (n) also follows fromy y

part (b) of Lemma 1.

From O. 9) we see by expansion that

Hence

« I, for 0 2. u < R.

k:
« k' for k

R
0, I, 2, ..• (7.22)

So by the teorem of Frechet-Shohat [I I), (1. 8) and (7.22) we deduce that there is a seq-

uence X. ------;> 00 such that
I

o < lim

I

Therefore the series

J
o

vk- 2K(v) «k: for k
k'R

0, 1, 2, .••
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represents an analytic function in Iz I < R and so (1.14) follows. Finally (1.15) is a conse­

quence of (1.14), (7.18) and part (c) of Lemma 1. Thus we have established Theorem 1 for

f (n) and from this want to show that Theorem 1 holds for f(n). Since the moments deter­y

mine the limiting distribution uniquely in this case, it suffices to check (1.10) for f(n).

For this Lemma 4(b) will be useful.

Consider the decomposition

f(n) ­ Bl(x) = {fy(n) Bl(y)} + {Bl(y) Bl(x)} + {f(n)

and identify the quantities on the right of (7.23) with those of Lemma 4

(7.23)

fy(n)}

(b) as follows:

* *E = {plY .2 P .2 x }, f Ln ) - fy(n) = f (ri ) , Bl(x) ­ BI(y) = BI(x).

The multinomial expansion and (7.23) yield

L
n€S(x)

an L
r l+r 2+r 3=k
r l­S.k­ 1

Theorem 1 for f (n) implies that the first term on the right of (7.24) isy

k/2mk (I + 0 ( 1 )). X. B2 ( Y) •

By the Cauchy­Schwartz inequality the second term on the right of (7.24) is

(7.24 )

(7.25)

(
{

2 r 1 1/2{ * 2 r 2 * 2r3) 1/2)o L L an(fy(n) ­ BI(y»} L Bl(x) anf (n) J
r l +r 2+r 3=k ne Sf x ) n€S(x) (7.26

rl­S.k­l
By virtue of Lemma 4 (b), and Theorem for f (n), we deduce that the quantrty In (7.26) is

y

<

because r2 + r3 2 I. So from (7.24), (7.25), (7.26) and (7.27) we arrive at

(7.28)

Now (l.10) follows from (7.28) because BzCx) ­ B2(y), as x ­­;> 00 •

Theorem I is proved.
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Remarks: The above proof shows that there is a one-to-one correspondence between the

probability distributions Ktv) in 0. 8) and Ftv) in (1.13). This correspondence is set up

by the moments mk which satisfy (1.12) and (1.15). In particular the moments correspon-

ding to K(v) in (1.17) are

if k is even

(7.29)

if k is odd

and these are the moments of the Gaussian distribution G(v) in (1.16), establishing Corol-

lary 1. Corollary 2 is a special case of the sufficiency part of Corollary 1.

i8. Proof of Theorem 3

We begin with

Lemma 5: Let S be special, f > 0 be strongly additive, and 0 > O. Let E be the

set of primes < x, for which f(p).? 0!"ifi(x). Then

Proof: We have

L
p<x
pEE

<
p

<5 2

L
p<x
pEE

as claimed.

<
p

L W(P]f2(p) <

p<x Po B2 (x )
pEE

2f (p)w(p)
p

Proof of Theorem 3: Let k a be an integer and f > a strongly additive. For special

5, we let E be as in Lemma 5 with 0 = 1. Define

and

*f (n ) = f Lp) , f(n) = f( p ) (8.1)

L
p<x
pEE

f(p)w(p)
p L

p x
pIE

f(p)w(p)
p

(8.2)

If 'a' and 'b' are arbitrary complex numbers, note that

(8.3)
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In particular from (8. 1), (8. 2) and (8. 3) we have

(8.4)+ I;' * * k I;' '\L anlf (n)-BI(x)1 «k L5 + L6 respectively
nES(x)

To estimate L5' the ideas of §§5 and 7 apply. We start with estimates (5. 6)

(5.10), and observe also that (I. 9) holds trivially for f. So the arguments underlyingand

(7.16) and (7.21) show that the expression in (7. 2) (suitably defined for f) with y = x is

true. Consequently by (3. 2) of Lemma I (a) we obtain

I;' k / 2
L5 «k X.B2(x)

We have omitted repeating the details in the derivation of (8. 5) •

To estimate 4;, observe .f irst that (8. 3) yields

(8.5)

(8.6)

From (6. 4) and Lemma 5 we get

* k * k-lBI(x) Bk(x)BO(x) < Bk(x).

Similarly by Lemma 4 (a) and Lemma 5

(8.7)

(8.8)

Theorem 3 for f > 0 and k a non-negative integer, follows from inequalities (8. 4) through

(8. 8).

Suppose is a real valued strongly additive function. We decompose into

(8.9)

where f+ and are strongly additive functions generated by

f + ( P ) = max (0, f ( P ) ) , f - ( p ) = -rnin (0, f ( P ) ) • (8.10)

Theorem 3 for real f follows from (8. 3), (8. 9) and (8.10), because f+ and are

non-negative strongly additive functions. If f is complex valued, we break it into its real

and imaginary parts and once again apply (8. 3). Thus we can establish Theorem 3 for

arbitrary complex f, and all non-negative integers k. To pass from non-negative integral

exponents k to arbitrary non- negative exponents, we simply have to apply the Holder-
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Minkowski inequality and (8. 1) suitably. The proof of Theorem 3 is complete.

§9. Examples

First we give examples of special sets 5.

An arithmetic progression an-b of positive integers, where

(a, b) :: I, and A:: J.

The set 5 of positive integers for which A(n):: I (or A(n) -I), with

( ) l1(n) () .where A(n) :: -I ,11 n bemg the number of prime divisors of n

with multiplicity.

A I,

counted

In the above examples the sets 5 have constant (non-zero density) and A J.

In the next examples 5 will have zero density and the {an} are unbounded.

Let If be a set of primes such that

I! L 1 + o(xe-.rT"CigX), 0 < I! < 1.
p<x

( 9. 1 )

Let 53 be the multiplicative semigroup generated by I ; that is

53 :: {n € <. pin ) p € f! }.
For n € 53' let an:: I! -Q (n ) Then 53 with these weights {an} is special. Note

that 53 is the collection of integers relatively prime to the elements of iJ. So by (4.13'),

with g chosen to be the characteristic function of 53 we have

xn
P2-x

(1- 1) «
p

x

( x) I - 1!
log

Hence 53 is of zero density.

Let 54 be the set of integers representable as a sum of two squares and an rtn),

the number of such representations. Then 54 is special. This example is related to

example 5 in the case <1:: {p Ip :: 1 (mod 4)1, and I! 1/2.

An obvious way to construct 5 satisfying (9. 1) is to consider the set of all

primes lying in one of several arithmetic progressions. In example 4, one may also think

of ;Z+ as the underlying special set with weights an defined to be the totally multiplicat-

ive function given by

I! - I if o if
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This suggests that in examples 1,2 and 3, the condition A 1 could be relaxed somewhat.

For instance, with 5 =:;z+ we could consider any sequence of weights {an} that are

totally multiplicative, for which

L
n<x

(a = ex + 0 xe ,n
c > o.

Nso, one can construct special sets by suitable combinations of the above examples. Although

in the above cases the weights turned out to be multiplicative, this condition is not required

for the validity of our results.

Next we consider certain functions belonging to the class,4- (5). We begin by

observing that the validity of condition (iv) for k = 2 implies that there is a' < a such

that a'--+ co with x and

{B2 ( x ) - B2 ( y ' ) } log a' = 0(B2 ( x » .

So by the Cauchy-Schwartz inequality and (9. 2) we have

(9.2)

Suppose we have

{max f I p I} IB
2
( x ) « I.

ps-x

Then for integers k 2

(9.3)

(9.4)

(9.5)

Hence from (9. 3) and (9. 5) we see that if f satisfies (9. 4), then the validity of con-

dition (iv) for all k €:;z+ is a consequence of the truth that statement for k = 2. Delange

[4] assumed (9. 4) (which is stronger than our condition (iii)) and thus required condition

(iv) only for k = 2. The nice feature of Kubilius' method is that one requires (iv) only for

k = 2, and simultaneously can dispense with assumptions such as Delange's (9. 4), or our

condition (iii).

The functions satisfying (1.18) of Corollary 2 have their limiting distribution

as the Gaussian law. The following example due to Kubilius fits into the conditions of

our Theorem 1 and provides an instance where B
2(x)

co and the limit law Ftv) f. G(v).

For this, consider a set of primes E for which
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E(x) _ x
log x , log log x

Next let f be a strongly additive function given by

{

l og log p for p € E
f(p) =

o for P /. E

It is easily checked that f satisfies (9. 4) and belongs to Jr4- (22+), with A

(9.6)

I. The

function K(v) in (1. 8') is

if

if

if

v < 0

o<v<12

v < 12

(9.7)

and hence by Corollary I, the limiting distribution is not Gaussian.

In this example of Kubilius, (9. 4) holds, and so assumption (1. 9) in Theorem I is

redundant, since the Kx(v) are all supported inside a fixed compact interval. This example

can be modified slightly so that (9. 4) does not hold, in which case one has to check that

0.9) is true. For instance, on a subset E
I.::

E for which E I (x ) = O(IX) we can set

f (p ) = log p , log log p, P € E I

and let f(p) be given by (9. 6) when p lEI. Here condition (iii) holds when asymptotic

equality as x <XI. Or we may consider a subset E
2

x/(log x)(log log log x)2, and set

E of larger size, say E2 ( x ) -

t I p ) = log log p v l og log log p , p e E2•

Here again we let f(p) be as in (9. 6) for p l E
2•

In both these cases we have

compact interval

k € 22:+ •andi = I, 2,
P'::x p
pe:E i

Therefore, K(v) is as in (9. 7). Here the Kx(v) are not supported in a

and so 0. 9) is not obvious. But it can be checked by some computation.

There are many examples of functions fitting the hypotheses of Theorem 2 - such as

-log {<p(n)/n}, where <p(n) is Euler's function. Here also one can construct examples where

verification of 0.20) is non-trivial; we omit repeating ideas that have just been considered

above.
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§ 1O. Necessity of the hypotheses

In §9 we considered functions satisfying our growth conditions (Iii), (iv) and O. 9).

But are such conditions necessary for the validity of our results? If not, to what extent

can they be relaxed? Although we do not answer these questions here, we shall briefly give

reasons which indicate that such conditions are perhaps necessary.

Condition (iii) enters naturally to keep the right hand side of (7.19) bounded for

o < u < R. If there was a sequence of primes PJ' for which f(p.)!(Jog p.)/Bip,) <0,

h*(p.) ) ) )
then 1 + p' I would also tend to infinity for every u > O. On the other hand

.J *-uf(p.)w(p-.)!p-v'B
2(p.)

h (p.)
e ) J ) ) could not compensate for the size of 1 + I and so

Pj
the right side of (7.19) will not remain bounded for 0 u RO' Similarly, 0. 9) is also

required to keep the right sides of (7. 3) and (7.19) bounded for 0 u RO'

will be

can be£(p)

*h (p)in size, in which case

One may remark at this point that it is not necessary to bound for instance the right

(7.19) since we are only after X-IT (x, y), which could be much smaller in size,
u

*h (p) is large. But then Lemma 5 shows that not many values of

large. In fact, most f(p), for p < y are

when

side of

bounded for 0 u RO' Thus the right and left sides of (7.19) will be comparable,

and so not much is lost in trying to bound the right side.

So, these growth conditions guarantee that X-IT (x, y) remains bounded for
u

IuI RO; in other words, they keep the bilateral Laplace transforms bounded. One may

also note that for the limit of the moments to exist, it is not necessary to have the sequence

of bilateral Laplace transforms bounded for any u, But then, we do require the moments

to determine the limiting distribution uniquely. This is often achieved by showing that

the moments do not grow too fast. In such cases it is quite possible that the bilateral

Laplace transform will be uniformly bounded in compact intervals of u,

Finally, condition (iv) is a natural requirement to bridge the gap between fy(n)

and £(n). It seems unlikely that one could directly establish results of our type for fen),

without considering f/n). For, asymptotic formulae like our (4.12) ( or similar ones consi-

dered by Erdos-Kac [8] and Kubilius [17],[ 18]) which were employed in the proofs, hold

only when Cl ----* <0 with x,

Recall that the method of Kubilius shows that for the class (jt of strongly additive

functions, O. 8) is both necessary and sufficient for 0.13) to hold. The functions of
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the class Jt for which B2(x) ----+ 00, all belong to the class J(.. Thus it is clear that

(1. 8) is necessary for the validity of Theorem 1.

So on the basis of classical results we feel that our growth conditions cannot be

weakened considerably. It might be worthwhile to pursue this aspect further. Perhaps

they could be replaced by weaker conditions of an average type, but it seems unlikely that

one could do away with any of these assumptions.

The assumption that is strongly additive has been made mainly for convenience

and can be removed in most situations quite easily. We briefly indicate how one may use

our method to tackle general additive functions also, for special sets, where w(d)

for some A
O

> 1.

A
Suppose f denotes a generic complex additive function and

the strongly additive function generated by 7.

vanishes on all primes. So

f(n) = 1: f(p)
pTn

Then r = 7 - f is an additive function that

I(n) L I(pe)

e- I rp n, Note that

y < 00

e=2 p pe

Therefore the method underlying Lemma II (a) gives

where

(l0.1)

(l O. 2)

i\(x) k 0, 1,2, •••

Similarly, define

"f(p )w(p
e

p
and

L If(pe)lkw(pe)
for k > 2

and consider the decomposition

Then from

,.
- B

1(x)
= (f(n) - B

1(x))

(S. 3), (10.1), (l0.2), (l0.3) and

(10.3)

method of proof of Theorem 3, we can show
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(10.4)

< k 2for

{

X

«k

X J$2(X)k/2 + for k > 2

f 2: 0, and from this the truth of (IO.4) for all complex f follows.

Similarly by enlarging the clause A suitably to admit certain additive functions,

that

for all

the restriction that is strongly additive can be removed in Theorem 1. From (10.3) we

obtain, as in (7.24), by multinomial theorem

L
neS(x)

L an(f(n)-Bl(x»k +

n e S{x ) ,10.5)
r
l

r 2 r 3
an L (f(n)-BI(x» 11(n)1 i\(x) •

r l+r 2+r 3=k

An estimate on the size of the first term on the right of (10.5) is provided by Theorem I.

The contribution due to the last term on the right of (10.5) is negligible, since B2(x)

The argument is similar to what we had in (7.27).

§ 11. Extension to real valued functions

The statements of Theorems I and 2 are restricted to functions > 0 of the

class A. Obviously these results hold for similar which are < O. The classical

results mentioned in §2 do not involve such a restriction and so it is desirable to bring real

valued f e A-within the scope of Theorems I and 2.

It is the way our method was set up that forced this restriction. More precisely

we are able to estimate Tu(x, y) satisfactorily only when the underlying multiplicative

functions have their range in either [0, 1] or in [1,00]. In order to treat real valued

f e A we need similar estimates even when these multiplicative functions have their range

in [0, 00]; this at present seems difficult. However, we do have an 'indirect' argument

based upon our method and that of Kubilius which enables us to remove the restriction

f 0 in Theorems I and 2. Previously I had noticed this argument only when the limiting

distributions were continuous but Professor Elliott has recently pointed out to me that

this continuity condition is unnecessary; my earlier argument has to be modified slightly.

We outline the idea briefly, below.

Lemma 6: Let rp x t v ) be a sequence of probability distributions and rp ( v) a probability
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distribution such that

qlx(v) ... ql(v) weakly in v, as x ... oo.

In addition, suppose that

(11.l)

Then

VX,k> 1 • (11.Z)

ce

lim f » dqlx(v)
x..... cc _00

cc

f vkdql(V), for k=1,2,3, •.•
-oo

(11.3)

Proof: First by (11.Z) and the theorem of Frechet-Shohat, we note that there is a sub-

sequence {xl} such that (11.3) holds if the limit is taken over this sub-sequence. In

particular all the moments of ql exist and are finite. Observe that (11.Z) also yields

f Ivk Id ql ( v ) <
x - T

f Zk -kv dql ( v) «k T , V x , T , k .::. I.
Ivl'::'T x

(11.4)

(11.7)

(11.6) and get

Since all moments of ql are finite, (11.4) holds with ql in place of qlx'

We let

qlx(v) = ql(v) + ex(v) , (11.5)

and choose T I ' TZ > 1 so that -T I and TZ are points of continuity for <p • Then by

(11.4) and (11.5) we have

TZ
f oo k f k ( - k - k)v dql (v ) = v d<p (v) + Ok T I + TZx -T x

I
TZ TZ
f k f k (-k -k)v d<p (v) + v de (v ) + Ok T I + TZ
-T

I
-T

l
x

T
cc k Z k k -k)

v d<p(v) + v dex(v) + Ok (TI + TZ' (11.6)

1

We use integration-by-parts on the second integral of the right hand side of

T T
Z k k ITz Z k 1f v de {v } = v de (v ) - f e (v) kv - dv

-T x x -T x
1 -T l 1

By our assumption on T
I,

TZ and (11.1) we see that for each fixed TI'TZ the quantity

in (11.7) goes to zero as x ... oo. Thus from (IZ.6) we get

lim I: vk dqlx(v) s""v k d<p(v) + Ok (T1k+ Ti k )
-OO

(11.8)
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with a similar lower bound for lim. Since Tl' T2 > I could be arbitrarily large, Lemma 6

follows from (I 1.8).

Suppose f € -tis real valued and satisfies (I. 9). We write

estimates (4.13) and (5.10) on f+ and L Then by the ideas underlying the proof of

Theorem 1 and (8. 3) we get

k I, 2, 3, ... • (11.9)

Suppose f satisfies (I. 8) and B
2
(x) .... 00. Then by the method of Kubilius, we see (I.13)

will hold. This is to be compared with (11.1) of Lemma 6. Then (I 1.9) is the analogue

of (Il.2) and so (I 1.3) in Lemma 6 shows that (I.IO) holds; consequently all other

assertions of Theorem 1 hold as well.

The above argument is unsatisfactory for the following reasons. Although based

upon our method, we have to lean upon the method of Kubilius and so it is an 'indirect proof';

the chances of a direct argument seem, at present, remote. We have also gone against the

general philosophy of this paper by estimating the moments asymptotically after evaluating

the weak limit of the distribution functions first. Our aim here has been to draw information

about the distribution functions from a study of their moments. At any rate it is good to

know that Theorems I and 2 could be extended to admit real valued f € sf. In addition, our

arguments here are interesting for their own sake and have other uses also. We shall in fact

make crucial use of Lemma 6 later, while investigating the distribution of additive functions

in S1 and S2'

§l2. Elliott's method

In §§O and 2 it was pointed out that that the sieve and the bilateral Laplace transform

combine to yield an improvement of the method employed by Elliott in [6] to de r i ve

(2. 6). Since no description of Elliott's ideas was given there we feel it is appropriate to do

so now and also mention certain similarities and other essential differences between his

technique and ours.

Elliott begins by considering for f > 0 the sum of Tz(x) with complex z and

uses a contour integral, as in 0.19), to bound the moments suitably, in the situation S 22+,

A ,,1. He notices that f.::: 0 implies IT (x) I < T (x), wherez - u u " Re(z). Since he was
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not after asymptotics, he had no requirement for the analysis of bilateral Laplace transforms.

reasons:

His treatment of Case I (see §5) for T
u

is simpler compared to ours for two

(I) He was interested only in upper bounds and so required only the weaker estimate

(5. 6').

(2) For 5 = z", A one does not encounter certain difficulties one experiences

with subsets 5 of z::+ and their associated weights {an} •

Thus he had no need for the powerful combinatorial sieve method. In fact, he takes care of

Case I by using a result of Hall [12], which provides for him the required bound (5. 6').

Our treatment of Case 2 in this paper is similar to Elliott's who also employs the

*function h (d) to derive (5.10') with y = x, Later, when we consider a larger class of

sets satisfying a condition weaker than our (i) we will have to deal carefully with sums

for large divisors d. This is the situation for example with sets 5 I and 52. The problem

will then take a different point of view, for Case 2 will become the more complicated one

since Case I can be controlled by the combinatorial sieve:

obtains a uniform upper bound

Using bounds for Tu(x) in an interval lui 2. r, Elliott

f(p) With regard to large values of f(p) he first

for

L v(n,E)k
n< x

by induction on k, where

v(n,E) '" 1. I
pln,p€E

arrives at (11.9') when

Then he observes that for any strongly additive function f 2 0

f*(n)k = (1. f(P»k 2. (1.
"pTn,P€E

and employs what we have called Lemma 5 to care of this contribution. 5uch an approach

when applied to special sets would lead us to consider subsets of 5 comprising of multiples

of products of primes PI'•••'Pj' j < k and determine whether such subsets satisfy (I). This

being a little awkward to handle, we prefer to obtain directly a bound as in Lemma 4 (a) and
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hence our treatment of large values of f(p) is slightly different.

As is customary in such problems, Elliott observes that it suffices to establish (2. 6')

for f 0, because (S. 3) will enable one to extend such a result first to real valued

f, and then to all complex additive functions.

Finally, Elliott also discusses certain consequences and applications of (2. 6). In

particular, he obtains a necessary and sufficient condition for the mean

of an additive function f(n) to be bounded. By suitably modifying his arguments we can

discuss similar consequences of Theorem 3. Our exposition has already become long, and so

we refer to the reader to [6] for the basic ideas in this direction.

§ 13 thesis

Inequality (2. 1) was established by Turan in his Ph.D. thesis [21] (Hungarian).

It was also published in [22] since it provided a simple proof of the Hardy-Ramanujan theorem,

that v ( n ) is almost always nearly log log n in size. In his thesis using analytic tools he

also showed that

(13.1)

holds uniformly for - 1/2 5- r 5- 1/2. By choosing r appropriately in (13.1) he gave yet

another proof of the Hardy-Ramanujan result. Probably he considered this last proof some-

what complicated since he derived it only in his thesis and did not publish it elsewhere.

On the basis of (2. 1) Kac suggested, first in a letter to Tur&n (see [5], Vol. 2,

p.Ls), and later in [16], that one should try to estimate the quantity

x-I L {v(n) - log log x}k, k = 1, 2, 3, •••
n<x

(13.2)

Turan felt that this could be done on the basis of the method underlying (2. 1) but did not

go through the effort since he saw no use for it. It appears that he had Halberstam's method

in mind and did not carry out the computations owing to the complications. An asymptotic

estimate for the quantity in (13.2) was first provided by Delange [2] who used generating

functions and analytic methods.

Later Turan along with [19) considered the sum (2. 3) for z e
iu

and
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by interpreting it in terms of Fourier transforms established (1.13') for f(n) = v(n) with a

best estimate for the rate of convergence. If one does not care about error terms but

only wants to check (1.13'), then such a result for v (n) follows from an asymptotic estimate

for (13.2) which Turan could have deduced from (13.1). We outline this argument briefly

below.

L
n<x

For real u consider the expression

u(;(n)-Iog log x)

e \ Ilog log x = e-u/log log x L
n<x

uv(n)!llog log xe ,

and estimate this asymptotically using (13.1) with r chosen to make

This estimate can be interpreted as an estimate for the bilateral Laplace transform. Then

Lemma I shows, after suitable identification, that the expression in (13.2) is equal to

{m
k

+ 0 (l ) }( log log x ) k / 2, where m
k

is as in (7.29), and hence the limiting distribu-

tion is Gaussian.

could have estimated (13.2) this way and therefore anticipated the results

of Delange [2], Erdes-Kac [8] and Halberstam [13J. Maybe then he would have felt motivated

to publish (13.1) separately!
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