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Abstract

A remarkable conjecture of Feige (2006) asserts that for any collection of n independent
non-negative random variables X1, X2, . . . , Xn, each with expectation at most 1,

P(X < E[X ] + 1) ≥
1

e
,

where X =
∑

n

i=1
Xi. In this paper, we investigate this conjecture for the class of discrete

log-concave probability distributions and we prove a strengthened version. More specifi-
cally, we show that the conjectured bound 1/e holds when Xi’s are independent discrete
log-concave with arbitrary expectation.

Keywords: Feige’s conjecture, Sum of random variables, Small deviations, Log-concave.

1 Introduction

Motivated by the problem of estimating the average degree of a graph, Feige [10] investigated
the probabilistic quantity, P(X < E[X] + 1), where X is the sum of n independent non-
negative random variables X1,X2, . . . ,Xn, with E[Xi] ≤ 1 for each i. Classical inequalities
such as Markov’s and Chebyshev’s inequalities yield no useful information about this proba-
bility. Chebyshev’s inequality does not play a role in this case since there is no assumption
on the variance of X, while Markov’s inequality implies P(X < E[X] + 1) ≥ 1

E[X]+1 , which
is essentially useless when n is large. Using an approach based on a case analysis, Feige
managed to prove that

P(X < E[X] + 1) ≥
1

13
. (1)

However, as Feige noted, one may take a collection of n number of i.i.d. random variables
such that for each i,Xi = n + 1 with probability 1

n+1 and Xi = 0, otherwise. Then,

P(X < E[X] + 1) =

(
1 −

1

n + 1

)n

.
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Based on this, it was conjectured that one could replace 1/13 with 1/e. The improvement on
inequality (1) was first made by He, Zhang and Zhang (see [19]) by establishing the lower
bound 1/8. Later, Garnett (see [14]) improved the lower bound to 7/50. The current best
bound in this direction is 0.1798 by Guo, He, Ling and Liu (see [18]).

Feige’s inequality has many applications in computer science and combinatorics including
the weighted max-cut problem (see [19]), approximating the average degree of a graph in
sublinear-time (see [10], [16]), and the connection of a conjecture of Manickam, Miklós, and
Singhi with matchings and fractional covers of hypergraphs (see [5]). We refer the reader to
[4], [13] and [40] for more applications.

Our goal in this article is to prove that the conjectured lower bound holds when the
collection {Xi}

n
i=1 is independent discrete log-concave. Recall that an integer-valued random

variable X is said to be log-concave if its probability mass function p satisfies

p(k)2 ≥ p(k − 1) p(k + 1),

for all k ∈ Z and X has contiguous support. For example, Bernoulli, discrete uniform,
binomial, negative binomial, geometric, hypergeometric and Poisson distributions are all
log-concave. Many sequences in combinatorics are log-concave (or conjectured to be log-
concave), see, e.g., [30], [36], [37], [8], [3]. The surveys [38] and [7] provide more details about
the notion of log-concavity in the context of combinatorics. Recent developments on discrete
log-concavity in probabilistic setting include log-Sobolev type inequalities [21], discrete Rényi
entropy inequalities [32], [26], [31], concentration bounds and moments inequalities [6], [28].

Our main result is as follows.

Theorem 1.1. Let X be a discrete log-concave random variable. Then,

P(X < E[X] + 1) ≥ e−1. (2)

The lower bound e−1 is sharp among the class of discrete log-concave random variables
as can be seen by taking a random variable with probability mass function p(k) = Cnk/n,
k ∈ {1, . . . , n}, with n sufficiently large, where C is the normalizing constant; the details are
carried out in Section 3.

Since the class of log-concave distributions is stable under reflection, Theorem 1.1 yields
analogous bounds for upper tails. Namely, for any discrete log-concave random variable X,

P(X > E[X] − 1) ≥ e−1.

Our main result is of independent interest, as it provides a sharp small deviation inequality
on the class of log-concave distributions, a rich family that, in addition to containing the well
known and studied distributions mentioned above, includes many interesting sequences for
which explicit expressions are intractable. For instance, the intrinsic volumes of a convex
body are log-concave by the Alexandrov-Fenchel inequality [25], and hence by Theorem 1.1
we have the following immediate corollary. We refer to [2], [24] for further information on
intrinsic volumes random variables and its importance in statistical learning.

Corollary 1.2. The central intrinsic volume of the intrinsic volume random variable asso-
ciated with a convex body plus 1 is no smaller than its 1/e quantile.

Similarly, by the resolution of the strong Mason conjecture [1] the number of independent
sets of size k in a matroid is log-concave. Therefore, Theorem 1.1 immediately implies the
following corollary.
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Corollary 1.3. The proportion of sub-forests of size smaller than the average forest size plus
1 is at least 1/e.

Since the sum of independent discrete log-concave random variables is log-concave (see
[11]), Theorem 1.1 can be extended to X =

∑n
i=1Xi, where Xi’s are independent discrete

log-concave. This proves a stronger version of Feige’s conjecture as the optimal lower bound
holds without any assumption on expectation and on the sign of the random variables. Note
that this cannot be true for distributions that are not log-concave in general, this can be seen
by taking, for example, a random variable X such that P(X = 0) = 1 − p, P(X = m) = p,
with m sufficiently large, and p sufficiently close to 1. Thus, in general, the constraint on the
expectation is necessary.

Inequality (2) has been established for binomial and the sum of independent Bernoulli
random variables by Garnett [15]. Theorem 1.1 extends Garnett’s result to the whole class
of log-concave probability sequences. The following stronger inequality has been proved for
Poisson distribution by Teicher [39],

P(X ≤ E[X]) > e−1.

However, Teicher’s inequality does not hold for all log-concave random variables. This can
be seen by taking a truncated Poisson distribution with the parameter equals to 5, supported
on {0, 1, 2} so that P(X ≤ E[X]) < e−1.

In the special case where E[X] ∈ Z, Theorem 1.1 yields the following result.

Corollary 1.4. Let X be a discrete log-concave random variable. If E[X] ∈ Z, then

P(X ≤ E[X]) ≥ e−1. (3)

For specific distributions, the lower bound in corollary 1.4 can be improved to 1/2 (when
E[X] is an integer), as shown for the sum of independent Bernoulli (see [35]), Poisson (see
[39]), and can easily be verified for the discrete uniform distribution. However, this is not
true for the whole class of log-concave distributions, as can be seen by taking a random
variable supported on {1, . . . , 8} with probability mass function p(k) = Cpk, k ∈ {1, . . . , 8},
where p is chosen so that E[X] = 6 and C is the normalizing constant. For this distribution,
P(X ≤ E[X]) < 1

2 .
In the continuous setting, a result of Grünbaum [17] (see also [29, Lemma 2.4]) states

that if X is a continuous log-concave random variable then the following stronger inequality
holds,

P(X ≤ E[X]) ≥
1

e
. (4)

Recall that a real-valued random variable is log-concave if it has a probability density function
f (with respect to Lebesgue measure) satisfying

f((1 − λ)x + λy) ≥ f(x)1−λf(y)λ,

for all x, y ∈ R and λ ∈ [0, 1]. Examples include Gaussian, exponential, and uniform over
an interval. See, e.g., [23], [34], [9], for properties and applications of continuous log-concave
distributions. Since the sum of independent continuous log-concave random variables is
log-concave (see [33]), inequality (4) applies to X =

∑n
i=1Xi, where Xi’s are independent

continuous log-concave, in particular Feige’s conjecture holds for this class of random vari-
ables.
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Let us note that Theorem 1.1 implies inequality (4) for continuous log-concave random
variables. Indeed, suppose that X is log concave with support [0, 1] and density function f .
For integer n ≥ 1, define Xn to be the discrete log-concave random variable on {1, . . . , n}
with probability mass function

P(Xn = k) =
f(k/n)∑n
j=1 f(j/n)

.

One can check that Xn/n converges to X in distribution, and together with Theorem 1.1 it
follows that

P(X ≤ E[X]) = lim
n→+∞

P

(
Xn

n
≤

E[Xn]

n
+

1

n

)
= lim

n→+∞
P(Xn ≤ E[Xn] + 1) ≥

1

e
.

The proof of the result for general X follows by approximation on compact sets and rescaling.
The article is organized as follows. In section 2, we prove Theorem 1.1. In section 3, we

comment on the sharpness of our main result.

2 Proof of Theorem 1.1

The key idea of the proof of Theorem 1.1 is to reduce the problem to truncated geometric
distributions. This is due to the identification of the extreme points of the convex hull of a
subset of discrete log-concave probability distributions satisfying a linear constraint and the
standard use of Krein-Milman’s theorem, developed by the third and fourth named authors in
[27] (see also [20]). This method can be seen as a discrete analogue of a localization technique
due to Kannan, Lovász and Simonovits [22] in the form of Fradelizi and Guédon [12]. For
completeness, we recall the main argument from [27].

Let M,N ∈ Z. Denote by P({M, . . . ,N}) the set of all discrete probability measures
supported on {M, . . . ,N}. Let h : {M, . . . ,N} → R be an arbitrary function. Consider
Ph({M, . . . ,N}) the set of all log-concave distributions PX in P({M, . . . ,N}) satisfying the
constraint E[h(X)] ≥ 0, that is,

Ph({M, . . . ,N}) = {PX ∈ P({M, . . . ,N}) : X log-concave, E[h(X)] ≥ 0}.

The following theorem describes the shape of the extreme points of Conv(Ph({M, . . . ,N})).

Theorem 2.1 ([27]). If PX ∈ Conv(Ph({M, . . . ,N})) is an extreme point, then its probability
mass function p satisfies

p(k) = Cpk1{m,...,n}(k), (5)

for some C, p > 0, m,n ∈ {M, . . . ,N}.

One can therefore deduce by the (finite-dimensional version of the) Krein-Milman theorem
that the supremum of any convex functional over the set Ph({M, . . . ,N}) is attained at
probability distributions of the form (5) (see [27]).

The convex (linear) functional that will be considered in the proof of Theorem 1.1 is of
the form Φ: PX 7→ PX(A) for a fixed Borel set A ⊂ R.

The next lemma shows that in order to prove Theorem 1.1 it is enough to consider
compactly supported log-concave random variables.
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Lemma 2.2. If the inequality

P(X < E[X] + 1) ≥
1

e
(6)

holds for all compactly supported log-concave random variable X, then the inequality holds
for all log-concave random variables on Z.

Proof. By assumption, inequality (6) holds for all compactly supported log-concave random
variables. It remains to prove the inequality for log-concave random variables either with full
support on Z, lower bounded, or upper-bounded.

Assume first that X is a log-concave random variable with support {1, 2, . . . } and proba-
bility mass function p. For n ≥ 1, define a log-concave random variable Xn with probability
mass function

pn(k) =
p(k)∑n
j=1 p(j)

, k ∈ {1, . . . , n}.

Note that for all n ≥ 1,

E[Xn] ≤ E[X] ⇐⇒

n∑

k=1

kp(k)
∑

k≥n+1

p(k) ≤

n∑

k=1

p(k)
∑

k≥n+1

kp(k),

which is true since
n∑

k=1

kp(k)
∑

k≥n+1

p(k) ≤ (n + 1)

n∑

k=1

p(k)
∑

k≥n+1

p(k) ≤

n∑

k=1

p(k)
∑

k≥n+1

kp(k).

Therefore, for all n ≥ 1,

P(Xn < E[X] + 1) ≥ P(Xn < E[Xn] + 1) ≥
1

e
,

where the last inequality comes from the assumption, since Xn is compactly supported. We
conclude by letting n goes to +∞ as

P(Xn < E[X] + 1) −→
n→+∞

P(X < E[X] + 1).

Since inequality (6) is translation invariant, we deduce that the inequality holds for all lower
bounded log-concave random variables.

Assume now that X is a log-concave random variable with support {. . . ,−2,−1} and
probability mass function p. Define, for i > 1/p(−1), a log-concave random variable Xi with
probability mass function

pi(k) = Cip(k), k ∈ {. . . ,−3,−2}, and pi(−1) = Ci

(
p(−1) −

1

i

)
,

where Ci = (1 − 1
i )

−1 is the normalizing constant. Note that for all i > 1,

E[Xi] =
i

i− 1




∑

k≤−2

kp(k) − p(−1) +
1

i


 =

i

i− 1

(
E[X] +

1

i

)
< E[X],

where the last inequality follows from E[X] < −1. For i > 1/p(−1) and m ≥ 1, define a
compactly supported log-concave random variable Xi,m with probability mass function

pi,m(k) =
pi(k)

∑−1
j=−m pi(j)

, k ∈ {−m, . . . ,−1}.
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Note that E[Xi,m] → E[Xi] as m → +∞, therefore, since E[Xi] < E[X], there exists m0 ∈ N

such that for all m ≥ m0, E[Xi,m] ≤ E[X]. Hence, as above, for m ≥ m0,

P(Xi,m < E[X] + 1) ≥
1

e
,

and we conclude by letting i,m → +∞. Again by translation invariance, the inequality then
holds for all upper bounded log-concave random variables.

Finally, assume that X is a log-concave random variable fully supported on Z. Denote by
p the probability mass function of X. The approximation Xn, n ≥ 1, with probability mass
function

pn(k) =
p(k)∑
j≤n p(j)

, k ∈ {. . . ,−1, 0, 1, . . . , n},

yields the result by a similar argument as above, since for all n ≥ 1, Xn is upper bounded
and E[Xn] ≤ E[X].

Remark 2.3. Let us note that a similar construction as in Lemma 2.2, combining truncation
and scaling of probability mass function, may be used to show that given a random variable
X on Z with finite absolute moment, one may construct a sequence of compactly supported
random variables {Xn} such that E[Xn] = E[X], n ≥ 1, and {Xn} converges to X in total
variation.

Proof of Theorem 1.1. First, by Lemma 2.2, it is enough to prove inequality (2) for com-
pactly supported log-concave random variables, say on {M, . . . ,N}, for arbitrary M ≤ N .
Next, according to Theorem 2.1, it is enough to consider log-affine distributions supported
in {M, . . . ,N}, that is, distributions of the form

p(k) = Cpk, k ∈ {m. . . , n},

for all p > 0 and M ≤ m ≤ n ≤ N . Finally, if X is log-affine on {m, . . . , n}, then X̃ =
X −m + 1 is log-affine supported on {1, . . . , ñ}, where ñ = n−m + 1, and

P(X ≥ E[X] + 1) = P(X̃ ≥ E[X̃] + 1).

Therefore, it is enough to prove the desired inequality for log-affine distributions supported
on {1, . . . , n}, for arbitrary n ≥ 1. In the following, we consider X with probability mass
function of the form

p(k) = Cpk, k ∈ {1, . . . , n},

for n ≥ 1 and p > 0, and we will establish inequality (2) for such random variables. If p = 1,
then

P(X < E[X] + 1) ≥
1

2
≥

1

e
.

When p 6= 1, we have

C =
1 − p

p(1 − pn)
.

Therefore,

E[X] = Cp

[
n∑

k=0

pk

]′

=
npn+1 − (n + 1)pn + 1

(1 − p)(1 − pn)
=

1

1 − p
−

npn

1 − pn
.
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On the other hand,

P(X < E[X] + 1) =

⌈E[X]⌉∑

k=1

Cpk =
1 − p⌈E[X]⌉

1 − pn
.

Thus we are left to prove that
1 − p⌈E[X]⌉

1 − pn
≥

1

e
.

Since
1 − p⌈E[X]⌉

1 − pn
≥

1 − pE[X]

1 − pn
,

it suffices to show that for all positive integer n and every positive real number p 6= 1,

1 − p
1

1−p
− npn

1−pn

1 − pn
≥

1

e
.

Substituting x = pn, the above inequality is equivalent to

1 − x
1

n(1−x1/n)
− x

1−x

1 − x
≥

1

e
.

Note that the left hand side is non-increasing in n since

d

dt

[
t(1 − x1/t)

]
= 1 − x1/t + x1/t log(x1/t) ≥ 0,

where the substitution y = x1/t makes the inequality obvious. Taking the limit in n, it suffices
to prove that for x 6= 1,

g(x) :=
1 − x

− 1
log(x)

− x
1−x

1 − x
≥

1

e
.

Note that limx→+∞ g(x) = 1
e , so the result would follow from

0 ≥ g′(x) =
e(x− 1) − x

x
x−1 log(x)

e(x− 1)3
.

To prove that g′(x) ≤ 0, it suffices to prove that

h(x) :=
x

x
x−1 log(x)

e(x− 1)
≥ 1.

Computing,

h′(x) =
x

1
x−1

(
(x− 1)2 − x log(x)2

)

e(x− 1)3
,

the result will follow from k(x) := (x − 1)2 − x log(x)2 ≥ 0 as this will give h′(x) ≤ 0
for x < 1 and h′(x) ≥ 0 for x > 1, so that h(x) ≥ h(1) = 1. Since k is convex, as
k′′(x) = 2

x(x − 1 − log(x)) ≥ 0, and k′(1) = 0, we deduce that k takes its minimum value 0
when x = 1, completing the proof.
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3 Sharpness of Theorem 1.1

This section comments on the sharpness of Theorem 1.1.

1. For a discrete log-concave random variable X, one trivially has the extension to t ≥ 1,

P(X ≥ E[X] + t) ≤ 1 −
1

e
.

Let us see that these inequalities are sharp for any t ≥ 1. Fix n ≥ 2 and let X be log-
affine on {1, . . . , n} with parameter p = n

1
n . Following the computation of the proof of

Theorem 1.1, one has

n− n
E[X]+t−1

n

n− 1
≥ P(X ≥ E[X] + t) ≥

n− n
E[X]+t

n

n− 1
.

Thus to prove that 1 − 1
e is optimal among log-concave distributions it is enough to

prove that for λ ≥ 0,

lim
n→+∞

n− n
E[X]+λ

n

n− 1
= 1 −

1

e
.

The result follows since

n

n− 1
−

1

n
n+1
n − n

= 1 −
1

log(n)
+ O

(
1

n

)
,

therefore, using E[X] = n2

n−1 −
1

n1/n−1
, we have

n− n
E[X]+λ

n

n− 1
=

n

n− 1

(
1 − n

λ
nn

− 1
log(n)

+O( 1
n)
)
−−−−−→
n→+∞

1 −
1

e
.

2. Theorem 1.1 is sharp also within the subclass of ultra log-concave random variables.
First, recall that a random variable X is said to be ultra log-concave (ULC) if its
probability mass function p satisfies

p(k)2 ≥
k + 1

k
p(k − 1) p(k + 1),

for all k ∈ N = {1, 2, . . . } and X has contiguous support. Let

CLC = sup{C : X log-concave =⇒ P(X < E[X] + 1) ≥ C},

and
CULC = sup{C : X ultra log-concave =⇒ P(X < E[X] + 1) ≥ C}.

We will show that
CULC = CLC .

Clearly, if C gives a lower bound on P(X < E[X] + 1) for every X log-concave, it gives
a lower bound if X is restricted to the class of ultra log-concave variables, hence

CLC ≤ CULC .
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To argue in the reverse direction, let X̃ be the truncation of a Poisson random variable
to the interval {m, . . . ,m + n} and with parameter λm. Since X̃ is the truncation of
a ULC distribution, P(X̃ < E[X̃] + 1) ≥ CULC . However, by translation invariance of
the inequality, Xm = X̃ −m also satisfies

P(Xm < E[Xm] + 1) ≥ CULC .

The probability mass function of Xm can be written as

pm(k) = Km
(λm)m+k

(m + k)!
1{0,...,n}(k),

where Km is the normalizing constant. Taking the limit in m → ∞ of the ratios for
k ∈ {0, . . . , n},

pm(k + 1)

pm(k)
= λ

m

m + k + 1
−→ λ.

Thus as m → ∞, Xm converges in distribution to a log-affine distribution with param-
eter λ on {0, . . . , n}. Thus for any compactly supported log-affine X,

P(X ≤ E[X] + 1) ≥ CULC ,

and hence by localization (see proof of Theorem 1.1)

P(X ≤ E[X] + 1) ≥ CULC

holds for all log-concave distributions X, and we conclude that CULC ≤ CLC by the
first remark above on the sharpness of P(X < E[X] + t), for all t ≥ 1.
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