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Abstract

In this note we explore how standard statistical distances are equivalent for discrete
log-concave distributions. Distances include total variation distance, Wasserstein dis-
tance, and f-divergences.
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1 Introduction

The study of convergence of probability measures is central in probability and statistics, and
may be performed via statistical distances for which the choice has its importance (see, e.g.,
[10], [19]). The space of probability measures, say over the real numbers, is infinite dimen-
sional, therefore there is a priori no canonical distance, and distances may not be equivalent.
Nonetheless, an essential contribution made by Meckes and Meckes in [16] demonstrates
that certain statistical distances between continuous log-concave distributions turn out to be
equivalent up to constants that may depend on the dimension of the ambient space (see also
[7] for improved bounds, and [14] for the extension to the broader class of so-called s-concave
distributions).

The goal of this note is to develop quantitative comparisons between distances for discrete
log-concave distributions. Let us denote by N = {0,1,2,... } the set of natural numbers and
by Z the set of integers. Recall that the probability mass function (p.m.f.) associated with
an integer valued random variable X is

k) =P(X =k), keZ.

An integer-valued random variable X is said to be log-concave if its probability mass function
p satisfies
p(k)? = p(k — p(k + 1)

for all k£ € Z and the support of X is an integer interval.

Discrete log-concave distributions form an important class. Examples include Bernoulli,
discrete uniform, binomial, geometric and Poisson distributions. We refer to [21], [5], [20],
[4] for further background on log-concavity.

Let us introduce the main distances we will work with (we refer to [12], [9], [10], [19] for
further background on statistical distances). Our setting is the real line R equipped with its
usual Euclidean structure d(z,y) = |z — y|, =,y € R.

1. The bounded Lipschitz distance between two probability measures p and v is defined

as
/gdu—/gdv

dpr(p,v) = sup
lgllzL<1

)
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where for a function g: R — R,
ol = max{ugnw, SHPM} .
ary T =Yl
. The Lévy-Prokhorov distance between two probability measures p and v is defined as
drp(p,v) =1inf {e > 0: u(A) < v(A®) + € for all Borel set A C R},
where A° = {z € R: d(z, A) < e}.
Using the Ky-Fan distance, which is defined for two random variables X and Y as
K(X,)Y)=inf{e >0:P(|X - Y| >¢) <€},
the Lévy-Prokhorov distance admits the following coupling representation,
dLp(p,v) = inf K(X,Y), (1)

where the infimum runs over all random variables X with distribution @ and random
variables Y with distribution v (see, e.g., [19]).

. The total variation distance between two probability measures p and v is defined as

drv (p,v) = 2 sup |[u(A) — v(A)].
ACR

The total variation distance admits the following coupling representation,
dry (p,v) =inf P(X #Y), (2)

where the infimum runs over all random variables X with distribution g and random
variables Y with distribution v (see, e.g., [10]). Moreover, for integer valued measures,
one has the following identity,

drv () = 3 Ju({kY) = v({kD)] (3)

kEZ

. The p-th Wasserstein distance, p > 1, between two probability measures p and v is
defined as

Wy, v) = inf E[|X — Y],

where the infimum runs over all random variables X with distribution g and random
variables Y with distribution v.

. Let f: [0, +00) — R be a convex function such that f(1) = 0. The f-divergence between
two probability measures p and v on Z is defined as

dp(ullv) =D v({k})f <%ZB> '

keZ

Note that the choice of convex function f(x) = xlog(x), > 0, leads to the Kullback-

Leibler divergence
D(ully) = Stk o (4 ).

keZ
the function f(z) = (z — 1)? yields the so-called x2-divergence, while f(z) = |z — 1]
returns us to the total variation distance.




Let us review the known relationships between the above distances. It is known [8,
Corollaries 2 and 3| that bounded Lipschitz and Lévy-Prokhorov distances are equivalent,

1 3
§dBL(N7 v) <drp(p,v) < §dBL(N7 v).

One also has
drp(p,v) < dpy(p,v),

and, for u,v integer valued probability measures,

dry (p,v) < Wi(p,v),
see [10]. By Hélder’s inequality, if p < ¢, then

Wp(p,v) < W, v).

As for divergences, the Pinsker-Csiszar inequality ([18], [6]) states that

dry (p,v) < /2D (pl|v).

Also, one has
D(ullv) < log(1 + x*(p||v))

The article is organized as follows. In Section 2, we establish properties for log-concave
distributions on Z that are of independent interests. In section 3, we present our results and
proofs.

2 Preliminaries

In this section we gather the main tools used throughout the proofs. First, recall that a
real-valued random variable X is said to be isotropic if

E[X] =0, E[X? =1.

We start with an elementary lemma that will allow us to pass results for log-concave distri-
butions on N to log-concave distributions on Z, however with sub-optimal constants.

Lemma 2.1. If X is symmetric log-concave on Z, then |X| is log-concave on N.

Proof. Denote by p (resp. ¢) the p.m.f. of X (resp. |X|). Then, ¢(0) = p(0) and q(k) = 2p(k)
for kK > 1. Therefore,

and for all k > 2,
q*(k) = 4p*(k) > 4p(k + V)p(k — 1) = q(k + 1)g(k — 1).
Hence, q is log-concave. O

We note that Lemma 2.1 no longer holds for non-symmetric log-concave random variables,
as can be seen by taking X supported on {—1,0,1,2,3} with distribution P(X = —1) =
P(X =3) =01, P(X =0) = P(X =2) =02, and P(X = 1) = 0.4. In this case,
P(1X| = 2)° < P(|X| = 1)P(X] = 3).

The next lemma provides moments bounds for log-concave distributions on Z.



Lemma 2.2. If X is log-concave on Z, then for all 5 > 1,

<T(8+1)% (2E[X — E[X][] + 1).

=

E[|IX - E[X]%]

Proof. Tt has been shown in [13, Corollary 4.5] that for all log-concave random variable X
on N, for all g > 1,
1 1
E[x?)% <T(8+1)7(E[X] +1). (4)

Let X be a symmetric log-concave random variable on Z, then by Lemma 2.1, | X]| is log-
concave on N so one may apply inequality (4) to obtain

E[|X|°]7 < T(8+ 1)3 E[|X]) +1). (5)

Now, let X be a log-concave random variable on Z. Let Y be an independent copy of X, so
that X — Y is symmetric log-concave. Applying inequality (5), we deduce that

E[| X —E[X]|’)7 <E[X —Y|*]F < T(8+1)7(E[|X —Y[]+1) < [(8+1)7 (2E[| X —E[X][]+1),

where the first inequality follows from Hoélder’s inequality and the last inequality from triangle
inequality. O

Let us derive concentration inequalities for log-concave distributions on Z.

Lemma 2.3. For each log-concave random variable X on Z, one has for allt > 0,
P(|X — E[X]| > t) < 2¢ 2@EX-EXITD)

Proof. The proof is a standard application of the moments bounds obtained in Lemma 2.2
(see, e.g., [22]). For A > 0,

R[N X-EIXI|] 1+Z E[X - E[X]|®] < 1+Z ﬁ' (2E[IX — E[X]] + 1)°
5>1 B>1
= Y AEEX - E[X]]] + 1))
B=0
1

- AM2E[|X —E[X]|] +1)’

W.hlege the last identity holds for all 0 < A < m. Choosing A = SR]] X_I]E[Xm
yields

1)

E[X-EX] < o
Therefore, by Markov’s inequality,
P(|X — E[X]| > t) = P(NX—EXI| > oMy < BAX-EXIe=X < 90~ 2mmmx—mxyD
U

The following lemma, which provides a bound on the variance and maximum of the
probability mass function of log-concave distributions on Z, was established in [3] and [1]
(see, also, [2], [11]).



Lemma 2.4 ([3], [1]). Let X be a log-concave distribution on Z with probability mass function
p, then

1+ Var(X) < 1+ 12 Var(X).

Tl =

The following lemma is standard in information theory and provides an upper bound on
the entropy of an integer valued random variable (see [15]). Recall that the Shannon entropy
of an integer valued random variable X with p.m.f. p is defined as

H(X) = E[~log(p(X))] = — 3 p(k) log(p
kEZ

Lemma 2.5 ([15]). For any integer valued random variable X with finite second moment,

H(X) < %log (2776 <Var(X) 4 %)) .

The last lemma, of this section provides a bound on the second moment of the information
content of a log-concave distribution on Z.

Lemma 2.6. Let X be a discrete log-concave random variable on Z with probability mass
function p. Then,
H2<X>>

[1plloc

E[log?(p(X))] < 4 <4e—2 + 14

Proof. Let X be a log-concave random variable with p.m.f. p. Then p is unimodal, that is,
there exists m € Z such that for all £ < m, p(k—1) < p(k) and for all £ > m, p(k) > p(k+1).
Note that p(m) = ||p||ec. Define, for k € Z,

~ pk)
p” (k) = ml{kgm}7
and )
p
p (k) = ml{@m}-

Note that both p/" and p ™ are monotone log-concave probability mass functions. Denote by
X/ (resp. X ™) a random variable with p.m.f. p”* (resp. p ). Denote also a = > 1<m P()
and b =) ,~,. p(l). On one hand, by a result of Melbourne and Palafox-Castillo [17, Theorem
2.5], B

Var(log(p” (X)) <1, Var(log(p (X ))) < 1.

On the other hand,

Zp ( {L))S%Zp(k)logQ%))S%H(X),

k<m k<m
and similarly,
H(xvy <2 (bX )
Therefore,
Ellog?(p”" (X)) = Var(log(p” (X)) + H2(x /) < 1+ L,



and similarly,

H?*(X
Bllog?(p (X V)] < 1+ 6.
We deduce that
Ellog®(p(X))] = >_ p(k)log®(p(k))
keZ
< > ap” (k) log®(ap” (k) + Y bp (k) log® (bp (k)
keZ keZ
< 2 (alog?(a) + aEflog?(p”" (X)) + blog? () + bE[log(p (X )] )
2 2
< 2 (46_2—1—a+ LhCY) tae? ppe 2 l()X))
2
< 4<4e‘2+1+H (X)>,
[Plloo
where we used the fact that a,b € [||p||oo, 1]- O

Remark 2.7. For an isotropic log-concave random variable X on Z with probability mass
function p, the above bounds reduce to

E|X|°)7 < 3T(B+1)5, B>1, (6)
P(X|>t) < 2e‘%, t>0, (7)
V2 < —— < V13, (8)
HpHoo
H(X) < %log <27re <1+112>> <3, 9)
i particular, we also deduce
Ellog?(p(X))] < 4(4e™2 4+ 14+ 9V13) < 136. (10)

3 Main results and proofs

This section contains our main results together with the proofs. The first theorem establishes
quantitative reversal bounds between 1-Wasserstein distance and Lévy-Prokhorov distance.

Theorem 3.1. Let pu and v be isotropic log-concave probability measures on Z, then

drp(p,v)

Proof. Let R > 0. Let X (resp. Y) be distributed according to u (resp. v). Note that for all
t>0,

4
Wi(p,v) < 12dpp(p,v)log <7e> .

P(X —Y|>t)=P(X -Y|>[t|]+1) <P(X -Y|>1) < K(X,Y),

therefore,

E[X Y| = /OR]P’(]X—Y\>t)dt+/}:O]P’(\X—Y\>t)dt

RK(X,Y)+/ROO <|X|> >dt+/oo <|Y|>§>dt.

IN



Applying inequality (7), we obtain
mﬂwmgmmeyugmaxm+g/2aéﬁ:RmxyH4&#3
R
The above inequality being true for any random variable X with distribution p and any
random variable Y with distribution v, we deduce by taking infimum over all couplings that
Wi(w,v) < Rdpp(p,v) + 48 1.
Choosing R = 12log(4/drp (4, v)), which is nonnegative, yields the desired result. O

The next theorem demonstrates that Wasserstein distances are equivalent for discrete
log-concave distributions.

Theorem 3.2. Let i and v be isotropic log-concave probability measures on Z, then for all
l<p<gq

67,/I'(2¢ + 1)

Wi(p,v) <247 PW ] (p,v) log?™? ( W20 v)

>+2WﬂMV%

Proof. Let X (resp. Y) be distributed according to u (resp. v). Let R > 0. One has

E[X -Y|"] = E[X -Y|"PPlyx_yj<ry] +E[X = Y| x_v >R
< RIPE[|X —YP]++P(|X —Y]| > RE[|X —Y|%],

where we used the Cauchy-Schwarz inequality. Note that by inequality (6),
21 21 21 1
E[IX — Y[¥]% < E[|X[2)% + E[|Y[¥]% < 6I'(2q+ 1)%.

Moreover, by inequality (7),

P(X ~¥| > B) < B(X| > ) + B(Y] > 5) < de .

Combining the above and taking infimum over all couplings yield
Wi v) < RTPWE(n,v) +672/T(2g + De™ 2.

The result follows by choosing R = 24 log <6q T(2qt1)

—_ "], which is nonnegative since by in-
W (.v) > 8 Y

equality (6) and log-convexity of the Gamma function,
1 1\P
WP, v) < (E[|X|p]P + E[|Y|p]P> <6°T(p+1) < 69/T (2 + 1).

0

Let us now turn to f-divergences. Considering f-divergences, such as the Kullback-Leibler
divergence, the main question lies in figuring out the distribution of the reference measure.
In general, if the support of a measure p is not included in the support of a measure v, then
D(ul|lv) = 4o00. Our choice of reference measure will therefore be a measure fully supported



on Z, but it turns out that it needs not be log-concave. Given a¢ > 0 and ¢ > 1, let us
introduce the following class of functions:

1
Qa,c) ={q: Z — [0,1], Vk € Z,q(k) > 0 and log (@) < ak? +log(c)}.
Before stating our next result, let us note that important distributions belong to such a
class.

Remark 3.3. The isotropic symmetric Poisson distribution, whose probability mass function

18 |I<;‘
A

with A > 0 such that 3", ., k*q(k) = 1 and C = (2¢* — 1)~ being the normalizing constant,
belongs to Q(1 +log(4),2e — 1). Indeed, since

keZ,

9 2
1:Zk q(k‘):%)\_l

keZ

AL+ ),

then one may choose X € [1/4,1]. Therefore, using |k|! < |k|*!,

1 1
0 < log <W> = log(|k|!) + |k|log (X) +log(2e* — 1) < (1 + log(4))k* 4 log(2e — 1).
q
One may also note that the isotropic symmetric geometric distribution and isotropic dis-
cretized Gaussian distribution (whose p.m.f. is of the form q(k) = Ce™***) belong to Q(a, c)
for some numerical constants a,c > 0. The above three measures are natural candidates as a
reference measure for Kullback-Leibler divergence.

As for examples of non-log-concave distributions, consider p.m.f. of the form Ce k", for
ae(0,1).

The next result provides a comparison between total variation distance and f-divergences.
The result is general as it holds for arbitrary convex function f, however the statement is not
in a closed form formula. We state it as a lemma, and then apply it to two specific convex
functions, yielding a comparison with Kullback-Leibler divergence and y2-divergence.

Lemma 3.4. Let f: [0,+00) — R be a convex function such that f(1) = 0. Let a > 0 and
¢ > 1. Let v be a measure on Z whose p.m.f. q belongs to the class Q(a,c). Let pu be an

1sotropic log-concave measure on 7 with p.m.f. p. Then, denoting by Y a random variable
with distribution p and W = p(Y)/q(Y),

) < jut | (maxt 700,08 + 250 ) dry ) +

Proof. The idea of proof comes from [16] (see also [14]). Denote by p (resp. ¢) the p.m.f. of
w (resp. v). Denote by Y a random variable with p.m.f. p, by Z a random variable with
p-m.f. ¢, and denote

X=7 WEum

~—
~—



Using identity (3), one has
E[|X —1|] = dprv (u, v). (11)

Let R > 1 and write
dp(ullv) = E[f(X)] = E[f (X)1{x<iy] + E[f (X)1<x<ry] + E[f (X)1{x>Ryl-

Let us bound all three parts. For the first part, since f is convex and f(1) = 0, it holds that
for all = € [0, 1],

f(z) < f(0)]z — 1| < max{f(0),0}|z — 1].
Therefore, using (11),
E[f(X)1ix<1y] < max{f(0),0}E[|X — 1[1{x<1}] < max{f(0),0tdpv (n,v).  (12)

For the second part, since f is convex and f(1) = 0, it holds that for all = € [1, R],

£(R)
fly < 2 @ )
Hence, using (11),
Bl ()1 pexem] € SUDEIX ~ Dipexen] € 2 0dr(n). (13)

For the last part, note that

W)

2
B o] =& | S 1 | < JE [(%) 1{W>1}] VEWS B, ()

where we used the Cauchy-Schwarz inequality. It remains to upper bound P(W > R). Using
that ¢ € Q(a,c) and ||p||eo < 1, we have

P(W>R)="P (% > R> < P (log(c) +aY? > log(R)) .

Using (7), we deduce that for all R > ¢,

1 R _1 [1100(R
IP’(W>R)§]P’<|Y|> alog <;>> <2 © 2 log( ) (15)
The result follows by combining (12), (13), (14), and (15), and by taking infimum over all
R >c. O

Applying Lemma 3.4 to the convex function f(x) = xlog(x), x > 0, yields a comparison
between total variation distance and Kullback-Leibler divergence.

Theorem 3.5. Let a > 0 and ¢ > 2. Let v be a measure on Z whose p.m.f. belongs to the
class Q(a,c). Let p be an isotropic log-concave measure on Z. Then,

(\/ﬁ + 46a + log(c)) V2
24/ adry (j, V)

D(ullv) < dpy(u,v) <288a10g2 < > + 2log(c) + 24\/E> :



Proof. Recall the notation W = p(Y)/q(Y) from Lemma 3.4. With the choice of convex
function f(z) = zlog(x), x > 0, Lemma 3.4 tells us that for all R > ¢ > 2,

D(pllv) < 21og(R)dry (1, v) + /Bl Tog(W)P]v2e 12V o8(5),

Next, let us upper bound the term E[|log(W)[?]*/2. On one hand, since ¢ € Q(a, c),
E[|log(q(Y))|*] < E[(log(c) + aY2)2] < log?(c) + 2alog(c) 4 1944a? := C(a, c), (16)
where we used (6). On the other hand, by inequality (10),
E[ log(p(Y))[?] < 136. (17)
Therefore, combining (16) and (17),
| log(W)P"]2 < E[|log(p(Y))")2 +E[|log(q(¥ )2 < VI3 +/Clac).  (18)
implying

D(l[v) < 2log(R)dry (1, v) + (V136 + /Cla, 9))v/2e 12V e o8(e),

Putting t = log(g), the above inequality reads

D(p|lv) < 2log(c)dpy (i, v) + 2dpy (1, v)t? + (V136 4+ /C(a, c))\/ﬁe_ﬁ.

V1364++/C(a,c) ) V2
Choosing t = 12y/alog << 24\/_dTv((u )2 ), which is nonnegative, and using the bound

VC(a,c) = v/(a+log(c))? + 1943a2 < 46a + log(c)
yields the desired result. 0

As a last illustration, the next result provides a comparison between total variation dis-
tance and y2-divergence, under an extra moment assumption.

Theorem 3.6. Let a > 0 and ¢ > 1. Let v be a measure on Z whose p.m.f. belongs to the
class Q(a,c). Let u be an isotropic log-concave measure on Z. Under the moment assumption

E[e2ay2] < 400,

where Y denotes a random variable with distribution p, one has

log ( 1+ ——
e (ullv) < e (drv (. v) + /arv () ) + ey B[V b el i)

Proof. Recall the notation W = p(Y)/q(Y) from Lemma 3.4. With the choice of convex
function f(z) = (x — 1)?, 2 > 0, Lemma 3.4 tells us that for all R > c,

W —1)4 _1 [Tog(E
dr (ullv) < Ry (1,) + \/E [%uwx}]ﬂe o/ 1os(H)

10



Note that

E [%;21*‘1%1}} <E[W? <E [%} < CE[,

where the last inequality comes from ¢ € Q(a, c). Therefore,

1 [Tioa(E
dy2(pllv) < Rdry(p,v) +c E[e20Y?]v/2e” 12 alos()

Choosing R = ¢ <1 + ——L_— ) yields the desired result. O
\V4 dTV (MV)
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