
ar
X

iv
:2

00
4.

12
00

5v
4 

 [
m

at
h.

PR
] 

 1
5 

Ju
n 

20
23

Geometric and Functional Inequalities for Log-Concave

Probability Sequences

Arnaud Marsiglietti1 and James Melbourne2

1Department of Mathematics, University of Florida, Gainesville, FL 32611, USA,

E-mail: a.marsiglietti@ufl.edu, Phone: 352-294-2310
2Probabilidad y Estad́ısticas, Centro de Investigaciónes en Matemáticas, Guanajuato,
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Abstract

We investigate geometric and functional inequalities for the class of log-concave prob-
ability sequences. We prove dilation inequalities for log-concave probability measures on
the integers. A functional analogue of this geometric inequality is derived, giving large
and small deviation inequalities from a median, in terms of a modulus of regularity. Our
methods are of independent interest, we find that log-affine sequences are the extreme
points of the set of log-concave sequences belonging to a half-space slice of the simplex.
We use this result as a tool to derive simple proofs of several convolution type inequal-
ities for log-concave sequences, due to Walkup, Gurvits, and Klartag-Lehec. Further
applications of our results are used to produce a discrete version of the Prékopa-Leindler
inequality.

Keywords: log-concave sequence, Krein-Milman, localization lemma, four function the-
orem, concentration inequality

1 Introduction

A sequence of positive numbers p = {p0, p1, . . . , pn} is called log-concave when it satisfies

p2i ≥ pi−1pi+1 (1)

for 1 ≤ i ≤ n− 1. Such sequences occur naturally in a multitude of contexts. In Probability
and Statistics log-concavity is of interest in its connection with notions of negative dependence
[32, 51, 9]. In Information Theory entropy maximizers among log-concave random variables
have been studied in [33, 34, 46]. Important sequences in Combinatorics are log-concave
(or conjectured to be log-concave) see [58, 60, 62, 56, 12, 30] for some examples. Many
log-concave sequences are proven such by the following result that goes back to Newton. If
{pi}mi=0 is a positive sequence of numbers such that P (x) =

∑m
i=0

(m
i

)
pix

i is a polynomial
with real zeros, then the sequence pi is log-concave. In fact, positive sequences that produce
real rooted polynomials in the manner described is a strictly stronger condition than usual
log-concavity. Such sequences are referred to as Pólya frequency sequences, or real-rooted
and are log-concave with respect to a binomial reference measure as we will describe later in
this article. See [52] for probabilistic implications of a sequence being real-rooted.
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The Alexandrov-Fenchel inequality [57, Theorem 7.3.1] provides another interesting source
of log-concave sequences. It is essentially due to Minkowski that the volume of convex bodies
is a homogeneous polynomial. More explicitly, for compact convex sets K1 and K2 in R

d and
t1, t2 ≥ 0, there exist coefficients Vi(K1,K2) such that

|t1K1 + t2K2|d =
d∑

i=0

(
d

i

)
Vi(K1,K2)t

d−i
1 ti2,

where
A+B = {a+ b : a ∈ A, b ∈ B}

denotes the Minkowski sum of subsets A,B ⊂ R
d, and | · |d denotes the usual d-dimensional

Lebesgue measure. The Alexandrov-Fenchel inequality implies that the “mixed volumes”
Vi(K1,K2) form a log-concave sequence. We direct the reader to [44, 2, 22] for investigations
of mixed volumes, in particular “intrinsic volumes”, with applications to learning theory.

Discrete log-concave random variables, those given by a log-concave probability mass func-
tion, are a convolution stable class containing many fundamental discrete distributions, such
as Bernoulli, binomial, geometric, hypergeometric, and Poisson distributions. For further
background on log-concavity see the survey papers [61, 10, 55, 11].

In this article we will pursue geometric and functional inequalities for the class of log-
concave probability sequences. In particular we establish dilation inequalities for discrete
log-concave probability measures in the form of Nazarov, Sodin and Volberg [48] (see also
[8], [17]). More precisely, we prove in Theorem 3.10 that if µ is a log-concave probability
measure and A ⊂ K, where K ⊂ Z is a (possibly infinite) interval, then for all δ ∈ (0, 1),

µ(A) ≥ µδ(Aδ)µ
1−δ(K), (2)

where Aδ is defined in Definition 3.9. We derive a functional version of (2), that for f : K → R

and ε > 0

µ({|f | > λε}) ≥ µδ({|f | ≥ λ}), (3)

where δ = δf (ε) denotes the “modulus of regularity” of f . As a corollary we attain small
and large deviation inequalities for functions of log-concave random variables (see Corollary
3.16). Moreover we demonstrate that these inequalities reduce to sharp inequalities in the
special case f(x) = x. That is for X log-concave on {1, 2, . . . } with median Med(X) and
t > 1,

P(X > Med(X)t) ≤ e− log(2)t/2, P(X ≤ Med(X)/t) ≤ 1− e−2 log(2)/t.

An important reduction in the proof of the dilation inequality is obtained through iden-
tifying the extreme points of a half-space slice of the log-concave sequences to be log-affine
sequences. This phenomena of constrained optimization for “concave measures” reducing to
constrained optimization for “affine measures” is well known in the continuous setting. It can
be understood as a discrete analogue of the localization technique [43, 35, 18, 19, 15, 5, 6, 38]
utilized in Asymptotic Convex Geometry and Computer Science for proving isoperimetric
and concentration type inequalities (see, e.g., [43, 14, 35, 25, 48, 49, 3, 17, 4]), improving the
algorithmic complexity of computing the volume of convex bodies (see, e.g., [43, 35, 36, 13]),
and in particular making progress towards the solution of the Kannan-Lovász-Simonovits
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(KLS) conjecture (see [40, 41]). However, in contrast to the continuous setting, this ap-
proach is general, and can be used with respect to an arbitrary reference measure, not just
the counting measure as would be anticipated from the continuous theory. More precisely,
we prove that

sup
PX∈Ph(JM,NK)

Φ(PX)

is attained at the distribution of a random variable X whose probability mass function is
log-affine. Here, PX denotes the distribution associated with a random variable X, Φ is
an arbitrary convex function on Ph(JM,NK) the set of all discrete log-concave distributions
PX supported on {M, . . . ,N}, M,N ∈ Z, satisfying E[h(X)] ≥ 0 for an arbitrary function
h : {M, . . . ,N} → R. As mentioned above, a more general statement involving log-concavity
with respect to an arbitrary reference measure is also available (see Corollary 2.13).

We will discuss several other applications of our methods. For example, we obtain a Four
Function theorem, which asserts that the inequality

E[f1(X)]αE[f2(X)]β ≤ E[f3(X)]αE[f4(X)]β

holds for all X log-concave random variable with respect to a reference measure γ if and
only if it holds for all log-affine random variable with respect to γ, where f1, f2, f3, f4 are
nonnegative functions and α, β > 0 (Theorem 3.1). We provide a simple proof of Walkup’s
theorem on the stability of the convolution of ultra log-concave sequences (Corollary 3.4),
and other convolution type inequalities (Corollaries 3.5 and 3.7). We also establish a discrete
Prékopa-Leindler inequality in Theorem 3.8. If f and g are nonnegative unimodal functions
on Z and µ is a discrete log-concave measure, then the following discrete Prékopa-Leindler
inequality holds

∫
f�tg(z)dµ(z) ≥

(∫
f(z)dµ(z)

)1−t(∫
g(z)dµ(z)

)t

, (4)

where f�tg(z) = sup{(x,y):|(1−t)x+ty−z|<1} f
1−t(x)gt(y). We will demonstrate how this in-

equality complements recent progress on Prékopa-Liendler inequalities in the discrete setting
(see [39, 27, 24, 59]). In particular (4) applied to indicators will be crucial in establishing the
dilation inequality (2).

This article can also be viewed as part of the recent trend on the so-called “discretization
of convex geometry” where one wants to translate results from convex geometry to the discrete
setting. Recent developments include discrete analogue of the Brunn-Minkowski inequality
(see, e.g., [21, 50, 39, 27, 31, 24, 59]), discrete analogue of Koldobsky’s slicing inequality (see
[1]), discrete analogue of Aleksandrov’s theorem (see [54]).

The paper is organised as follows. In Section 2, we review the background on general-
ized log-concave random variables, and give examples of such classes of variables from the
literature. We then characterize the extreme points of half slices of the space of log-concave
sequences and recall how the Krein-Milman theorem can be used to reduce constrained op-
timization problems in this context. All applications are given in Section 3. We start by
recovering a “four function theorem”, popular in the continuous setting [35], and then give
simple proofs of several convolution inequalities by Fekete-Pólya, Keilson-Gerber, and Hog-
gar [16, 37, 29], Walkup [63], Klartag-Lehec [39], and Gurvits [26]. We then prove a discrete
Prékopa-Leindler inequality, and utilize it in the subsequent dilation inequality in Theorem
3.10, which is followed by its functional corollaries. We close the paper deriving large and
small deviation inequalities in terms of quantiles.
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2 Characterization of Extreme Points

Throughout, Z denotes the set of integers equipped with its usual Euclidean structure | · |.
For a, b ∈ Z such that a ≤ b, let us denote Ja, bK = {x ∈ Z : a ≤ x ≤ b}, and for n ∈ N, let us
denote JnK = J0, nK. We will also use Ja, bJ to denote {x ∈ Z : a ≤ x < b}, Ka, bK to denote
{x ∈ Z : a < x ≤ b}, and so on.

Definition 2.1. A function f : Z → [0,∞) is log-concave when it satisfies

f2(n) ≥ f(n− 1)f(n + 1) (5)

for all n ∈ Z and for all a ≤ b, a, b ∈ {f > 0} implies Ja, bK ⊆ {f > 0}.

Definition 2.2. A function f : Z → [0,∞) is log-affine if it satisfies

f2(n) = f(n− 1)f(n + 1) (6)

when n− 1, n, n + 1 ∈ {f > 0} and has contiguous support.

We now introduce the class of integer valued random variables that we will work with.
First, let us recall that the probability mass function (p.m.f.) associated with an integer
valued random variable X is

p(n) = P(X = n), n ∈ Z.

For an integer valued measure γ with mass function q, defined as q(n) = γ({n}), n ∈ Z, and
a random variable X with p.m.f. p, we will call p.m.f. of X with respect to γ the ratio

f(n) =
p(n)

q(n)
, n ∈ Z,

which equals 0 when q(n) = 0 by convention.

Definition 2.3 (Generalized log-concave random variables). Let γ be an integer valued mea-
sure with a contiguous support on Z. A random variable X on Z is log-concave with respect
to γ when its p.m.f. with respect to γ is a log-concave function.

Example 2.4 (log-concave random variables). The class of discrete log-concave random
variables corresponds to taking γ to be the counting measure, that is, with mass function
q ≡ 1. In particular, log-concave random variables are those with a log-concave p.m.f.

Most fundamental discrete random variables fall into the class of log-concave random
variables. For example, Bernoulli, binomial, geometric, hypergeometric, and Poisson random
variables are all log-concave.

The following sub-class of discrete log-concave random variables can be seen as an ana-
logue of the strongly log-concave random variables in the continuous setting (that is, log-
concave with respect to a Gaussian).

Example 2.5 (Ultra-log-concave random variables [51]). A random variable X on N is ultra
log-concave when its p.m.f. with respect to γ, the law of a Poisson distribution, is log-concave.

Note that an ultra-log-concave random variable has a contiguous support and a probability
mass function p satisfying the following inequality

p2(n) ≥ n+ 1

n
p(n+ 1)p(n− 1), n ≥ 1.
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Example 2.6 (Ultra-log-concave random variables of order m [51]). A random variable X
on N is ultra log-concave of order m when its p.m.f. with respect γ, the law of a Binomial
distribution B(m, 1/2), is log-concave. Stated quantitatively, this corresponds to X supported
on JmK and its mass function p satisfies

p2(n) ≥ (n+ 1)(m − n+ 1)

n(m− n)
p(n+ 1)p(n− 1).

Note that (n+1)(m−n+1)
n(m−n) is decreasing in m, so that the class of ultra-log-concave variables

of order m is contained in the ultra-log-concave variables of order m′, for m′ ≥ m. Taking the
limit m → ∞ we obtain the ultra-log-concave variables. As mentioned in the introduction, it
is a classical result going back to Newton (see [61] for a proof), that if bi denote the coefficients
of a degree m polynomial P (x) with real zeros, then the sequence bi is ultra log-concave of
order m.

Example 2.7 (q-factor log-concavity [45]). A random variable X on N is q-factor log-concave
(or q-weighted log-concave [64]) for q > 0 when its p.m.f. with respect to the measure γ({n}) =
q−n2/2 is log-concave. This is equivalent to the statement that on its contiguous support the
mass function p satisfies

p2(n) ≥ qp(n+ 1)p(n − 1).

We next describe the class of log-affine random variables.

Definition 2.8 (Generalized log-affine random variables). Let γ be an integer valued measure
with a contiguous support on Z and mass function q. A random variable X on Z with p.m.f.
p is log-affine with respect to γ when p

q is a log-affine function.

The next simple proposition characterizes log-affine random variables.

Proposition 2.9. If X, with p.m.f. p, is log-affine with respect to γ, with mass function q,
then for all n ∈ {p > 0},

p(n) = Cλnq(n),

for some constants C > 0 and λ ≥ 0.

Proof. One has {p > 0} = Ja, bK, with −∞ ≤ a ≤ b ≤ +∞. Since X is log-affine with respect
to γ, we have

r(n)

r(n− 1)
=

r(n+ 1)

r(n)
,

where r(n) = p(n)/q(n). The ratio being constant, we deduce that r(n) = λ r(n− 1), where
λ = r(a+ 1)/r(a). Hence, p(n) = Cλnq(n), with C = r(a)/λa.

We will now describe the extreme points of a class of discrete log-concave probability
distributions satisfying a linear constraint. As in the continuous setting, those will be log-
affine on their support.

Let us denote by P(Z) the set of all probability measures supported on Z. For M,N ∈ Z,
let us denote by P(JM,NK) the set of all probability measures supported on JM,NK. Let γ
be a measure with contiguous support on Z, and let h : JM,NK → R be an arbitrary function.
Let us consider Pγ

h (JM,NK) the set of all distributions PX in P(JM,NK), log-concave with
respect to γ, and satisfying E[h(X)] ≥ 0, that is,

Pγ
h (JM,NK) = {PX ∈ P(JM,NK) : X log-concave with respect to γ, E[h(X)] ≥ 0}.
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Recall that the convex hull of a set A ⊂ R
d, denoted by conv(A), is the smallest convex

set containing A, and recall that a point p is extremal in a convex set C ⊂ R
d if for all

λ ∈ (0, 1) and all x, y ∈ C, if p = (1 − λ)x + λy then p = x = y. We claim that if PX is
an extreme point of Conv(Pγ

h (JM,NK)) then its p.m.f. f with respect to γ is of the form
f(n) = Cpn on a contiguous interval.

Theorem 2.10. If PX ∈ Conv(Pγ
h (JM,NK)) is an extreme point, then f , the p.m.f. of X

with respect to γ, satisfies
f(n) = Cpn1Jk,lK(n), (7)

for some C, p > 0, k, l ∈ JM,NK.

The arguments in the proof are analogous to the continuous setting (see [18]). Before
proving Theorem 2.10, we establish an intermediary lemma.

Lemma 2.11. If f, g : N → [0,+∞) are log-concave then the function f ∧ g is log-concave,
where (f ∧ g)(n) = min{f(n), g(n)}. If we further assume that g is log-affine, then (f − g)+
is log-concave as well, where (f − g)+ = max(0, f − g).

Proof. Clearly f ∧ g has contiguous support. Hence it suffices to prove (f ∧ g)2(n) ≥ (f ∧
g)(n − 1)(f ∧ g)(n + 1). Since g2(n) ≥ g(n − 1)g(n + 1) ≥ (f ∧ g)(n − 1)(f ∧ g)(n + 1), and
similarly f2(n) ≥ (f ∧ g)(n − 1)(f ∧ g)(n + 1), we have

(f ∧ g)2(n) ≥ (f ∧ g)(n − 1)(f ∧ g)(n + 1).

Assume now that g is log-affine. If f ≤ g there is nothing to prove, so suppose that (f−g)(n) >
0. If f(n± 1) ≤ g(n± 1) the inequality (f − g)2+(n) ≥ (f − g)+(n− 1)(f − g)+(n+ 1) holds
immediately. Else, log-concavity of f and affineness of g,

(f − g)(n) ≥
√
f(n+ 1)f(n− 1)−

√
g(n+ 1)g(n − 1)

≥
√
(f − g)+(n− 1)(f − g)+(n+ 1),

where we have used the fact that Minkowski’s inequality for Lp norms reverses when p ≤ 1
and that (x1, x2) 7→ √

x1x2 corresponds to p = 0. It remains to show that (f − g)+ has
contiguous support. Let n ≥ 1 such that f(n− 1) > g(n− 1) while f(n) ≤ g(n), then for any
k ≥ 1

g(n + k)

g(n + k − 1)
=

g(n)

g(n− 1)
>

f(n)

f(n− 1)
≥ f(n+ k)

f(n+ k − 1)
,

where the last inequality follows from log-concavity of f . Thus

f(n+ 1) =
f(n+ 1)

f(n)
f(n) <

g(n + 1)

g(n)
f(n) ≤ g(n + 1)

g(n)
g(n) = g(n+ 1).

Inductively, it follows that for all k ≥ 0, f(n + k) ≤ g(n + k). Hence, if m,n ∈ N are such
that m ≤ n and (f − g)+(m), (f − g)+(n) > 0, then for all k ∈ Jm,nK, (f − g)+(k) > 0.

Proof of Theorem 2.10. By a translation argument, one may assume that M = 0, thus we
work on N the set of natural numbers. Suppose that PX ∈ Conv(Pγ

h (JNK)) is an extreme
point, and let f be the p.m.f. of X with respect to γ. Choose k such that f(k) > 0. For
α ∈ R define gα(m) = f(k)eα(m−k)/2. Since gα is log-affine, the functions (f − gα)+ and
f ∧ gα are non-zero log-concave functions by Lemma 2.11.
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Note that

lim
α→+∞

(f − gα)+(m) = δk(m)
f(k)

2
+ 1J0,k−1K(m)f(m), (8)

lim
α→−∞

(f − gα)+(m) = δk(m)
f(k)

2
+ 1Jk+1,NK(m)f(m), (9)

while

lim
α→+∞

(f ∧ gα)(m) = δk(m)
f(k)

2
+ 1Jk+1,NK(m)f(m),

lim
α→−∞

(f ∧ gα)(m) = δk(m)
f(k)

2
+ 1J0,k−1K(m)f(m).

Let us take the above limits as the definitions of (f − g±∞)+ and f ∧ g±∞. Note also that

f = (f − gα)+ + f ∧ gα. (10)

Define, for α ∈ [−∞,∞], Xi(α), i ∈ {1, 2}, as random variables with p.m.f. with respect to
γ given by

dPX1(α) = C−1
1 (α)(f − gα)+dγ, dPX2(α) = C−1

2 (α)(f ∧ gα)dγ,

where C1(α) =
∫
(f − gα)+dγ and C2(α) =

∫
(f ∧ gα)dγ. Then by (10), PX can be written as

a convex combination of the PXi(α),

PX = C1(α)PX1(α) + C2(α)PX2(α). (11)

Observe from (8) that

PX1(+∞) = PX2(−∞), PX1(−∞) = PX2(+∞). (12)

Define Ψ: [−∞,∞] → R by

Ψ(α) = E[h(X1(α))] − E[h(X2(α))].

Note that Ψ is continuous, and Ψ(−∞) = −Ψ(∞) by (12). Thus by the intermediate value
theorem, there exists α∗ such that Ψ(α∗) = 0. Since E[h(X)] ≥ 0, we deduce from (11) that
PXi(α∗) ∈ Pγ

h (JNK).
Now, since PX is extreme in Conv(Pγ

h (JNK)), we have PX1(α∗) = PX2(α∗) = PX , which
implies

f =
(f − gα∗)+
C1(α∗)

=
f ∧ gα∗

C2(α∗)
,

and thus f = C−1
2 (α∗)gα∗ . Hence X is log-affine with respect to γ.

Remark 2.12. • Note that on the support of an extreme point PX ∈ Conv(Pγ
h (JNK)), with

p.m.f. p, the function Λ(x) =
∑x

n=0 h(n)p(n) must never switch signs. If h is of constant
sign, then this is obvious. Assume h is not of constant sign, and assume without loss of
generality that there exists k ∈ JN − 1K such that Λ(k) ≥ 0 and Λ(k + 1) < 0, then define for
t ∈ [0, 1] and n ∈ JNK,

p1,t(n) =
p(n)1J0,kK(n) + tp(k + 1)δk+1(n)

PX(J0, kK) + tp(k + 1)
,
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p2,t(n) =
p(n)1Jk+2,NK(n) + (1− t)p(k + 1)δk+1(n)

PX(Jk + 2, NK) + (1− t)p(k + 1)
.

Note that PX must give positive measure to Jk+2, NK or else 0 > Λ(k+1) = Λ(N) = E[h(X)],
which is a contradiction. Now define Ψ(t) =

∑N
n=0 h(n)p1,t(n). By the conditions on Λ,

Ψ(0) ≥ 0 while Ψ(1) < 0, thus there exists t∗ ∈ [0, 1] such that Ψ(t∗) = 0. From this we can
split PX as

PX = (1− λ)PX1 + λPX2 ,

where X1 has p.m.f. p1,t∗, X2 has p.m.f. p2,t∗, and λ = PX(Jk+2, NK)+(1−t)p(k+1) ∈ (0, 1).
Since PX1 ,PX2 ∈ Pγ

h (JNK), this is a contradiction to the extremality of PX .

• Let us also note that a non-Dirac extreme point PX ∈ Conv(Pγ
h (JNK)) satisfies

E[h(X)] = 0.

Indeed, denote Λ(x) =
∑x

n=0 h(n)p(n) for x ∈ JNK, and assume towards a contradiction that
Λ(N) = E[h(X)] > 0. Denote by m the smallest element in JNK such that Λ(m) > 0. By the
previous remark, Λ ≥ 0, hence for all x < m, Λ(x) = 0. It follows that Λ(m) = p(m)h(m) >
0, and thus p(m) > 0. Now, define for t ∈ (0, 1),

p1,t(n) =
p(n)1J0,m−1K(n) + tp(m)δm(n)

PX(J0,m− 1K) + tp(m)
,

p2,t(n) =
p(n)1Jm+1,NK(n) + (1− t)p(m)δm(n)

PX(Jm+ 1, NK) + (1− t)p(m)
,

and we can split PX for t close enough to 0.

Theorem 2.10 tells us that if we want to maximize a convex function over Pγ
h (JM,NK), it

is enough to check probability distributions that are log-affine on a segment:

Corollary 2.13. Let Φ: Pγ
h (JM,NK) → R be a convex function. Then

sup
PX∈Pγ

h (JM,NK)

Φ(PX) ≤ sup
PX∈Aγ

h(JM,NK)

Φ(PX),

where Aγ
h(JM,NK) is the subset of Pγ

h (JM,NK) whose p.m.f. with respect to γ is of the form
f(n) = Cpn1Jk,lK(n), for some C, p > 0 and k, l ∈ JM,NK.

In the next corollary we demonstrate that the identification of extreme points can be used
to derive a discrete analogue of the original localization lemma of Lovász and Simonovits [35].
First, introduce the notations

L(γ) = {µ ∈ P(Z), µ log-concave with respect to γ}, (13)

A(γ) = {µ ∈ P(Z), µ log-affine with respect to γ}. (14)

Corollary 2.14. For µ a measure on Z, log-concave with respect to a reference measure γ,
and f, g : Z → R, belonging to ℓ1(µ) such that

∑

i

f(i)µ(i) > 0 and
∑

i

g(i)µ(i) > 0,

there exists a probability measure ν with finite support, log-affine with respect to γ, such that
∑

i

f(i)ν(i) > 0 and
∑

i

g(i)ν(i) > 0.
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Proof. For large enough M ,

M∑

i=−M

f(i)µ̃(i) > 0 and
M∑

i=−M

g(i)µ̃(i) > 0,

where µ̃ is the normalized restriction of µ to J−M,MK, explicitly µ̃(A) := µ(A∩J−M,MK)
µ(J−M,MK) .

Taking h = g −∑M
i=−M g(i)µ̃(i), one has µ̃ ∈ Pγ

h (J−M,MK), and by Corollary 2.13 the
maximum of Φ: Pγ

h (J−M,MK) → R, defined as

Φ(σ) =

M∑

i=−M

f(i)σ(i),

occurs at an extreme point ν. In this case

M∑

i=−M

h(i)ν(i) =
M∑

i=−M

g(i)ν(i) −
M∑

i=−M

g(i)µ̃(i) ≥ 0

so that
∑M

i=−M g(i)ν(i) > 0. Further

Φ(ν) ≥ Φ(µ̃) > 0

implies that
∑M

i=−M f(i)ν(i) > 0 as well.

3 Applications

In this section, we discuss applications of our techniques in the discrete setting.

3.1 A Discrete Analogue of the KLS Lemma for Four Functions

Theorem 3.1. Given f1, f2, f3, f4 nonnegative functions, and α, β > 0, then the inequality

E[f1(X)]αE[f2(X)]β ≤ E[f3(X)]αE[f4(X)]β (15)

holds for all X log-concave random variable with respect to γ if and only if it holds for all
log-affine random variable with respect to γ on a segment.

Proof. One direction is immediate. For the other direction, given X log-concave with respect
to γ, it is enough to prove that E[f1(X)]αE[f2(X)]β ≤ (E[f3(X)] + ε)α E[f4(X)]β holds for
all ε > 0. By an approximation argument, one may assume that X is compactly supported,
say on JM,NK. Writing f̃3 = f3 + ε, and

Φ(PZ) =

(
E[f1(X)]

E[f̃3(X)]

)α
β

E[f2(Z)]− E[f4(Z)],

we wish to show that Φ(PX) ≤ 0. Defining h = E[f̃3(X)]f1 − E[f1(X)]f̃3, for every PY ∈
Pγ
h (JM,NK) log-affine with respect to γ, one has

Φ(PY ) =

(
E[f1(X)]

E[f̃3(X)]

)α
β

E[f2(Y )]− E[f4(Y )]
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≤
(
E[f1(Y )]

E[f̃3(Y )]

)α
β

E[f2(Y )]− E[f4(Y )]

≤ 0,

where the first inequality comes from the fact that E[h(Y )] ≥ 0 and the second inequality
from the fact that (15) holds for all log-affine distribution. Since PX ∈ Pγ

h (JM,NK),we deduce
by Corollary 2.13 that Φ(PX) ≤ 0.

The next result is a consequence of Theorem 3.1 and tells us that the class of discrete
log-concave distributions with respect to a reference measure is closed under convolution if
and only if the convolution of log-affine distributions are log-concave with respect to that
reference measure. Recall that for functions f, g : Z → R, their convolution is defined as

(f ∗ g)(k) =
+∞∑

n=−∞
f(n)g(k − n), k ∈ Z.

For A,B ⊂ P(Z), we will use the notation A ∗B = {µ ∗ ν : µ ∈ A, ν ∈ B}, where for µ with
p.m.f. f and ν with p.m.f. g, (µ ∗ ν)({k}) = (f ∗ g)(k) for all k ∈ Z. Recall the notations
(13) and (14).

Corollary 3.2. We have L(γ) ∗ L(γ) ⊆ L(γ) if and only if A(γ) ∗ A(γ) ⊆ L(γ).

Proof. Denote by q the mass function of γ. Suppose that A(γ) ∗ A(γ) ⊆ L(γ), we will first
show that L(γ) ∗ A(γ) ⊆ L(γ). Given µ ∈ A(γ) with p.m.f. f and ν ∈ L(γ) with p.m.f. g,
we wish to show that for a fixed k

(
f ∗ g
q

)2

(k) ≥ f ∗ g
q

(k + 1)
f ∗ g
q

(k − 1). (16)

Define f1(x) = f2(x) = f(k − x), f3(x) =
q2(k)

q(k+1)q(k−1)f(k + 1− x), f4(x) = f(k − 1− x) and

α = β = 1, then (16) is equivalent to

E[f1(Y )]E[f2(Y )] ≥ E[f3(Y )]E[f4(Y )], (17)

and since (16) holds whenever g is log-affine with respect to γ, (17) holds whenever Y is
log-affine as well. Thus by Theorem 3.1, (17) holds for all Y log-concave with respect to γ,
equivalently, (16) holds for all g ∈ L(γ). Thus f ∗ g ∈ L(γ) if f, g ∈ L(γ) and at least one of
f and g is an element of A(γ). Repeating the same argument assuming only that f ∈ L(γ)
completes the proof.

We can thus give a direct simple computational argument of the fact that log-concave
sequences are stable under convolution [16], as well as Walkup’s theorem on the stability
under convolution of ultra log-concave sequences [63].

Corollary 3.3 (Fekete [16]). For p and q log-concave sequences, p ∗ q is log-concave as well.

Proof. By Corollary 3.2 and homogeneity it suffices to prove the result when p(n) = pn1A(n)
and q(m) = qm1B(m) where p, q > 0 and A,B are integer intervals. One can express
(p ∗ q)2(k) ≥ (p ∗ q)(k + 1) (p ∗ q)(k − 1) as

∑

n,m

p(n)p(m)q(k − n)q(k −m) ≥
∑

n,m

p(n)p(m)q(k + 1− n)q(k − 1−m),

10



which after change of variable l = m+ n gives

q2k
∑

l

(
p

q

)l∑

n

1A′∩B′(n) ≥ q2k
∑

l

(
p

q

)l∑

n

1A′∩(B′+1)(n),

where A′ = A∩ [l−A] and B′ = [k−B]∩ [l− (k−B)]. The result then follows from observing
that A′ and B′ are both intervals symmetric about l/2.

Corollary 3.4 (Walkup [63]). For p and q ultra log-concave sequences, p ∗ q is ultra log-
concave as well.

Proof. By Corollary 3.2 and homogeneity, it suffices to consider

p(n) =
pn

n!
1[a,b](n), q(n) =

qn

n!
1[c,d](n).

Their convolution is

(p ∗ q)(k) = qn

n!
h(k),

where

h(k) :=

b∧(k−c)∑

n=a∨(k−d)

(
k

n

)
Rn,

and R = p/q. To prove that p ∗ q is ultra log-concave, it is enough to check that h is log-
concave in k, for all R > 0, a, b, c, d ∈ N, with the convention

(k
n

)
= 0 if n < 0 or n > k. By

the commutative property of convolution, p ∗ q = q ∗ p, the log-concavity of h can be reduced
to the following 3 inequalities,

[
b∑

n=a

(
k

n

)
Rn

]2
≥

b+1∑

n=a

(
k + 1

n

)
Rn

b−1∑

n=a

(
k − 1

n

)
Rn,

[
b∑

n=a

(
k

n

)
Rn

]2
≥

b∑

n=a+1

(
k + 1

n

)
Rn

b∑

n=a−1

(
k − 1

n

)
Rn,

[
b∑

n=a

(
k

n

)
Rn

]2
≥

b+1∑

n=a+1

(
k + 1

n

)
Rn

b−1∑

n=a−1

(
k − 1

n

)
Rn. (18)

The above three inequalities can all be established in the same way via the elementary Pascal
identity (

k

n

)
=

(
k − 1

n

)
+

(
k − 1

n− 1

)
. (19)

For the reader convenience, we present the argument for the last inequality (18). Let us
denote, for 0 ≤ a ≤ b ≤ k,

ha,b(k) =
b∑

n=a

(
k

n

)
Rn.

Using Pascal identity (19), note that

ha,b(k) = (R+ 1)ha−1,b−1(k − 1) +

(
k − 1

b

)
Rb −

(
k − 1

a− 1

)
Ra−1. (20)
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Therefore,

ha,b(k)
2 − ha+1,b+1(k + 1)ha−1,b−1(k − 1)

= ha,b(k)

[
(R+ 1)ha−1,b−1(k − 1) +

(
k − 1

b

)
Rb −

(
k − 1

a− 1

)
Ra−1

]

−ha−1,b−1(k − 1)

[
(R+ 1)ha,b(k) +

(
k

b+ 1

)
Rb+1 −

(
k

a

)
Ra

]

= ha,b(k)

[(
k − 1

b

)
Rb −

(
k − 1

a− 1

)
Ra−1

]
− ha−1,b−1(k − 1)

[(
k

b+ 1

)
Rb+1 −

(
k

a

)
Ra

]

=

b∑

n=a

[(
k − 1

n− 1

)(
k

a

)
−
(
k

n

)(
k − 1

a− 1

)]
Rn+a−1 +

b∑

n=a

[(
k

n

)(
k − 1

b

)
−
(
k − 1

n− 1

)(
k

b+ 1

)]
Rn+b.

Since a ≤ n ≤ b, each term in the summation is non-negative by direct calculation.

To emphasize the strength of our techniques, we present a simple proof of the following
Walkup-type theorem established by Klartag and Lehec in [39]. Recall that a function f : Z →
[0,∞) is unimodal when m ≤ k ≤ n implies

f(k) ≥ min{f(m), f(n)}.

Corollary 3.5 (Klartag-Lehec [39]). If {ak}k≥0 is a log-concave sequence then the sequence
{ck}k≥0 defined by

ck =
∑

n≥k

(
n

k

)
an

is log-concave as well.

Proof. Recall the convention
(n
k

)
= 0 if k < 0 or k > n. We also use the convention that(n

k

)
= 0 if n is not an integer. By Theorem 3.1 and homogeneity, it is enough to consider

an = pn1[a,b](n). In this case, after a change of variable, the inequality c2k ≥ ck−1ck+1 can be
expressed as

∑

l∈N
pl




b∧(l−a)∑

n=a∨(l−b)

(
n

k

)(
l − n

k

)
 ≥

∑

l∈N
pl




b∧(l−a)∑

n=a∨(l−b)

(
n

k − 1

)(
l − n

k + 1

)
 .

Fixing l ≥ 0 and assuming without loss of generality that a ≥ l− b, it is enough to prove that

F (a) :=

l−a∑

n=a

[(
n

k

)(
l − n

k

)
−
(

n

k − 1

)(
l − n

k + 1

)]
≥ 0.

Note that F is constant outside the interval {k − 1, . . . , l/2}. We will conclude that F ≥ 0
by showing that F is unimodal, F (k − 1) = 0 and F (l/2) ≥ 0. Denote

f(n) =

(
n

k

)(
l − n

k

)
−
(

n

k − 1

)(
l − n

k + 1

)
, g(n) = f(n) + f(l− n).

First, note that if n ≥ l−1
2 , then f(n) ≥ 0. Hence, F (l/2) = f(l/2) ≥ 0. On the other hand,

applying the Chu-Vandermonde type identity

l∑

n=0

(
n

k

)(
l − n

s− k

)
=

(
l + 1

s+ 1

)
,
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we have

l−k+1∑

n=k−1

(
n

k

)(
l − n

k

)
=

l∑

n=0

(
n

k

)(
l − n

k

)
=

(
l + 1

2k + 1

)
=

l−k+1∑

n=k−1

(
n

k − 1

)(
l − n

k + 1

)
.

Therefore, F (k − 1) = 0. Next, note that

g(n) ≥ 0 ⇐⇒ 2

(
n

k

)(
l − n

k

)
−
(

n

k − 1

)(
l − n

k + 1

)
−
(
l − n

k − 1

)(
n

k + 1

)
≥ 0

⇐⇒ an2 + bn+ c ≥ 0,

with a = −2k+1
k − 2 < 0. Since g(n) = g(l − n), we deduce the existence of n0 ≤ l/2 such

that g(n) < 0 for n ≤ n0 and n ≥ l − n0, and g(n) ≥ 0 for n ∈ {n0 + 1, ..., l − n0 − 1}. In
fact, n0 ≥ k − 1 since we have seen that F (k − 1) = 0 and F (l/2) ≥ 0. It follows that F (a)
increases when a ∈ {k − 1, ..., n0} and F (a) decreases when a ∈ {n0 + 1, ..., l/2}, therefore F
is unimodal.

Remark 3.6. The above proof of Corollary 3.5 can be adapted to provide yet a second simple
proof of Walkup’s theorem. The slight difference consists in showing that

F̃ (a) :=

l−a∑

n=a

[(
k

n

)(
k

l − n

)
−
(
k − 1

n

)(
k + 1

l − n

)]
≥ 0,

which can be done with similar considerations via the standard Vandermonde identity.

The following inequality due to Gurvits was recently utilized by Havrilla, Nayar, and
Tkocz in [28], where an alternative and elementary proof is also given, to prove that for X

a symmetric random variable, being strongly log-concave, in the sense that fX(t) := Ee
√
tX

and all of fX ’s derivatives are log-concave in t, is equivalent to X being ultra sub-Gaussian
in the sense of [47]. Theorem 3.1 allows an even simpler proof.

Corollary 3.7 (Gurvits [26]). If (pn) is a log-concave sequence, then the power series f(t) :=∑
n=0

pn
n! t

n is log-concave in t ∈ (0,∞).

Proof. By approximation, it suffices to consider (pn) finite, and to prove that the power series
F := −f2(log f)′′ = (f ′)2 − ff ′′ ≥ 0. Using Theorem 3.1 it suffices to take pn = pn1A(n),
where A = Ja, bK. We will prove that F is non-negative by proving that its coefficients are
non-negative. Indeed,

F (t) =

∞∑

l=0

tl

[
pl+2

l!

∑

n∈Z

(
l

n

)(
1A(n+ 1)1A(l − n+ 1)− 1A(n)1A(l − n+ 2)

)]
. (21)

We observe that the coefficients of (21) are zero unless m := (a − 1) ∨ (l − (b − 1)) ≤ l
2 , in

which case,

∑

n∈Z

(
l

n

)(
1A(n+ 1)1A(l − n+ 1)− 1A(n)1A(l − n+ 2)

)
=

(
l

m

)
−
(

l

m− 1

)
≥ 0.
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3.2 Discrete Prékopa-Leindler Inequality

The classical Prékopa-Leindler inequality ([53], [42]) states that if t ∈ [0, 1] and f, g : Rd →
[0,+∞) are non-negative measurable functions such that

f�tg(z) = sup
{(x,y)∈R2d : z=(1−t)x+ty}

f1−t(x)gt(y)

is measurable, then

∫

Rd

f�tg(z)dz ≥
(∫

Rd

f(z)dz

)1−t(∫

Rd

g(z)dz

)t

. (22)

The Brunn-Minkowski inequality, fundamental in convex geometry (see, e.g., [20]), is
a geometric analogue of the Prékopa-Leindler inequality and states that if t ∈ [0, 1] and
A,B ⊂ R

d are measurable sets such that (1− t)A+ tB is measurable, then

|(1− t)A+ tB|
1
d
d ≥ (1− t)|A|

1
d
d + t|B|

1
d
d . (23)

There has been impressive recent progress on Prékopa-Leindler and Brunn-Minkowski
type inequalities on lattices. For example, Halikias-Klartag-Slomka [27] proved that

(
∑

x

f(x)

)(
∑

x

g(x)

)
≤
(
∑

x

h(x)

)(
∑

x

k(x)

)
(24)

for all functions f, g, h, k : Zd → [0,∞) and t ∈ [0, 1] such that

f(x)g(y) ≤ h(⌊tx+ (1− t)y⌋)k(⌈(1 − t)x+ ty⌉) (25)

holds for x, y ∈ Z
d, generalizing a result of Klartag-Lehec [39] (see also [24], [59]). Another

discrete Prékopa-Leindler type inequality was derived by Iglesias-Yepes Nicolás-Zvavitch in
[31]: Let t ∈ (0, 1) and let K,L ⊂ R

d be non-empty bounded sets. Let f, g, h : Rd → [0,+∞)
be functions such that

h((1− t)x+ ty) ≥ f(x)1−tg(y)t,

for all x ∈ K and y ∈ L. Then,

∑

z∈M∩Zd

h◦(z) ≥




∑

z∈K∩Zd

f(z)




1−t

∑

z∈L∩Zd

g(z)




t

, (26)

where M = (1− t)K + tL+ (−1, 1)n, and h◦(z) = sups∈(−1,1)n h(z + s).
In the literature, these inequalities are referred to as Brunn-Minkowski inequalities for

the geometric type results that can be deduced. However, a motivation going back to [50, 23]
for developing Prékopa-Leindler type inequalities in the discrete setting, and conspicuously
absent currently, was the potential to derive functional inequalities from these “geometric
inequalities”. In the continuous setting this is done through differentiating the Prékopa-
Leindler inequality at t = 0, requiring sharp control of the inequality for t → 0. Analogously,
the Euclidean isoperimetric inequality for example can be derived easily by differentiating the
Brunn-Minkowski inequality. Our contribution is somewhat modest in comparison to recent
developments, as it only applies to the one-dimensional case, and only to unimodal functions,
however it does capture the correct behavior for small t in cases that elude the previously
derived inequalities, as we will demonstrate at the end of this section.
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Theorem 3.8. Suppose that f and g are unimodal ℓ1(µ) functions for µ log-concave, then

∫
f�tg(z)dµ(z) ≥

(∫
f(z)dµ(z)

)1−t(∫
g(z)dµ(z)

)t

, (27)

where
f�tg(z) = sup

{(x,y)∈Z2 : |(1−t)x+ty−z|<1}
f1−t(x)gt(y).

Proof of Theorem 3.8. We will first prove the result in the special case that f and g are
indicators. Since f , g are unimodal indicator functions they can be written as f = 1Ja1,a2K

and g = 1Jb1,b2K for intervals contained in the support of µ. In this case we can write

f�tg(z) = 1JL1,L2K

with L1 = ⌊(1− t)a1 + tb1⌋ and L2 = ⌈(1− t)a2 + tb2⌉. To prove that
∫
f�tg(z)dµ(z) ≥(∫

f(z)dµ(z)
)1−t (∫

g(z)dµ(z)
)t
, if one applies Theorem 3.1 with α = 1 − t, β = t, f1 =

f, f2 = g, and f3 = f4 = f�tg then it suffices to prove the result when µ = ν is a log-
affine measure. By normalizing and translating, we may assume that a1, b1 ≥ 0 and that
ν(k) = pk for p ∈ (0, 1]. Note that if p = 1, the proof is an immediate computation, that
can alternatively be recovered from the p ∈ (0, 1) case, thus we further assume p < 1. In this
case we have

(∫
f(z)dν(z)

)1−t(∫
g(z)dν(z)

)t

=




a2∑

j=a1

pj




1−t


b2∑

j=b1

pj




t

= pa1(1−t)+b1t (1− pa2−a1+1)1−t(1− pb2−b1+1)t

1− p

≤ pa1(1−t)+b1t (1− t)(1− pa2−a1+1) + t(1− pb2−b1+1)

1− p

≤ pa1(1−t)+b1t 1− p(1−t)a2+tb2−(1−t)a1−tb1+1

1− p

≤ pL1
1− pL2−L1+1

1− p

=

∫
f�tg(z)dν.

The first two inequalities are by the arithmetic-geometric means inequality and the third is
by monotonicity.

Now let us assume that f and g take finitely many values all belonging to the support
of µ. In this case by unimodality f =

∑n
i=1 fi1Ai for fi > 0 and Ai intervals such that

Ai ⊆ Ai−1 while g =
∑m

j=1 gj1Bj for gj > 0 and Bj intervals such that Bj ⊆ Bj−1. We
proceed by induction, with the case m+n ≤ 2 complete we may assume that m+n = k and
that the desired inequality holds for functions f̃ and g̃ satisfying m̃ + ñ < k. Without loss
of generality, we may assume that n ≥ 2. Define FB =

∑n−1
i=1 fi1Ai and FT = fn1An , so that∫

FB(z)dµ(z) <
∫
f(z)dµ(z). Now define G

(λ)
B = min{g, λ}, and by the intermediate value

theorem, since
∫
G

(0)
B (z)dµ(z) = 0 and limλ→∞

∫
G

(λ)
B (z)dµ(z) =

∫
g(z)dµ(z) there exists
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λ0 ∈ (0,∞) such that

∫
G

(λ0)
B (z)dµ(z) =

∫
FB(z)dµ(z)∫
f(z)dµ(z)

∫
g(z)dµ(z).

Define GB = Gλ0
B and GT = g −GB . We now claim that

f�tg ≥ FB�tGB + FT�tGT .

To show this, observe that Supp(FT ) ⊆ {z : FB(z) = ‖FB‖∞} and Supp(GT ) ⊆ {z : GB(z) =
‖GB‖∞}, and that if FT�tGT (z) = 0 the result is immediate, as f ≥ FB and g ≥ GB

will imply f�tg(z) ≥ FB�tGB(z). Thus if FT�tGT (z) > 0 then there exist x, y such that
|(1 − t)x + ty − z| < 1 and F 1−t

T (x)G1−t
T (y) = FT�tGT (z). Further, x and y belong to

the respective supports of FT and GT , FB(x) = ‖FB‖∞ and GB(y) = ‖GB‖∞, so that
FB�tGB(z) = F 1−t

B (x)Gt
B(y). Computing,

FB�tGB(z) + FT�tGT (z) = F 1−t
B (x)Gt

B(y) + F 1−t
T (x)Gt

T (y)

≤ (FB(x) + FT (x))
1−t(GB(y) +GT (y))

t

= f1−t(x)gt(y)

≤ f�tg(z).

Thus
∫

f�tg(z)dz ≥
∫

FB�tGB(z)dµ(z) +

∫
FT�tGT (z)dµ(z).

Observe that FB , GB , FT and GT are all unimodal. Moreover, since FB and FT can both
be expressed in terms of a summation of nested indicators with strictly fewer than n terms,
and GB and GT can both be expressed in terms of a summation of nested indicators with no
more than m terms, both integrals satisfy the inductive hypothesis so that

∫
FB�tGB(z)dµ(z) +

∫
FT�tGT (z)dµ(z)

≥
(∫

FBdµ

)1−t(∫
GBdµ

)t

+

(∫
FTdµ

)1−t(∫
GT dµ

)t

=

(∫
fdµ

)1−t(∫
gdµ

)t

.

The case of arbitrary unimodal f, g is completed by considering f̃ , g̃ unimodal functions
taking finitely many values such that 0 ≤ f̃ ≤ f and 0 ≤ g̃ ≤ g, and observing that
f�tg ≥ f̃�tg̃, so that

∫
f�tg(z)dµ(z) ≥

∫
f̃�tg̃(z)dµ(z) ≥

(∫
f̃dµ

)1−t(∫
g̃dµ

)t

.

Taking the supremum over all such f̃ and g̃ on the right hand side completes the proof.

Our discrete Prékopa-Leindler inequality (27) is obviously the most similar looking form
of the classical Prekopa-Leindler inequality (22) compared to the other discrete Prékopa-
Leindler type inequalities existing in the literature. Let us also illustrate with an example
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on how the different Brunn-Minkowski inequalities capture behavior for small t: Applying
(24) when d = 1 to f(n) = 1A(n)µ(n), g(n) = 1B(n)µ(n), h(n) = 1⌊tA+(1−t)B⌋(n)µ(n), and
k(n) = 1⌈(1−t)A+tB⌉(n)µ(n), where A,B ⊆ Z, µ is a log-concave probability measure on Z,
and

⌊tA+ (1− t)B⌋ = {z ∈ Z : z = ⌊ta+ (1− t)b⌋, a ∈ A, b ∈ B},
⌈(1− t)A+ tB⌉ = {z ∈ Z : z = ⌈(1− t)a+ tb⌉, a ∈ A, b ∈ B},

one deduces that

µ(A)µ(B) ≤ µ(⌊tA+ (1− t)B⌋)µ(⌈(1 − t)A+ tB⌉). (28)

Consider A = J0,∞J, B = {0}, and µ(n) = t(1 − t)n for n ≥ 0, inequality (28) yields an
inequality growing more trivial as t tends to zero,

t ≤ 1.

Also, the same example with K = A and L = B, and f(z) = g(z) = h(z) = t(1− t)z for
z ≥ 0 in (26), so that M ∩ Z = A, and h◦(z) = t(1− t)z−1 for z ≥ 1 and h◦(0) = t , yields

tt ≤ 1 + t,

which is a non-optimal inequality as t tends to 0, and is growing more trivial as t tends to 1.
Meanwhile, Theorem 3.8 yields µ1−t(A)µt(B) ≤ µ(Mt(A,B)) where Mt(A,B) := {z ∈

Z : |z−(1− t)a+ tb| < 1, a ∈ A, b ∈ B}, which in this case is J0,∞J, and reduces to a stronger
inequality, which is moreover sharp for t close to zero or t close to 1:

tt ≤ 1.

3.3 Dilation Inequalities

The aim of this section is to establish a discrete analogue of a result of Nazarov-Sodin-Volberg
about dilation inequalities [48] (see also [7], [17]). As an application, we will obtain large and
small deviations inequalities for discrete log-concave random variables.

Recall the following definition in the continuous setting (see [7]): For a given measurable
set A of a convex set K ⊂ R

d and δ ∈ (0, 1),

Aδ = {z ∈ A : |A ∩∆|1 ≥ (1− δ)|∆|1, ∀ intervals ∆ ⊂ K such that z ∈ ∆}. (29)

We adapt this definition to the discrete setting. On Z, we consider a set ∆ to be an
interval when z1 ≤ z2 ≤ z3 in Z with z1, z3 ∈ ∆ implies z2 ∈ ∆. For an interval ∆ with a
point z ∈ ∆ we write ∆z = ∆ \ {z}.

Definition 3.9. For A ⊂ Z contained in an interval K ⊂ Z, and δ ∈ (0, 1), define

Aδ = {z ∈ A : |A ∩∆z| ≥ (1− δ)|∆z |, ∀ intervals ∆ ⊂ K such that z ∈ ∆},

where | · | denotes cardinality.
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For x, y ∈ Z we denote by ∆(x, y) = Kx, yK ∪ Jy, xJ, the interval between x and y, with x
removed. Let us note that in Definition 3.9, it suffices to check intervals ∆ of the form ∆(z, y).
Indeed if z ∈ ∆ is not an end point, then there exist x and y such that ∆z = ∆(z, x)∪∆(z, y)
and hence using the result for the restricted class, gives

|A ∩∆z| = |A ∩ (∆(z, x) ∪∆(z, y))|
= |A ∩∆(z, x)|+ |A ∩∆(z, y)|
≥ (1− δ)(|∆(z, x)| + |∆(z, y)|)
= (1− δ)|∆z |.

As an illustration of Definition 3.9, fix K = J0,+∞J and δ ∈ (0, 1), and consider A =
Ja,+∞J, for some a ≥ 1. Let z ∈ A. As noted above, one may only consider intervals of
the form ∆(z, y). Note that if y ≥ a, then |A ∩ ∆(z, y)| = |∆(z, y)|, and if y < a, then
|A∩∆(z,y)|
|∆(z,y)| = z−a

z−y , which is increasing in y. Therefore, one may take y = 0. In this case,
|A∩∆(z,y)|
|∆(z,y)| = z−a

z , which is increasing in z, and z−a
z ≥ 1− δ if and only if z ≥ a

δ . We conclude

that Aδ = J⌈aδ ⌉,+∞J.
If we fix a compact interval K ⊂ Z and consider all log-concave probability sequences

supported on K, to prove µ(A) ≥ µδ(Aδ), it suffices by Theorem 3.1 applied to f1 = 1,
f2 = 1A, f3 = 1Aδ

, and f4 = 1 with α = δ and β = 1, to prove the result for log-affine
random variables supported on K. Note that Aδ is implicitly dependent on the choice of K.
Let Aδ(K) denote Aδ defined in Definition 3.9 with the interval K. Notice that if K ⊂ K ′

then Aδ(K
′) ⊂ Aδ(K). Thus to prove that

µ(A) ≥ µδ(Aδ)

holds for all log-concave probability measures µ with support contained in an interval K, it
suffices to prove the result for log-affine probability measures µ such that the support of µ is
exactly K.

Theorem 3.10. Let µ be a discrete log-concave probability measure, let δ ∈ (0, 1), and let
A ⊂ K, where K is a (possibly infinite) interval, and Aδ taken with respect to K. Then,

µ(A) ≥ µδ(Aδ)µ
1−δ(K). (30)

Inequality (30) has been established for continuous log-concave measures (with the ap-
propriate definition (29)) in [48] (see also [7], [17]).

For the proof of Theorem 3.10, we will need an auxiliary function Ψ(x) = (1−x)δ−(1−x).
Observe that Ψ is concave on (0, 1) and non-negative since Ψ(0) = Ψ(1) = 0. Further
Ψ(x)
x is non-increasing, hence with x1, x2, x1 + x2 ∈ [0, 1] and with x1 ≤ x2 ≤ x1 + x2,

Ψ(x1+x2)
x1+x2

≤ Ψ(x2)
x2

≤ Ψ(x1)
x1

so that Ψ(x2+x1) ≤ Ψ(x2)+
x1Ψ(x2)

x2
≤ Ψ(x2)+Ψ(x1). Inductively,

for xi ∈ (0, 1) with
∑n

i=1 xi ≤ 1,

Ψ

(
n∑

i=1

xi

)
≤

n∑

i=1

Ψ(xi). (31)

Proof. Note that by approximation it suffices to consider the case that µ is supported on a
compact set. Further by restricting µ to the set K, by µ

∣∣
K
(B) = µ(B ∩K)/µ(K), it suffices

to assume that µ(K) = 1, and to prove

µ(A) ≥ µδ(Aδ). (32)
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By Theorem 3.1, it suffices to prove the result when µ is log-affine. Assume that Ac
δ = ∪n

i=0Ii
where Ii are disjoint intervals separated by at least one point. For concreteness, assume
max Ii ≤ min Ii+1 − 2, and that µ is supported on J0,mK with µ({k}) = 1−p

1−pm+1p
k with

p ∈ (0, 1). It suffices to prove

µ(A ∩ Ii) ≥ Ψ(µ(Ii)) (33)

for 0 ≤ i ≤ n. Indeed, subtracting by µ(Aδ), (32) is equivalent to

µ(A)− µ(Aδ) ≥ µδ(Aδ)− µ(Aδ)

= Ψ(µ(Ac
δ))

= Ψ

(
n∑

i=0

µ(Ii)

)
.

Applying (31), and assuming µ(A ∩ Ii) ≥ Ψ(µ(Ii)) holds for all i,

µ(A)− µ(Aδ) = µ(A ∩Ac
δ)

=
n∑

i=0

µ(A ∩ Ii)

≥
n∑

i=0

Ψ(µ(Ii))

≥ Ψ

(
n∑

i=0

µ(Ii)

)

= Ψ(µ(Ac
δ)).

To prove (33), first consider Ii = Ja, bK with a > 0. In this case, a − 1 ∈ Aδ so that by the
definition of Aδ, for all x ≥ a, |A ∩ Ja, xK| ≥ (1 − δ)|Ja, xK|. Recall the summation by parts
formula,

N∑

k=0

fkgk = fN

N∑

k=0

gk +

N−1∑

j=0

(fj − fj+1)

j∑

k=0

gk,

which we apply with fk = µ({a+ k}), gk = 1A(a+ k), and N = b− a,

µ(A ∩ Ii) =

b−a∑

k=0

µ({a+ k})1A(a+ k)

= µ({b})
b−a∑

k=0

1A(a+ k) +

b−a−1∑

j=0

(µ({a+ j}) − µ({a+ j + 1}))
j∑

k=0

1A(a+ k)

= µ({b})|A ∩ Ja, bK|+
b−a−1∑

j=0

(µ({a+ j}) − µ({a+ j + 1}))|A ∩ Ja, a+ jK|.

By |A ∩ Ja, xK| ≥ (1 − δ)|Ja, xK|, µ({a + j}) − µ({a + j + 1}) ≥ 0, and an application of
summation by parts again with the constant function 1 replacing gk = 1A(a+ k),

µ({b})|A ∩ Ja, bK|+
b−a−1∑

j=0

(µ({a+ j})− µ({a+ j + 1}))|A ∩ Ja, a+ jK|
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≥ (1− δ)


µ({b})|Ja, bK| +

b−a−1∑

j=0

(µ({a+ j}) − µ({a+ j + 1}))|Ja, a + jK|




= (1− δ)µ(Ja, bK).

Thus µ(A ∩ Ii) ≥ (1 − δ)µ(Ii) ≥ Ψ(µ(Ii)), where the second inequality follows from the
arithmetic-geometric means inequality,

Ψ(µ(Ii)) = (1− µ(Ii))
δ − (1− µ(Ii) ≤ δ(1 − µ(Ii)) + (1− δ) − (1− µ(Ii)) = (1− δ)µ(Ii).

Now suppose Ii = J0, b− 1K. Then the inequality we pursue is

µ(A ∩ Ii) ≥ µδ(Jb,mK)− µ(Jb,mK).

However, since |A ∩ Ii| ≥ (1 − δ)|Ii| = (1 − δ)b, and µ is decreasing, we have µ(A ∩ Ii) ≥
µ(J⌊δb⌋, b− 1K). Rearranging, it suffices to prove

µ(J⌊δb⌋,mK) ≥ µδ(Jb,mK).

However the above is equivalent to

µ(J⌊(1− δ)0 + δb⌋,mK) ≥ µδ(Jb,mK)µ1−δ(J0,mK),

which follows from Theorem 3.8 applied to indicator functions of intervals.

3.4 Large and Small Deviations Inequalities

In this section, we develop large and small deviations inequalities for discrete log-concave
random variables.

Recall the following definition in the continuous setting (see [7]): For a given measurable
function f on R

d and ε ∈ (0, 1),

δf (ε) = sup
x,y∈Rd

|{t ∈ (0, 1) : |f((1− t)x+ ty)| ≤ ε|f(x)|}|1.

We adapt this definition to the discrete setting.

Definition 3.11. For a (possibly infinite) interval K ⊂ Z and ε ∈ (0, 1), define the modulus
of regularity δf (ε) to a function f : K → R by

δf (ε) = sup
x 6=y

x,y∈K

|{z ∈ ∆(x, y) : |f(z)| ≤ ε|f(x)|}|
|∆(x, y)|

The next proposition illustrates Definition 3.11.

Proposition 3.12. For t > 1, f(x) = x, and K = Jm,∞J for m ≥ 1,

δf (1/t) ≤ Ψf (t) :=





1
t for t ≥ m

m−1
1

(t−1)m for t ∈ [m+1
m , m

m−1 ]

1 for t ∈ (1, m+1
m ]

.

In particular, δf (1/t) ≤ 2
t .
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Proof. Since δf ≤ 1 by definition, the inequality is trivial for t ≤ m+1
m and we can assume

that t > m+1
m . Note that

{z ∈ ∆(x, y) : |f(z)| ≤ ε|f(x)|} =
{
z ∈ ∆(x, y) : z ≤ x

t

}
,

is empty if x ≤ y or x < tm. Assume thereafter that y < x and tm ≤ x. In this case,

{
z ∈ ∆(x, y) : z ≤ x

t

}
=

r
y,
⌊x
t

⌋z
.

Hence,

δf (1/t) = sup
x,y

⌊xt ⌋ − y + 1

x− y
= sup

tm≤x

⌊xt ⌋ −m+ 1

x−m
≤ sup

tm≤x

x
t −m+ 1

x−m

as
⌊x
t
⌋−y+1

x−y is decreasing in y since ⌊xt ⌋+ 1 ≤ x.

Denote u(x) =
x
t
−m+1

x−m , and observe that u′(x) = t(m−1)−m
t(x−m)2

≥ 0 when t ≥ m
m−1 and

hence supu = limx→∞ u(x) = 1
t in this case. Meanwhile t ≤ m

m−1 implies u′(x) ≤ 0 so that

supu = u(tm) = 1
(t−1)m . This gives δf (1/t) ≤ Ψf (t).

Theorem 3.13. Let µ be a discrete log-concave probability measure supported on K ⊂ Z.
For all ε ∈ (0, 1), λ > 0, and f : K → R with modulus of regularity δ = δf (ε), we have

µ({|f | > λε}) ≥ µδ({|f | ≥ λ}).

Proof. Define A = {w : |f(w)| > λε}, and consider x such that f(x) ≥ λ. By the definition
of the modulus of regularity, for any y ∈ K,

|{z ∈ ∆(x, y) : |f(z)| ≤ ελ}| ≤ |{z ∈ ∆(x, y) : |f(z)| ≤ ε|f(x)|}| ≤ δ|∆(x, y)|. (34)

Since |{z ∈ ∆(x, y) : |f(z)| ≤ ελ}| + |{z ∈ ∆(x, y) : |f(z)| > ελ}| = |∆(x, y)|, rearranging
(34) gives

|{z ∈ ∆(x, y) : |f(z)| > ελ}| ≥ (1− δ)|∆(x, y)|.

Therefore {x : |f(x)| ≥ λ} ⊆ Aδ. Thus applying Theorem 3.10 we have

µ({|f | > λε}) = µ(A) ≥ µδ(Aδ) ≥ µδ({|f | ≥ λ}),

which is our conclusion.

We note that Theorem 3.13 implies Theorem 3.10 as can be seen by taking f taking no
more than three values, so the two theorems are in fact equivalent.

For q ∈ (0, 1), we consider mq to be a q-quantile of |f | with respect to a measure µ when
µ({|f | > mq}) ≤ q ≤ µ({|f | ≥ mq}).

Corollary 3.14. For a log-concave probability measure µ and |f | with q-quantile mq,

µ{|f | ≥ mqt} ≤ q1/δf (1/t)

holds for all t > 1.
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Proof. Taking t > 1, and applying Theorem 3.13 with λ = mqt and ε = 1
t , we have

q ≥ µ({|f | > mq}) = µ{|f | > λε} ≥ µδf (ε)({|f | ≥ λ}) = µδf (1/t)({|f | ≥ mqt}).

Corollary 3.15. For a log-concave probability measure µ and |f | with q-quantile mq,

µ({|f | ≤ mqε}) ≤ 1− qδf (ε) ≤ δf (ε) log(1/q),

holds for all ε ∈ (0, 1).

Proof. Applying Theorem 3.13 with λ = mq, gives

µ({|f | > mqε}) ≥ µδf (ε)({|f | ≥ mq}) ≥ qδf (ε).

The second inequality is a consequences of 1− e−y ≤ y applied to y = δf (ε) log
1
q .

Corollaries 3.14 and 3.15, with f(x) = x and Proposition 3.12 can be summarized in
probabilistic notation as the following large and small deviation inequalities. In what follows
X is a random variable with a log-concave distribution, and with f(x) = x, so that mq the
q-th quantiles of f , are characterized by satisfying P(X > mq) ≤ q ≤ P(X ≥ mq).

Corollary 3.16. Let X be a discrete log-concave random variable supported on N \ {0}.
Then, for all t > 1 and ε ∈ (0, 1),

P(X ≥ mq t) ≤ q
t
2 , P(X ≤ mq ε) ≤ 1− q2ε ≤ 2 log(1/q)ε.

Let us observe that the inequality is sharp in the following case. Let q ∈ (0, 1) and
consider X such that 1 − P(X = 1) = q = P(X = 2). One can take mq = 1 and thus for
t ∈ (1, 2),

q
t
2 − P(Y ≥ mqt) = q

t
2 − q.

Taking t → 2 shows the inequality to be sharp. For the small deviation inequality, one can
consider the same random variable X as above, so that one can take mq = 2, and then for
ε ∈ (1/2, 1),

1− q2ε − P(Y ≤ mqε) = q − q2ε.

Taking ε → 1/2 shows the inequality to be sharp. We note that the constant 2 may not be
optimal for a linear bound in the second inequality, but cannot be improved beyond a factor
of 2 as can be checked with a geometric distribution.

One can deduce large deviation inequalities for discrete log-concave random variable sup-
ported on N.

Corollary 3.17. Let X be a discrete log-concave random variable supported on N. Then, for
all u > mq,

P(X ≥ u) ≤ e
−(u+1)

log(1/q)
2(1+mq ) . (35)

In particular, taking q = 1
2 , we have that for all u > Med(X),

P(X ≥ u) ≤ e
−(u+1) log(2)

2(1+Med(X)) ,

where Med(X) denotes a median of X.
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Proof. Define Y = X +1 so that Y is discrete log-concave on N \ {0}. Note that mq(Y ), the
q-quantile of Y , satisfies mq(Y ) = mq + 1. Then, by Corollary 3.16, for all s > mq + 1,

P(X ≥ s− 1) = P(Y ≥ s) ≤ e
−s log(1/q)

2mq(Y ) ,

and the result follows.

Observe that equality holds in (35) when X is a random variable with a Bernoulli distri-
bution of parameter q, mq = 0, and u = 1.
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[16] M. Fekete. Über ein problem von Laguerre. Rendiconti del Circolo Matematico di
Palermo (1884-1940), 34(1):89–120, 1912.

[17] M. Fradelizi. Concentration inequalities for s-concave measures of dilations of Borel sets
and applications. Electron. J. Probab., 14:no. 71, 2068–2090, 2009.
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