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MOMENTS OF ADDITIVE FUNCTIONS
AND THE SEQUENCE OF SHIFTED PRIMES

KRISHNASWAMI ALLADI

Dedicated to the memory of Ernst Straus, my teacher

Recently, by means of a new method involving the combinatorial
sieve and the bilateral Laplace transform, we estimated asymptotically
the moments of additive functions f(n) for integers n belonging to
certain sets S. From such estimates the limiting distribution function of
these / ( « ) , for n e S, can be determined. Here the method is applied to
the special sequence Sc. = {p + c}, where p runs through all the primes
and c is an arbitrary fixed integer. Various distribution properties of the
sequence 5C, such as those given by the Brun-Titchmarch inequality and
Bombieri's theorem, are used. Previously Barban had established distri-
bution results for certain/(w) when n e Sc9 but it was not known (until
now) under what conditions the moments could be asymptotically esti-
mated as well.

1. Introduction, notation and main result. In a recent paper [1] I
used a new method to asymptotically estimate the moments of certain
additive functions f(n) for integers belonging to some special sets S. The
method is based upon the combinatorial sieve and certain properties of
the bilateral Laplace transform. It therefore has advantages over some
earlier approaches in two respects. First, the use of the sieve enables one
to treat a fairly large class of sets S. Next, the bilateral Laplace transform
introduces simplification in the calculation of moments. For a detailed
description of the method see [1], whereas for a comparative study of this
technique against a classical background see [2].

We shall now investigate the applciations of this method to the set Sc

of shifted primes given by

(1.1) Sc= {p + c\p = 2,3,5,...,primes},

where c is any fixed positive integer. Our goal is to prove Theorem 1
below. In doing so we shall come across many interesting auxiliary results.
But first we need some notation.

Additive functions / are arithmetical functions satisfying f(m n) =
f(m) -f / («), whenever g.c.d.(m, n) = 1. For simplicity we concentrate
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here on strongly additive functions which are given by

(1-2) /(«)= Σ f(p)
p\n

p = prime

although the method can be applied to general additive functions as well.

We associate with/in (1.2) and Sc in (1.1), the series

(1.3) A(x) = Af(x) = Σ ^z\, B(x) = Bf(x)

t

(1.4)

p<xΓ p<χ

and let

p<χ

With A and 5 as above let

where τr(x) denotes the number of primes < x.

Next we consider the class #Όf all real/that satisfy

Cλ: sup^^^ \f(p)\/ ]JB(x) < bf, is bounded for all x.

C2: there exists an a -> oo with JC such that if y = x 1 / α, then

Hm | ί i l - 1.
5 ( )

We are now in a position to state our result.

THEOREM 1. Let / e # , 5(x) -> oo and K a probability distribution

such that

(1.6) lim -}-r Σ ^ή-=K(v), weakly in v.
x-*oo B(x) p - l

p

f(p)<Vy/B(x)

Then there exists a probability distribution F(v), such that

(1.7) lim Fx(v) = F(u), weakly in v.
x-+oo

In addition

(1.8) lim }——& Σ {f(n)-A(x)}k =

exists and is finite for k = 1,2,3,..., where Mk are given by

(1.9) Mk= Γ vkdF(v).
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Results like Theorem 1 are not entirely new. In fact there is a vast
literature on the distribution of additive functions among the set Z + of all
positive integers; comparatively little is known concerning distribution in
subsets (see Elliott [3]). However, for the set Sc Barban actually estab-
lished that when/ e ^, (1.6) was necessary and sufficient for (1.7) to hold
and later the growth condition Cx in Barban's result was removed by
Barban, Levin and Vinogradov (see [3], Vol. 2, p. 27 and p. 50). Their
technique involved the probabilistic method due to Kubilius and in
particular the theory of infinitely divisible distributions. However such an
approach yielded no information about the higher moments. In particular
it was not known whether the moments of / could be asymptotically
estimated as well and this we now confirm under the hypothesis of
Theorem 1. In view of the above remarks, we shall, in the proof of
Theorem 1 only show that (1.8) and (1.9) follow from (1.7). We suspect
that Cx is necessary for (1.8) and feel that it might be worthwhile to
pursue this in detail later.

Previously, for Sc9 such estimates for moments were available only in
the special case when F is the Gaussian distribution

This was due to Halberstam [5] who employed a different method which
was elementary and involved complicated calculations arising out of the
expansion of the sum in (1.8). Our derivation of (1.8) is by a new method
which involves the sieve and the bilateral Laplace transform. Our method
is based upon a technique due to Elliott [4] who neatly obtained uniform
upper bounds for the higher moments of additive functions f{n) when
n e Z + . We noticed in [1] that incorporating sieve ideas leads to an
improved method which is what we employ here.

In §§2 and 3 we recall from [1] the main ideas of our method and also
establish certain auxiliary results for Sc. Theorem 1 is proved in §4. In §5
the special case of Theorem 1 for functions / > 0 is briefly discussed since
here our method also yields a new proof of (1.7). Finally in §6, Theorem 2,
an analogue of Theorem 1 for the case B(x) ~* b < oo, is stated without
proof.

All notation introduced so far will be retained. For instance p shall
always denote a prime and/a strongly additive function. Also the Ό9 and
<c notation are equivalent and will be used interchangeably as is conveni-
ent. Implicit constants are absolute unless otherwise indicated. We shall
denote by g, a strongly multiplicative function, namely, one that satisfies
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g(n) = Πpln g(p). The truncations fy(n) and gy(n) of / and g at y are
defined by

(1.10) fy(n)= Σf(p) and gy(n) = Πg(/')

Distributions such as F which arise in a weak limit form will be referred to
as limiting distributions.

I would like to thank Professors P. Erdos and J. Vaaler and Dr. A.
Ghosh for several discussions concerning Lemma 3. Also previously I had
proved Lemma 2 only in the case when the limiting distribution φ was
continuous and it was Professor Elliott who pointed out to me that this
continuity assumption could be dropped; consequently that condition
does not appear in (1.8) and (1.9). Finally, I enjoyed the hospitality of the
University of Texas at Austin for the academic year 1982-83 when the
major portion of this work was done.

2. Two Tauberian lemmas. We begin with

LEMMA 1. Let ψx(v) be a sequence of probability distributions and
R > 0 such that

(2.1) Γ euvdφx{v)<£ for\u\<R.
- o o

Then

(2.2) Γ vkdΨx(v)«^-k /or* = 1,2,3,....

If in addition to (2.1) we have

(2.3) lim f euvdφx(v) = /(w), uniformly for -R < u < 0,

where /(«) is finite, then

(2.4) lim Γ vkdφx(v) = μk for k = 1,2,3,...
X~*CX) ^ - 0 0

exists and is finite. Moreover there is a probability distribution φ(v) such
that

(2.5) lim φx(v) = φ(v) weakly in v.
JC-*OO

and

(2.6) μk = Γ vkdψ(v) fork = 1,2,3,....
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For a proof of Lemma 1 see [1].

There are instances where one can asymptotically estimate the mo-

ments after initially bounding them suitably. A result along these lines is

LEMMA 2. Let φx(v) be a sequence of probability distributions converging

weakly to a limiting distribution φ(v) as x -» oo. Suppose also that for all x

(2.7) Γ vkdΨx(v)<^kl, fork = 1,2,3,...
— oo

Then

(2.8) lim Γ vkdφx(v) = Γ vk dφ(v), for k = 1,2,3,...

(2.9) / \v\k dΨx(v) < ~ j \v2k\dΨx(v)«kT~k,

Proof. First observe that (2.7) yields

/ \v\k dΨx(v) < ~ j
J\υ\<T T J\v\>T

x,T,k> 1,

and the same inequalities hold for φ(v) also.

Next, let

(2.10) φx(v) = φ(v) + ex(v)

and choose TX,T2> 1 such that - Tγ and T2 are any pair of continuity

points of φ(v). So by (2.9) and (2.10) we have

(2.11) Γ vkdφx(v) f

= f2 vkdφ(v)

°° vkdφ(v)-fTl ex(υ)kvk-ιdv+T2

kex(T2)

-(-Tye^-Tj + O(Tik + T2~
k).

Since ex(v) -> 0 almost surely in υ, we see from (2.11) and by our choice

of Tλ and T2 that

(2.12) lim j vkdφx(v) < j vkdψ(v) + Ok{T{k + T£k)

with a similar lower bound for lim. Since Tv T2 > 1 could be arbitrarily

large we get Lemma 2 from (2.12).
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3. Bounds for sums of multiplicative functions. For the purpose of

treating the bilateral Laplace transform of Fx(v) in the sequel we shall
require estimates for the sum

n<x

when 0 < g(p) < 1 for all p and when 1 < g(p) < 2 for all p. We begin
with

Case 1.0 < g(p) < 1.
Let S be a set of integers and define

Assume that

d

where ω is multiplicative, 0 < ω(p) «: 1 for all /?, and the 'average' of
R{d)(x) is small in the following sense: There exists β e (0,1) such that
for every b > 0 there is a > 0 satisfying

where X = 5 ( 1 )(x). In addition assume that there is a0 > 1 such that

(3.2)

where v{d) = Σ^μl. For such a set S it was shown in [1] that

(3.3) Σ.φ)-xn

where η(x, y) which is bounded for all x9 y > 1, tends to zero as
a = (log Jc/log y) -» oc. The proof of (3.3) makes use of ideas underlying
the combinatorial sieve. In particular (3.3) implies that

n<x
S

uniformly for all g satisfying 0 < g < 1.
We apply (3.4) with S = Sc. Then X = π(x - c)9 ω(p) = p/(p - 1)

and (3.1) with β == 1/2 follows from a celebrated theorem of Bombieri
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(see Halberstam and Richert [6], p. 111). Clearly (3.2) holds since X
jc/log x. Thus we have

(3-5) Σ g{n) « w(x - c) Π

uniformly for 0 < g < 1.

This ends our present discussion of Case 1. We move into
Case 2.1 < g(p) < 2.
For this we need

LEMMA 3. Let h be a multiplicative function satisfying 0 < h(p) < 1 for

all p. Then for all square-free n we have

(3.6) Σ h { d ) - Σ
d\n d\n

d<φϊ dφϊ

Proof. (Heath-Brown.) For h in Lemma 3 let Dh(n) denote the
left-hand side of (3.6). First we note that if h* is a special multiplicative
function satisfying

0

then Dh*(n) > 0 for all square-free «. For by setting N = Ylp^0,^n p we

get

( 3 . 8 ) D Λ . ( « ) = E l - Σ l > £ l - Σ 1 * 0 ,
d\N d\N d\N d\N

d<Jn d>]/ή d</N d>]/N

and that proves Lemma 3 for such /ι*.
More generally, suppose n = px pr, where pi are distinct primes

and let h{pt) = xt e [0,1], for ι = 1,2,... ,r. For each i we can consider
Dh(n) as a linear form in xt and also Dh(n) = L(xv...,xn). Hence,
thinking of xt as the first 'variable', we have for a prescribed function h,
the inequality

Dh(n)> min L{xι,...,xr).
0 < l

This minimum is attained when xλ is either 0 or 1—say when xλ = ev

Iterating this procedure we get

(3.9) Dh{n) > L ( e 1 , x 2 , . . . , x r ) > min L(el9 x2,...,xr)
0<x 2<l

= L ( e l 9 e 2 9 x 2 9 . . . , x r ) > ••• > m i n L ( e l 9 . . . 9 e r _ l 9 x r )
0<x,.<l

= L(el9e29...9er)9
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where et = 0 or 1 for / = 1,2,...,r. Note that L ( e 1 ? . . . , e r ) is equal in

value to Dh*(n) for some h* (satisfying (3.7).) Hence (3.8) and (3.9) show

that Dh(n) > 0 in general and that proves Lemma 3.

We apply Lemma 3 to functions g of Case 2. For such g we define a

multiplicative function h by

d\n

and note that 0 < h < 1. So by Lemma 3 we have

(3.9) g(n)<2 Σ h(d)
d\n,

and therefore

(3.11) Σ g(n)<2 Σ h(d)ir(x,-c,d),
n<x

where

π(x9 -c, d) = Σ = Σ
p <x

) p= -c(mod d)

By the Brun-Titchmarch inequality (see [6], p. 107) we know that

(3.12) π(x9 -c,c) «44v> toτ\<d<&,

where φ is Euler's function. Hence from (3.11) and (3.12) we get

(3.13) Σ?(«)«Φ) Σ
n<x

6S

P<χ\ P 1 /

uniformly for all g in Case 2, since h(p) = g(p) — 1 and h(pe) = 0 for

all/?, e > 2.

REMARKS. There are other ways of proving Lemma 3.

Recently, I conjectured that for each square-free n there is a mapping

m from the set of divisors d of n which are < yfn into the set of divisors df

of n which are > 4n such that

(3.14) m(d) = dr = 0 (mod d).
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If (3.14) is true then we have h(d') < h(d) and so Lemma 3 follows. Very

recently, Erdόs and Vaaler showed that more is true. By induction on

v(n), the number of prime divisors of n, they constructed a mapping mt

for every t < {n which takes those divisors d of n which are < t into

those divisors df of n that are > n/t such that

(3.15) mt(d) = d' = 0 (modi/).

In particular (3.15) with t == yfn is (3.14) which yields Lemma 3. To

describe this construction is complicated and hence we presented Heath-

Brown's argument instead.

Motivated by certain distribution properties of the divisor function

τ(w), Hall and Tenenbaum have derived the following inequality [7].

Suppose H > 0 is a multiplicative function such that for each p, the

sequence H(pe), e = 0,1,2,..., is decreasing. Then

ΣdlnH(d) - τ(#i)

In particular with h and n as in Lemma 3, (3.10) follows from (3.16)

proving Lemma 3. The proof of (3.16) proceeds by induction on v{n). We

note here that (3.16) can also be proved by following Heath-Brown's idea

of considering such inequalities in terms of the extrema of suitable linear

forms.

4. Proof of Theorem 1. As was mentioned in §1 we will only show

that (1.8) and (1.9) follow from (1.7). In view of Lemma 2 we note that it

suffices to bound the moments suitably. With this in mind we first

establish the following bound of a fairly general sort.

LEMMA 4. For a given real valued/, let \p(x) satisfy

(4.1) M(x) + jB(x) <: ψ(jc)

Then for k = 1,2,3,..., we have

(4.2) Σ \f(n)-A(x)\k^k<π(x-
n<x

S

where the implicit constant in (4.2) is independent of x and depends only on k

and on the implicit constant in (4.1). D
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Proof. First we assume that/ > 0 and set

(4.3) „,(„)- J _ ^ Σ

Then for real u

(4.4) Tu(x)-

f{n)-A{x)<υψ(x)

p-uA(x)/φ(x)

Σ g(n),
n€Sc

where

(4.5) g(n) = eu*nWχ\

When u < 0, we have Case 1, namely, 0 < g < 1. Since ψ » My by (4.1),
we see that i? > 0 can be chosen, such that for 0 < u < R we have
1 < g(p) < 3/2; so this falls under Case 2. With such an R we deduce
from (4.5), (3.5) and (3.13)

(4.6) Tu(x)
P<χ

uniformly for \u\ < R.

We have, in fact by our choice of R

(4.7) 0 < I< I for aΆp and |u| < R.

We make use of

(4.8) log(l + 0 = t +

Hence (4.5) and (4.8) yield

< 1/2.

^ ^
e«f(p)/*(χ) - - \\2

p<x

Clearly from (4.1) we get

(4.io) Σ 2 « Σ Λ«
p<xP
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On the other hand from (4.1) and (4.9) we see that

00

p<x A: = l k\ψ(x) (p —

1 Σ _ ukf{p)k

x) (p-ί))

. / . I -»y I * • " Lrλ I . / \ 2 . / \ k — 1

Thus by putting (4.6), (4.9), (4.10) and (4.11) together, we deduce that

(4.12) Tu(x) <r 1, uniformly for \u\ < R.

So (4.2) for/ > 0 is a consequence of (4.3), (4.12) and (2.2) of Lemma 1.
In general a real valued / can be decomposed into / = /+— /", where

/ + and/" are strongly additive functions generated by

/+(/>) = max(0,/(/>)), f-(p)= -min(0,/(/>)).

Note that if (4.1) holds for/, then we also have

(4.13) mf±(x) + Bf±(x) <z ψ(x).

So from the truth of (4.2) for non-negative/and (4.13) we get

(4.14) Σ \fHn)-A/±(x)\<κkπ(x-c)rKx)k, * = 1,2,3....

S

Finally observe that

(4.15) \a-bf <zk \a\k +\b\k, k = 1 , 2 , 3 , . . . .

holds for all real a and b. So by decomposing

f{n)-A{x)={f+{n)-Ar{x)}-{f-{n)-Ar{x)}

we get Lemma 4 from (4.14) and (4.15).

Proof of Theorem 1. Let / e # satisfy (1.6). Take ψ(x) = /β(x) in
which case φx(ί^) in (4.3) is i^(^). We identify (4.2) with (2.7) of Lemma
2. So by (1.7) and Lemma 2 we see that (1.8) holds. Finally (1.9) is a
consequence of (1.7) and (1.8) since the moments Mk9 by Lemma 1, are
« k\/Rh in size. Theorem 1 is proved.
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5. Theorem 1 for/> 0. In proving (1.8) for real valued/we made

use of (1.7). Our method initially supplied only upper bounds for the

moments of such /. So in order to obtain asymptotic estimates for the

moments from such bounds we had to use (1.7). If asymptotic estimates

for the moments could be obtained directly, then the existence of a

limiting distribution would follow, provided the moments do not grow too

rapidly. Such asymptotic estimates are possible by our method when/ > 0

and so in this case we do not require Kubilius' method to derive (1.7).

Since this proof of Theorem 1 for / > 0 contains certain new features we

sketch the main ideas briefly. Let

V / n<x
fv(n)-A(y)<v]/B(y)

First we note that for / > 0, (3.3) provides an asymptotic estimate for

Tu(x, y), the bilateral Laplace transform of Fx y(v) when u < 0, provided

a —> oo with x. On the other hand (3.13) provides an upper bound for

Tu(x, y) when 0 < u < R. A more careful analysis of Σλ and Σ 2 shows

that Σ 2 ~~* 0 as B(x) —> oo, and

,.0

I υλ
dK(v), uniformly for -R < u < 0.

So when a = a(x) (a fixed function of x) tends to infinity with x, we have

(5.2) 7 ; ( jc , j ;W(iO
o V2

uniformly for — R < u < 0,

whereas

(5.3) Tu{x,y) « 1, forO < u < R.

Set ψx(v) = Fx v(v) in Lemma 1 and compare (5.2) and (5.3) with (2.1)

and (2.3). Theorem 1 for fv(n) now follows provided/ > 0 and a -> oo.

In order to bridge the gap between fy(n) and f(n) we utilise the

following lemma (for a proof see Elliott [3], Vol. 1., p. 173).

LEMMA 5. Let β < 2 and f*(n) be any real valued strongly additive

function. Then

Σ \f*(n) - Ar(x)f «β w(x - c)Br(x)β/2

holds uniformly for all such /*. D
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We set /* = f — fy in Lemma 5. By the Cauchy-Schwarz inequality
A(x) - A(y) < /logα -(B(x) - B(y)). Choose a -> oo such that C2

holds and A(x) - A(y) = 6>(/(i?(jc) - B(y))). This shows that the weak
limit of i7^ y(υ) is the weak limit of Fx(υ) and so (1.7) is established for
f(n) > 0. '

Consider the decomposition

(5.4) f(n)-A(x)={fy(n)-A(y)}+{f(n)-fy(n)}

In order to estimate the sum on the left side of (1.8) we use (4.15). The
contribution due to A(x) — A(y) is negligible by our choice of a. From
the multinomial expansion and growth conditions Cx and C2 the contribu-
tion due to f(n) — fy{n) can be bounded by O{π(x — c)B{x)k/1). Finally
the sum involving fy(n) — A(y) can be bounded suitably by appealing to
the truth of (1.8) for fy. Hence ultimately we get (4.2) with ψ(x) replaced
by ]JB(x). As before, (1.8) for/> 0 now follows from this bound and
(1.7). That proves Theorem 1 for non-negative/ e %'.

REMARKS. The moments Mk (as was noticed earlier) are <c k\/Rk.
The analysis underlying (6.2) along with this bound for Mk shows that

def / /*°° pzv — 1 — 71) \ r°°

ΐ f / 6 \ ^ d K { ) } ( e'°dF(v)

is analytic in \z\ < R. Therefore /(z) is the analytic characteristic function
of F. Therefore the moments Mk in in (1.8) can be calculated from /(z) by
using the relation

Mk -
dzh

The appeal to fy(n) in the proof presented here is a limitation in our
method because the Sieve asymptotic estimate (3.3) is true only when
a -> oo with x. However this limitation is not harsher than in earlier
approaches, all of which utilised such Sieve estimates in one way or other
and so required the introduction of the truncated function fy(n). In fact
its the use of the truncation which accounts for the dependence on C2. It
might appear to the reader that in our proof of Theorem 1 presented in
§4, the truncation fy(n) was not used. But it should be noted that we
utilised the truth of (1.7), due to Barban, and his proof of (1.7) was by the
Kubilius method which also employs fy(n).



274 KRISHNASWAMI ALLADI

6. An analogue of Theorem 1. There is an analogue of Theorem 1,
in the case B(x) -> b < oo, namely

THEOREM 2. Letf(p) = O(l)for allp and B(x) -> 6 < oo.
/•$• a probability distribution F*(v) such that

(6.1) lim ——^ r Σ 1 = **(*>), weαfc/y //i ϋ.

f(n)-A(x)<v

In addition

(6.2) ^

exists and is finite for k = 1,2,3,...,

(6.3) M* = Γ vkdF*(v).

is /Λe analytic characteristic function of F* around the origin and therefore

M* = = 1,2,3,... D

Since i?(x)->6<oo, condition C2 is redundant and so the details
are simpler. Hence we omit the proof of Theorem 2. However, we wish to
mention here, that similar to Theorem 1, (6.1) can be proved by the
probabilistic method of Kubilius. After using our method to bound the
/cth moments suitably, (6.2) and (6.3) can be deduced from (6.1). If one is
interested only i n / > 0, then analogous to the arguments of §5, (6.1) also
can be established by our method.
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