# A Note on Statistical Distances for Discrete Log-Concave Measures 

Arnaud Marsiglietti and Puja Pandey


#### Abstract

In this note we explore how standard statistical distances are equivalent for discrete log-concave distributions. Distances include total variation distance, Wasserstein distance, and $f$-divergences.


Keywords: log-concave, total variation distance, Wasserstein distance, $f$-divergence.

## 1 Introduction

The study of convergence of probability measures is central in probability and statistics, and may be performed via statistical distances for which the choice has its importance (see, e.g., [10], [19]). The space of probability measures, say over the real numbers, is infinite dimensional, therefore there is a priori no canonical distance, and distances may not be equivalent. Nonetheless, an essential contribution made by Meckes and Meckes in [16] demonstrates that certain statistical distances between continuous log-concave distributions turn out to be equivalent up to constants that may depend on the dimension of the ambient space (see also [7] for improved bounds, and [14] for the extension to the broader class of so-called $s$-concave distributions).

The goal of this note is to develop quantitative comparisons between distances for discrete log-concave distributions. Let us denote by $\mathbb{N}=\{0,1,2, \ldots\}$ the set of natural numbers and by $\mathbb{Z}$ the set of integers. Recall that the probability mass function (p.m.f.) associated with an integer valued random variable $X$ is

$$
p(k)=\mathbb{P}(X=k), \quad k \in \mathbb{Z} .
$$

An integer-valued random variable $X$ is said to be log-concave if its probability mass function $p$ satisfies

$$
p(k)^{2} \geq p(k-1) p(k+1)
$$

for all $k \in \mathbb{Z}$ and the support of $X$ is an integer interval.
Discrete log-concave distributions form an important class. Examples include Bernoulli, discrete uniform, binomial, geometric and Poisson distributions. We refer to [21], [5], [20], [4] for further background on log-concavity.

Let us introduce the main distances we will work with (we refer to [12], [9], [10], [19] for further background on statistical distances). Our setting is the real line $\mathbb{R}$ equipped with its usual Euclidean structure $d(x, y)=|x-y|, x, y \in \mathbb{R}$.

1. The bounded Lipschitz distance between two probability measures $\mu$ and $\nu$ is defined as

$$
d_{B L}(\mu, \nu)=\sup _{\|g\|_{B L} \leq 1}\left|\int g d \mu-\int g d \nu\right|,
$$

where for a function $g: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\|g\|_{B L}=\max \left\{\|g\|_{\infty}, \sup _{x \neq y} \frac{|g(x)-g(y)|}{|x-y|}\right\} .
$$

2. The Lévy-Prokhorov distance between two probability measures $\mu$ and $\nu$ is defined as

$$
d_{L P}(\mu, \nu)=\inf \left\{\epsilon>0: \mu(A) \leq \nu\left(A^{\varepsilon}\right)+\epsilon \text { for all Borel set } A \subset \mathbb{R}\right\}
$$

where $A^{\varepsilon}=\{x \in \mathbb{R}: d(x, A)<\varepsilon\}$.
Using the Ky-Fan distance, which is defined for two random variables $X$ and $Y$ as

$$
K(X, Y)=\inf \{\varepsilon>0: \mathbb{P}(|X-Y|>\varepsilon)<\varepsilon\},
$$

the Lévy-Prokhorov distance admits the following coupling representation,

$$
\begin{equation*}
d_{L P}(\mu, \nu)=\inf K(X, Y), \tag{1}
\end{equation*}
$$

where the infimum runs over all random variables $X$ with distribution $\mu$ and random variables $Y$ with distribution $\nu$ (see, e.g., [19]).
3. The total variation distance between two probability measures $\mu$ and $\nu$ is defined as

$$
d_{T V}(\mu, \nu)=2 \sup _{A \subset \mathbb{R}}|\mu(A)-\nu(A)| .
$$

The total variation distance admits the following coupling representation,

$$
\begin{equation*}
d_{T V}(\mu, \nu)=\inf \mathbb{P}(X \neq Y) \tag{2}
\end{equation*}
$$

where the infimum runs over all random variables $X$ with distribution $\mu$ and random variables $Y$ with distribution $\nu$ (see, e.g., [10]). Moreover, for integer valued measures, one has the following identity,

$$
\begin{equation*}
d_{T V}(\mu, \nu)=\sum_{k \in \mathbb{Z}}|\mu(\{k\})-\nu(\{k\})| . \tag{3}
\end{equation*}
$$

4. The $p$-th Wasserstein distance, $p \geq 1$, between two probability measures $\mu$ and $\nu$ is defined as

$$
W_{p}(\mu, \nu)=\inf \mathbb{E}\left[|X-Y|^{p}\right]^{\frac{1}{p}},
$$

where the infimum runs over all random variables $X$ with distribution $\mu$ and random variables $Y$ with distribution $\nu$.
5. Let $f:[0,+\infty) \rightarrow \mathbb{R}$ be a convex function such that $f(1)=0$. The $f$-divergence between two probability measures $\mu$ and $\nu$ on $\mathbb{Z}$ is defined as

$$
d_{f}(\mu \| \nu)=\sum_{k \in \mathbb{Z}} \nu(\{k\}) f\left(\frac{\mu(\{k\})}{\nu(\{k\})}\right) .
$$

Note that the choice of convex function $f(x)=x \log (x), x \geq 0$, leads to the KullbackLeibler divergence

$$
D(\mu \| \nu)=\sum_{k \in \mathbb{Z}} \mu(\{k\}) \log \left(\frac{\mu(\{k\})}{\nu(\{k\})}\right),
$$

the function $f(x)=(x-1)^{2}$ yields the so-called $\chi^{2}$-divergence, while $f(x)=|x-1|$ returns us to the total variation distance.

Let us review the known relationships between the above distances. It is known [8, Corollaries 2 and 3] that bounded Lipschitz and Lévy-Prokhorov distances are equivalent,

$$
\frac{1}{2} d_{B L}(\mu, \nu) \leq d_{L P}(\mu, \nu) \leq \sqrt{\frac{3}{2} d_{B L}(\mu, \nu)} .
$$

One also has

$$
d_{L P}(\mu, \nu) \leq d_{T V}(\mu, \nu),
$$

and, for $\mu, \nu$ integer valued probability measures,

$$
d_{T V}(\mu, \nu) \leq W_{1}(\mu, \nu)
$$

see [10]. By Hölder's inequality, if $p \leq q$, then

$$
W_{p}(\mu, \nu) \leq W_{q}(\mu, \nu)
$$

As for divergences, the Pinsker-Csiszár inequality ([18], [6]) states that

$$
d_{T V}(\mu, \nu) \leq \sqrt{2 D(\mu \| \nu)}
$$

Also, one has

$$
D(\mu \| \nu) \leq \log \left(1+\chi^{2}(\mu \| \nu)\right) .
$$

The article is organized as follows. In Section 2, we establish properties for log-concave distributions on $\mathbb{Z}$ that are of independent interests. In section 3, we present our results and proofs.

## 2 Preliminaries

In this section we gather the main tools used throughout the proofs. First, recall that a real-valued random variable $X$ is said to be isotropic if

$$
\mathbb{E}[X]=0, \quad \mathbb{E}\left[X^{2}\right]=1
$$

We start with an elementary lemma that will allow us to pass results for log-concave distributions on $\mathbb{N}$ to log-concave distributions on $\mathbb{Z}$, however with sub-optimal constants.

Lemma 2.1. If $X$ is symmetric log-concave on $\mathbb{Z}$, then $|X|$ is log-concave on $\mathbb{N}$.
Proof. Denote by $p($ resp. $q$ ) the p.m.f. of $X$ (resp. $|X|)$. Then, $q(0)=p(0)$ and $q(k)=2 p(k)$ for $k \geq 1$. Therefore,

$$
q^{2}(1)=4 p^{2}(1) \geq 4 p(0) p(2)=2 q(0) q(2),
$$

and for all $k \geq 2$,

$$
q^{2}(k)=4 p^{2}(k) \geq 4 p(k+1) p(k-1)=q(k+1) q(k-1) .
$$

Hence, $q$ is $\log$-concave.
We note that Lemma 2.1 no longer holds for non-symmetric log-concave random variables, as can be seen by taking $X$ supported on $\{-1,0,1,2,3\}$ with distribution $\mathbb{P}(X=-1)=$ $\mathbb{P}(X=3)=0.1, \mathbb{P}(X=0)=\mathbb{P}(X=2)=0.2$, and $\mathbb{P}(X=1)=0.4$. In this case, $\mathbb{P}(|X|=2)^{2}<\mathbb{P}(|X|=1) \mathbb{P}(|X|=3)$.

The next lemma provides moments bounds for $\log$-concave distributions on $\mathbb{Z}$.

Lemma 2.2. If $X$ is log-concave on $\mathbb{Z}$, then for all $\beta \geq 1$,

$$
\mathbb{E}\left[|X-\mathbb{E}[X]|^{\beta}\right]^{\frac{1}{\beta}} \leq \Gamma(\beta+1)^{\frac{1}{\beta}}(2 \mathbb{E}[|X-\mathbb{E}[X]|]+1) .
$$

Proof. It has been shown in [13, Corollary 4.5] that for all log-concave random variable $X$ on $\mathbb{N}$, for all $\beta \geq 1$,

$$
\begin{equation*}
\mathbb{E}\left[X^{\beta}\right]^{\frac{1}{\beta}} \leq \Gamma(\beta+1)^{\frac{1}{\beta}}(\mathbb{E}[X]+1) . \tag{4}
\end{equation*}
$$

Let $X$ be a symmetric log-concave random variable on $\mathbb{Z}$, then by Lemma $2.1,|X|$ is $\log$ concave on $\mathbb{N}$ so one may apply inequality (4) to obtain

$$
\begin{equation*}
\mathbb{E}\left[|X|^{\beta}\right]^{\frac{1}{\beta}} \leq \Gamma(\beta+1)^{\frac{1}{\beta}}(\mathbb{E}[|X|]+1) . \tag{5}
\end{equation*}
$$

Now, let $X$ be a log-concave random variable on $\mathbb{Z}$. Let $Y$ be an independent copy of $X$, so that $X-Y$ is symmetric log-concave. Applying inequality (5), we deduce that
$\mathbb{E}\left[|X-\mathbb{E}[X]|^{\beta}\right]^{\frac{1}{\beta}} \leq \mathbb{E}\left[|X-Y|^{\beta}\right]^{\frac{1}{\beta}} \leq \Gamma(\beta+1)^{\frac{1}{\beta}}(\mathbb{E}[|X-Y|]+1) \leq \Gamma(\beta+1)^{\frac{1}{\beta}}(2 \mathbb{E}[|X-\mathbb{E}[X]|]+1)$, where the first inequality follows from Hölder's inequality and the last inequality from triangle inequality.

Let us derive concentration inequalities for $\log$-concave distributions on $\mathbb{Z}$.
Lemma 2.3. For each log-concave random variable $X$ on $\mathbb{Z}$, one has for all $t \geq 0$,

$$
\mathbb{P}(|X-\mathbb{E}[X]| \geq t) \leq 2 e^{-\frac{t}{2(2 \mathbb{E} \| X-\mathbb{E}[X] \mid+1)}} .
$$

Proof. The proof is a standard application of the moments bounds obtained in Lemma 2.2 (see, e.g., [22]). For $\lambda>0$,

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda|X-\mathbb{E}[X]|}\right]=1+\sum_{\beta \geq 1} \frac{\lambda^{\beta}}{\beta!} \mathbb{E}\left[|X-\mathbb{E}[X]|^{\beta}\right] & \leq 1+\sum_{\beta \geq 1} \frac{\lambda^{\beta}}{\beta!} \beta!(2 \mathbb{E}[|X-\mathbb{E}[X]|]+1)^{\beta} \\
& =\sum_{\beta \geq 0}[\lambda(2 \mathbb{E}[|X-\mathbb{E}[X]|]+1)]^{\beta} \\
& =\frac{1}{1-\lambda(2 \mathbb{E}[|X-\mathbb{E}[X]|]+1)},
\end{aligned}
$$

where the last identity holds for all $0<\lambda<\frac{1}{2 \mathbb{E}[|X-\mathbb{E}[X]|]+1}$. Choosing $\lambda=\frac{1}{2(2 \mathbb{E}[|X-\mathbb{E}[X]|]+1)}$ yields

$$
\mathbb{E}\left[e^{\lambda|X-\mathbb{E}[X]|}\right] \leq 2 .
$$

Therefore, by Markov's inequality,

$$
\mathbb{P}(|X-\mathbb{E}[X]| \geq t)=\mathbb{P}\left(e^{\lambda|X-\mathbb{E}[X]|} \geq e^{\lambda t}\right) \leq \mathbb{E}\left[e^{\lambda|X-\mathbb{E}[X]|}\right] e^{-\lambda t} \leq 2 e^{-\frac{t}{2(2 \mathbb{E}| | X-\mathbb{E}[X]| |+1)}} .
$$

The following lemma, which provides a bound on the variance and maximum of the probability mass function of log-concave distributions on $\mathbb{Z}$, was established in [3] and [1] (see, also, [2], [11]).

Lemma 2.4 ([3], [1]). Let $X$ be a log-concave distribution on $\mathbb{Z}$ with probability mass function $p$, then

$$
\sqrt{1+\operatorname{Var}(X)} \leq \frac{1}{\|p\|_{\infty}} \leq \sqrt{1+12 \operatorname{Var}(X)}
$$

The following lemma is standard in information theory and provides an upper bound on the entropy of an integer valued random variable (see [15]). Recall that the Shannon entropy of an integer valued random variable $X$ with p.m.f. $p$ is defined as

$$
H(X)=\mathbb{E}[-\log (p(X))]=-\sum_{k \in \mathbb{Z}} p(k) \log (p(k)) .
$$

Lemma 2.5 ([15]). For any integer valued random variable $X$ with finite second moment,

$$
H(X) \leq \frac{1}{2} \log \left(2 \pi e\left(\operatorname{Var}(X)+\frac{1}{12}\right)\right) .
$$

The last lemma of this section provides a bound on the second moment of the information content of a log-concave distribution on $\mathbb{Z}$.

Lemma 2.6. Let $X$ be a discrete log-concave random variable on $\mathbb{Z}$ with probability mass function $p$. Then,

$$
\mathbb{E}\left[\log ^{2}(p(X))\right] \leq 4\left(4 e^{-2}+1+\frac{H^{2}(X)}{\|p\|_{\infty}}\right)
$$

Proof. Let $X$ be a log-concave random variable with p.m.f. $p$. Then $p$ is unimodal, that is, there exists $m \in \mathbb{Z}$ such that for all $k \leq m, p(k-1) \leq p(k)$ and for all $k \geq m, p(k) \geq p(k+1)$. Note that $p(m)=\|p\|_{\infty}$. Define, for $k \in \mathbb{Z}$,

$$
p^{\nearrow}(k)=\frac{p(k)}{\sum_{l \leq m} p(l)} 1_{\{k \leq m\}},
$$

and

$$
p^{\searrow}(k)=\frac{p(k)}{\sum_{l \geq m} p(l)} 1_{\{k \geq m\}} .
$$

Note that both $p^{\nearrow}$ and $p \searrow$ are monotone log-concave probability mass functions. Denote by $X^{\nearrow}$ (resp. $X^{\searrow}$ ) a random variable with p.m.f. $p^{\nearrow}\left(\right.$ resp. $p \searrow$ ). Denote also $a=\sum_{l \leq m} p(l)$ and $b=\sum_{l \geq m} p(l)$. On one hand, by a result of Melbourne and Palafox-Castillo [17, Theorem 2.5],

$$
\operatorname{Var}\left(\log \left(p^{\nearrow}\left(X^{\nearrow}\right)\right)\right) \leq 1, \quad \operatorname{Var}\left(\log \left(p^{\searrow}\left(X^{\searrow}\right)\right)\right) \leq 1 .
$$

On the other hand,

$$
H\left(X^{\nearrow}\right)=\sum_{k \leq m} \frac{p(k)}{a} \log \left(\frac{a}{p(k)}\right) \leq \frac{1}{a} \sum_{k \leq m} p(k) \log \left(\frac{1}{p(k)}\right) \leq \frac{1}{a} H(X)
$$

and similarly,

$$
H\left(X^{\searrow}\right) \leq \frac{H(X)}{b}
$$

Therefore,

$$
\mathbb{E}\left[\log ^{2}\left(p^{\nearrow}\left(X^{\nearrow}\right)\right)\right]=\operatorname{Var}\left(\log \left(p^{\nearrow}\left(X^{\nearrow}\right)\right)\right)+H^{2}\left(X^{\nearrow}\right) \leq 1+\frac{H^{2}(X)}{a^{2}}
$$

and similarly,

$$
\mathbb{E}\left[\log ^{2}\left(p^{\searrow}\left(X^{\searrow}\right)\right)\right] \leq 1+\frac{H^{2}(X)}{b^{2}} .
$$

We deduce that

$$
\begin{aligned}
\mathbb{E}\left[\log ^{2}(p(X))\right] & =\sum_{k \in \mathbb{Z}} p(k) \log ^{2}(p(k)) \\
& \leq \sum_{k \in \mathbb{Z}} a p^{\nearrow}(k) \log ^{2}\left(a p^{\nearrow}(k)\right)+\sum_{k \in \mathbb{Z}} b p^{\searrow}(k) \log ^{2}(b p \searrow(k)) \\
& \leq 2\left(a \log ^{2}(a)+a \mathbb{E}\left[\log ^{2}\left(p^{\nearrow}\left(X^{\nearrow}\right)\right)\right]+b \log ^{2}(b)+b \mathbb{E}\left[\log ^{2}\left(p^{\searrow}\left(X^{\searrow} \searrow\right)\right)\right]\right) \\
& \leq 2\left(4 e^{-2}+a+\frac{H^{2}(X)}{a}+4 e^{-2}+b+\frac{H^{2}(X)}{b}\right) \\
& \leq 4\left(4 e^{-2}+1+\frac{H^{2}(X)}{\|p\|_{\infty}}\right),
\end{aligned}
$$

where we used the fact that $a, b \in\left[\|p\|_{\infty}, 1\right]$.
Remark 2.7. For an isotropic log-concave random variable $X$ on $\mathbb{Z}$ with probability mass function $p$, the above bounds reduce to

$$
\begin{align*}
\mathbb{E}\left[|X|^{\beta}\right]^{\frac{1}{\beta}} & \leq 3 \Gamma(\beta+1)^{\frac{1}{\beta}}, \quad \beta \geq 1  \tag{6}\\
\mathbb{P}(|X| \geq t) & \leq 2 e^{-\frac{t}{6}}, \quad t \geq 0  \tag{7}\\
\sqrt{2} & \leq \frac{1}{\|p\|_{\infty}} \leq \sqrt{13}  \tag{8}\\
H(X) & \leq \frac{1}{2} \log \left(2 \pi e\left(1+\frac{1}{12}\right)\right) \leq 3 \tag{9}
\end{align*}
$$

in particular, we also deduce

$$
\begin{equation*}
\mathbb{E}\left[\log ^{2}(p(X))\right] \leq 4\left(4 e^{-2}+1+9 \sqrt{13}\right) \leq 136 . \tag{10}
\end{equation*}
$$

## 3 Main results and proofs

This section contains our main results together with the proofs. The first theorem establishes quantitative reversal bounds between 1-Wasserstein distance and Lévy-Prokhorov distance.

Theorem 3.1. Let $\mu$ and $\nu$ be isotropic log-concave probability measures on $\mathbb{Z}$, then

$$
W_{1}(\mu, \nu) \leq 12 d_{L P}(\mu, \nu) \log \left(\frac{4 e}{d_{L P}(\mu, \nu)}\right) .
$$

Proof. Let $R>0$. Let $X$ (resp. $Y$ ) be distributed according to $\mu$ (resp. $\nu$ ). Note that for all $t \geq 0$,

$$
\mathbb{P}(|X-Y|>t)=\mathbb{P}(|X-Y| \geq\lfloor t\rfloor+1) \leq \mathbb{P}(|X-Y| \geq 1) \leq K(X, Y)
$$

therefore,

$$
\begin{aligned}
\mathbb{E}[|X-Y|] & =\int_{0}^{R} \mathbb{P}(|X-Y|>t) d t+\int_{R}^{\infty} \mathbb{P}(|X-Y|>t) d t \\
& \leq R K(X, Y)+\int_{R}^{\infty} \mathbb{P}\left(|X|>\frac{t}{2}\right) d t+\int_{R}^{\infty} \mathbb{P}\left(|Y|>\frac{t}{2}\right) d t
\end{aligned}
$$

Applying inequality (7), we obtain

$$
W_{1}(\mu, \nu) \leq \mathbb{E}[|X-Y|] \leq R K(X, Y)+2 \int_{R}^{\infty} 2 e^{-\frac{t}{12}} d t=R K(X, Y)+48 e^{-\frac{R}{12}}
$$

The above inequality being true for any random variable $X$ with distribution $\mu$ and any random variable $Y$ with distribution $\nu$, we deduce by taking infimum over all couplings that

$$
W_{1}(\mu, \nu) \leq R d_{L P}(\mu, \nu)+48 e^{-\frac{R}{12}}
$$

Choosing $R=12 \log \left(4 / d_{L P}(\mu, \nu)\right)$, which is nonnegative, yields the desired result.
The next theorem demonstrates that Wasserstein distances are equivalent for discrete log-concave distributions.

Theorem 3.2. Let $\mu$ and $\nu$ be isotropic log-concave probability measures on $\mathbb{Z}$, then for all $1 \leq p \leq q$,

$$
W_{q}^{q}(\mu, \nu) \leq 24^{q-p} W_{p}^{p}(\mu, \nu) \log ^{q-p}\left(\frac{6^{q} \sqrt{\Gamma(2 q+1)}}{W_{p}^{p}(\mu, \nu)}\right)+2 W_{p}^{p}(\mu, \nu)
$$

Proof. Let $X$ (resp. $Y$ ) be distributed according to $\mu$ (resp. $\nu$ ). Let $R>0$. One has

$$
\begin{aligned}
\mathbb{E}\left[|X-Y|^{q}\right] & =\mathbb{E}\left[|X-Y|^{q-p+p} 1_{\{|X-Y|<R\}}\right]+\mathbb{E}\left[|X-Y|^{q} 1_{\{|X-Y| \geq R\}}\right] \\
& \leq R^{q-p} \mathbb{E}\left[|X-Y|^{p}\right]+\sqrt{\mathbb{P}(|X-Y| \geq R) \mathbb{E}\left[|X-Y|^{2 q}\right]}
\end{aligned}
$$

where we used the Cauchy-Schwarz inequality. Note that by inequality (6),

$$
\mathbb{E}\left[|X-Y|^{2 q}\right]^{\frac{1}{2 q}} \leq \mathbb{E}\left[|X|^{2 q}\right]^{\frac{1}{2 q}}+\mathbb{E}\left[|Y|^{2 q}\right]^{\frac{1}{2 q}} \leq 6 \Gamma(2 q+1)^{\frac{1}{2 q}}
$$

Moreover, by inequality (7),

$$
\mathbb{P}(|X-Y| \geq R) \leq \mathbb{P}\left(|X| \geq \frac{R}{2}\right)+\mathbb{P}\left(|Y| \geq \frac{R}{2}\right) \leq 4 e^{-\frac{R}{12}}
$$

Combining the above and taking infimum over all couplings yield

$$
W_{q}^{q}(\mu, \nu) \leq R^{q-p} W_{p}^{p}(\mu, \nu)+6^{q} 2 \sqrt{\Gamma(2 q+1)} e^{-\frac{R}{24}}
$$

The result follows by choosing $R=24 \log \left(\frac{6^{q} \sqrt{\Gamma(2 q+1)}}{W_{p}^{p}(\mu, \nu)}\right)$, which is nonnegative since by inequality (6) and log-convexity of the Gamma function,

$$
W_{p}^{p}(\mu, \nu) \leq\left(\mathbb{E}\left[|X|^{p}\right]^{\frac{1}{p}}+\mathbb{E}\left[|Y|^{p}\right]^{\frac{1}{p}}\right)^{p} \leq 6^{p} \Gamma(p+1) \leq 6^{q} \sqrt{\Gamma(2 q+1)}
$$

Let us now turn to $f$-divergences. Considering $f$-divergences, such as the Kullback-Leibler divergence, the main question lies in figuring out the distribution of the reference measure. In general, if the support of a measure $\mu$ is not included in the support of a measure $\nu$, then $D(\mu \| \nu)=+\infty$. Our choice of reference measure will therefore be a measure fully supported
on $\mathbb{Z}$, but it turns out that it needs not be log-concave. Given $a>0$ and $c \geq 1$, let us introduce the following class of functions:

$$
\mathcal{Q}(a, c)=\left\{q: \mathbb{Z} \rightarrow[0,1], \forall k \in \mathbb{Z}, q(k)>0 \text { and } \log \left(\frac{1}{q(k)}\right) \leq a k^{2}+\log (c)\right\}
$$

Before stating our next result, let us note that important distributions belong to such a class.

Remark 3.3. The isotropic symmetric Poisson distribution, whose probability mass function is

$$
q(k)=C \frac{\lambda^{|k|}}{|k|!}, \quad k \in \mathbb{Z}
$$

with $\lambda>0$ such that $\sum_{k \in \mathbb{Z}} k^{2} q(k)=1$ and $C=\left(2 e^{\lambda}-1\right)^{-1}$ being the normalizing constant, belongs to $\mathcal{Q}(1+\log (4), 2 e-1)$. Indeed, since

$$
1=\sum_{k \in \mathbb{Z}} k^{2} q(k)=\frac{2 e^{\lambda}}{2 e^{\lambda}-1} \lambda(1+\lambda),
$$

then one may choose $\lambda \in[1 / 4,1]$. Therefore, using $|k|!\leq|k|^{|k|}$,

$$
0 \leq \log \left(\frac{1}{q(k)}\right)=\log (|k|!)+|k| \log \left(\frac{1}{\lambda}\right)+\log \left(2 e^{\lambda}-1\right) \leq(1+\log (4)) k^{2}+\log (2 e-1)
$$

One may also note that the isotropic symmetric geometric distribution and isotropic discretized Gaussian distribution (whose p.m.f. is of the form $q(k)=C e^{-\lambda k^{2}}$ ) belong to $\mathcal{Q}(a, c)$ for some numerical constants $a, c>0$. The above three measures are natural candidates as a reference measure for Kullback-Leibler divergence.

As for examples of non-log-concave distributions, consider p.m.f. of the form $C e^{-\lambda k^{\alpha}}$, for $\alpha \in(0,1)$.

The next result provides a comparison between total variation distance and $f$-divergences. The result is general as it holds for arbitrary convex function $f$, however the statement is not in a closed form formula. We state it as a lemma, and then apply it to two specific convex functions, yielding a comparison with Kullback-Leibler divergence and $\chi^{2}$-divergence.
Lemma 3.4. Let $f:[0,+\infty) \rightarrow \mathbb{R}$ be a convex function such that $f(1)=0$. Let $a>0$ and $c \geq 1$. Let $\nu$ be a measure on $\mathbb{Z}$ whose p.m.f. $q$ belongs to the class $\mathcal{Q}(a, c)$. Let $\mu$ be an isotropic log-concave measure on $\mathbb{Z}$ with p.m.f. $p$. Then, denoting by $Y$ a random variable with distribution $\mu$ and $W=p(Y) / q(Y)$,

$$
\begin{aligned}
d_{f}(\mu \| \nu) \leq \inf _{R \geq c}\left[\left(\max \{f(0), 0\}+\frac{f(R)}{R-1}\right)\right. & d_{T V}(\mu, \nu)+ \\
& \left.\sqrt{\mathbb{E}\left[\left(\frac{f(W)}{W}\right)^{2} 1_{\{W>1\}}\right]} \sqrt{2} e^{-\frac{1}{12} \sqrt{\frac{1}{a} \log \left(\frac{R}{c}\right)}}\right] .
\end{aligned}
$$

Proof. The idea of proof comes from [16] (see also [14]). Denote by $p$ (resp. q) the p.m.f. of $\mu(\operatorname{resp} . \nu)$. Denote by $Y$ a random variable with p.m.f. $p$, by $Z$ a random variable with p.m.f. $q$, and denote

$$
X=\frac{p(Z)}{q(Z)}, \quad W=\frac{p(Y)}{q(Y)}
$$

Using identity (3), one has

$$
\begin{equation*}
\mathbb{E}[|X-1|]=d_{T V}(\mu, \nu) \tag{11}
\end{equation*}
$$

Let $R \geq 1$ and write

$$
d_{f}(\mu \| \nu)=\mathbb{E}[f(X)]=\mathbb{E}\left[f(X) 1_{\{X<1\}}\right]+\mathbb{E}\left[f(X) 1_{\{1 \leq X \leq R\}}\right]+\mathbb{E}\left[f(X) 1_{\{X>R\}}\right] .
$$

Let us bound all three parts. For the first part, since $f$ is convex and $f(1)=0$, it holds that for all $x \in[0,1]$,

$$
f(x) \leq f(0)|x-1| \leq \max \{f(0), 0\}|x-1| .
$$

Therefore, using (11),

$$
\begin{equation*}
\mathbb{E}\left[f(X) 1_{\{X<1\}}\right] \leq \max \{f(0), 0\} \mathbb{E}\left[|X-1| 1_{\{X<1\}}\right] \leq \max \{f(0), 0\} d_{T V}(\mu, \nu) \tag{12}
\end{equation*}
$$

For the second part, since $f$ is convex and $f(1)=0$, it holds that for all $x \in[1, R]$,

$$
f(x) \leq \frac{f(R)}{R-1}(x-1)
$$

Hence, using (11),

$$
\begin{equation*}
\mathbb{E}\left[f(X) 1_{\{1 \leq X \leq R\}}\right] \leq \frac{f(R)}{R-1} \mathbb{E}\left[(X-1) 1_{\{1 \leq X \leq R\}}\right] \leq \frac{f(R)}{R-1} d_{T V}(\mu, \nu) . \tag{13}
\end{equation*}
$$

For the last part, note that

$$
\begin{equation*}
\mathbb{E}\left[f(X) 1_{\{X>R\}}\right]=\mathbb{E}\left[\frac{f(W)}{W} 1_{\{W>R\}}\right] \leq \sqrt{\mathbb{E}\left[\left(\frac{f(W)}{W}\right)^{2} 1_{\{W>1\}}\right]} \sqrt{\mathbb{P}(W>R)}, \tag{14}
\end{equation*}
$$

where we used the Cauchy-Schwarz inequality. It remains to upper bound $\mathbb{P}(W>R)$. Using that $q \in \mathcal{Q}(a, c)$ and $\|p\|_{\infty} \leq 1$, we have

$$
\mathbb{P}(W>R)=\mathbb{P}\left(\frac{p(Y)}{q(Y)}>R\right) \leq \mathbb{P}\left(\log (c)+a Y^{2}>\log (R)\right) .
$$

Using (7), we deduce that for all $R \geq c$,

$$
\begin{equation*}
\mathbb{P}(W>R) \leq \mathbb{P}\left(|Y|>\sqrt{\frac{1}{a} \log \left(\frac{R}{c}\right)}\right) \leq 2 e^{-\frac{1}{6} \sqrt{\frac{1}{a} \log \left(\frac{R}{c}\right)}} . \tag{15}
\end{equation*}
$$

The result follows by combining (12), (13), (14), and (15), and by taking infimum over all $R \geq c$.

Applying Lemma 3.4 to the convex function $f(x)=x \log (x), x \geq 0$, yields a comparison between total variation distance and Kullback-Leibler divergence.

Theorem 3.5. Let $a>0$ and $c \geq 2$. Let $\nu$ be a measure on $\mathbb{Z}$ whose p.m.f. belongs to the class $\mathcal{Q}(a, c)$. Let $\mu$ be an isotropic log-concave measure on $\mathbb{Z}$. Then,

$$
D(\mu \| \nu) \leq d_{T V}(\mu, \nu)\left(288 a \log ^{2}\left(\frac{(\sqrt{136}+46 a+\log (c)) \sqrt{2}}{24 \sqrt{a} d_{T V}(\mu, \nu)}\right)+2 \log (c)+24 \sqrt{a}\right)
$$

Proof. Recall the notation $W=p(Y) / q(Y)$ from Lemma 3.4. With the choice of convex function $f(x)=x \log (x), x \geq 0$, Lemma 3.4 tells us that for all $R \geq c \geq 2$,

$$
D(\mu \| \nu) \leq 2 \log (R) d_{T V}(\mu, \nu)+\sqrt{\mathbb{E}\left[|\log (W)|^{2}\right]} \sqrt{2} e^{-\frac{1}{12} \sqrt{\frac{1}{a} \log \left(\frac{R}{c}\right)}}
$$

Next, let us upper bound the term $\mathbb{E}\left[|\log (W)|^{2}\right]^{1 / 2}$. On one hand, since $q \in \mathcal{Q}(a, c)$,

$$
\begin{equation*}
\mathbb{E}\left[|\log (q(Y))|^{2}\right] \leq \mathbb{E}\left[\left(\log (c)+a Y^{2}\right)^{2}\right] \leq \log ^{2}(c)+2 a \log (c)+1944 a^{2}:=C(a, c), \tag{16}
\end{equation*}
$$

where we used (6). On the other hand, by inequality (10),

$$
\begin{equation*}
\mathbb{E}\left[|\log (p(Y))|^{2}\right] \leq 136 \tag{17}
\end{equation*}
$$

Therefore, combining (16) and (17),

$$
\begin{equation*}
\mathbb{E}\left[|\log (W)|^{2}\right]^{\frac{1}{2}} \leq \mathbb{E}\left[|\log (p(Y))|^{2}\right]^{\frac{1}{2}}+\mathbb{E}\left[|\log (q(Y))|^{2}\right]^{\frac{1}{2}} \leq \sqrt{136}+\sqrt{C(a, c)}, \tag{18}
\end{equation*}
$$

implying

$$
D(\mu \| \nu) \leq 2 \log (R) d_{T V}(\mu, \nu)+(\sqrt{136}+\sqrt{C(a, c)}) \sqrt{2} e^{-\frac{1}{12} \sqrt{\frac{1}{a} \log \left(\frac{R}{c}\right)}}
$$

Putting $t=\sqrt{\log \left(\frac{R}{c}\right)}$, the above inequality reads

$$
D(\mu \| \nu) \leq 2 \log (c) d_{T V}(\mu, \nu)+2 d_{T V}(\mu, \nu) t^{2}+(\sqrt{136}+\sqrt{C(a, c)}) \sqrt{2} e^{-\frac{t}{12 \sqrt{a}}} .
$$

Choosing $t=12 \sqrt{a} \log \left(\frac{(\sqrt{136}+\sqrt{C(a, c)}) \sqrt{2}}{24 \sqrt{a} d_{T V}(\mu, \nu)}\right)$, which is nonnegative, and using the bound

$$
\sqrt{C(a, c)}=\sqrt{(a+\log (c))^{2}+1943 a^{2}} \leq 46 a+\log (c)
$$

yields the desired result.
As a last illustration, the next result provides a comparison between total variation distance and $\chi^{2}$-divergence, under an extra moment assumption.

Theorem 3.6. Let $a>0$ and $c \geq 1$. Let $\nu$ be a measure on $\mathbb{Z}$ whose p.m.f. belongs to the class $\mathcal{Q}(a, c)$. Let $\mu$ be an isotropic log-concave measure on $\mathbb{Z}$. Under the moment assumption

$$
\mathbb{E}\left[e^{2 a Y^{2}}\right]<+\infty,
$$

where $Y$ denotes a random variable with distribution $\mu$, one has

$$
d_{\chi^{2}}(\mu \| \nu) \leq c\left(d_{T V}(\mu, \nu)+\sqrt{d_{T V}(\mu, \nu)}\right)+c \sqrt{\mathbb{E}\left[e^{2 a Y^{2}}\right]} \sqrt{2} e^{-\frac{1}{12} \sqrt{\frac{1}{a} \log \left(1+\frac{1}{\sqrt{d_{T V}(\mu, \nu)}}\right)} . . . ~}
$$

Proof. Recall the notation $W=p(Y) / q(Y)$ from Lemma 3.4. With the choice of convex function $f(x)=(x-1)^{2}, x \geq 0$, Lemma 3.4 tells us that for all $R \geq c$,

$$
d_{\chi^{2}}(\mu \| \nu) \leq R d_{T V}(\mu, \nu)+\sqrt{\mathbb{E}\left[\frac{(W-1)^{4}}{W^{2}} 1_{\{W>1\}}\right]} \sqrt{2} e^{-\frac{1}{12} \sqrt{\frac{1}{a} \log \left(\frac{R}{c}\right)}} .
$$

Note that

$$
\mathbb{E}\left[\frac{(W-1)^{4}}{W^{2}} 1_{\{W>1\}}\right] \leq \mathbb{E}\left[W^{2}\right] \leq \mathbb{E}\left[\frac{1}{q^{2}(Y)}\right] \leq c^{2} \mathbb{E}\left[e^{2 a Y^{2}}\right]
$$

where the last inequality comes from $q \in \mathcal{Q}(a, c)$. Therefore,

$$
d_{\chi^{2}}(\mu \| \nu) \leq R d_{T V}(\mu, \nu)+c \sqrt{\mathbb{E}\left[e^{2 a Y^{2}}\right]} \sqrt{2} e^{-\frac{1}{12} \sqrt{\frac{1}{a} \log \left(\frac{R}{c}\right)}}
$$

Choosing $R=c\left(1+\frac{1}{\sqrt{d_{T V}(\mu, \nu)}}\right)$ yields the desired result.

## References

[1] H. Aravinda. Entropy-variance inequalities for discrete log-concave random variables via degree of freedom, to appear in Discrete Mathematics.
[2] S. G. Bobkov, G. P. Chistyakov. On concentration functions of random variables. J. Theor. Probab. 28 (2015), no. 3, 976-988.
[3] S. G. Bobkov, A. Marsiglietti, J. Melbourne. Concentration functions and entropy bounds for discrete log-concave distributions, Combin. Probab. Comput. 31 (2022), no. 1, 54-72.
[4] P. Brändén. Unimodality, log-concavity, real-rootedness and beyond. Handbook of enumerative combinatorics, Discrete Math. Appl., CRC Press:437-483, 2015.
[5] F. Brenti. Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update. In Jerusalem combinatorics '93, volume 178 of Contemp. Math., pages 71-89. Amer. Math. Soc., Providence, RI, 1994.
[6] I. Csiszár. Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2 (1967), 299-318.
[7] P. Cattiaux, A. Guillin. On the Poincaré constant of log-concave measures. Geometric Aspects of Functional Analysis: Israel Seminar (GAFA). 2017-2019. Volume I. LNM 2256, Springer Verlag, 171-217, 2020.
[8] R. M. Dudley. Distances of probability measures and random variables. Ann. Math. Statist. 39 (1968), 1563-1572.
[9] R. M. Dudley. Real analysis and probability.(English summary) Revised reprint of the 1989 original Cambridge Stud. Adv. Math., 74 Cambridge University Press, Cambridge, 2002. $\mathrm{x}+555 \mathrm{pp}$.
[10] A. L. Gibbs, F. E. Su. On choosing and bounding probability metrics. Preprint, arXiv:math/0209021.
[11] J. Jakimiuk, D. Murawski, P. Nayar, S. Słobodianiuk. Log-concavity and discrete degrees of freedom. Preprint, arXiv:2205.04069.
[12] F. Liese, I. Vajda. Convex statistical distances. With German, French and Russian summaries Teubner-Texte Math., $95[$ Teubner Texts in Mathematics] BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1987. 224 pp.
[13] A. Marsiglietti, J. Melbourne. Moments, concentration, and entropy of log-concave distributions. Preprint, arXiv:2205.08293.
[14] A. Marsiglietti, P. Pandey. On the equivalence of statistical distances for isotropic convex measures, Mathematical Inequalities \& Applications, Volume 25, Issue 3, 881-901, 2022.
[15] J. L. Massey. On the entropy of integer-valued random variables. In: Proc. 1988 Beijing Int. Workshop on Information Theory, pages C1.1-C1.4, July 1988.
[16] E. Meckes, M. Meckes. On the Equivalence of Modes of Convergence for Log-Concave Measures. In Geometric aspects of functional analysis (2011/2013), volume 2116 of Lecture Notes in Math., pages 385-394. Springer, Berlin, 2014.
[17] J. Melbourne, G. Palafox-Castillo. A discrete complement of Lyapunov's inequality and its information theoretic consequences. Preprint, arXiv:2111.06997.
[18] M. S. Pinsker. Information and information stability of random variables and processes. Translated and edited by Amiel Feinstein Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1964, xii+243 pp.
[19] S. T. Rachev, L. B. Klebanov, S. V. Stoyanov, and F. J. Fabozzi. The methods of distances in the theory of probability and statistics. Springer-Verlag, New York, 2013.
[20] A. Saumard, J. A. Wellner. Log-concavity and strong log-concavity: a review. Stat. Surv. 8, 45-114, 2014.
[21] R. P. Stanley. Log-concave and unimodal sequences in algebra, combinatorics, and geometry. In Graph theory and its applications: East and West (Jinan, 1986), volume 576 of Ann. New York Acad. Sci., pages 500-535. New York Acad. Sci., New York, 1989.
[22] R. Vershynin. High-dimensional probability. An introduction with applications in data science. With a foreword by Sara van de Geer. Cambridge Series in Statistical and Probabilistic Mathematics, 47. Cambridge University Press, Cambridge, 2018. xiv+284 pp.

Arnaud Marsiglietti
Department of Mathematics
University of Florida
Gainesville, FL 32611, USA
a.marsiglietti@ufl.edu

Puja Pandey
Department of Mathematics
University of Florida
Gainesville, FL 32611, USA
puja.pandey@ufl.edu

