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A Note on Statistical Distances for Discrete Log-Concave

Measures

Arnaud Marsiglietti and Puja Pandey

Abstract

In this note we explore how standard statistical distances are equivalent for discrete
log-concave distributions. Distances include total variation distance, Wasserstein dis-
tance, and f -divergences.
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1 Introduction

The study of convergence of probability measures is central in probability and statistics, and
may be performed via statistical distances for which the choice has its importance (see, e.g.,
[10], [19]). The space of probability measures, say over the real numbers, is infinite dimen-
sional, therefore there is a priori no canonical distance, and distances may not be equivalent.
Nonetheless, an essential contribution made by Meckes and Meckes in [16] demonstrates
that certain statistical distances between continuous log-concave distributions turn out to be
equivalent up to constants that may depend on the dimension of the ambient space (see also
[7] for improved bounds, and [14] for the extension to the broader class of so-called s-concave
distributions).

The goal of this note is to develop quantitative comparisons between distances for discrete
log-concave distributions. Let us denote by N = {0, 1, 2, . . . } the set of natural numbers and
by Z the set of integers. Recall that the probability mass function (p.m.f.) associated with
an integer valued random variable X is

p(k) = P(X = k), k ∈ Z.

An integer-valued random variable X is said to be log-concave if its probability mass function
p satisfies

p(k)2 ≥ p(k − 1)p(k + 1)

for all k ∈ Z and the support of X is an integer interval.
Discrete log-concave distributions form an important class. Examples include Bernoulli,

discrete uniform, binomial, geometric and Poisson distributions. We refer to [21], [5], [20],
[4] for further background on log-concavity.

Let us introduce the main distances we will work with (we refer to [12], [9], [10], [19] for
further background on statistical distances). Our setting is the real line R equipped with its
usual Euclidean structure d(x, y) = |x− y|, x, y ∈ R.

1. The bounded Lipschitz distance between two probability measures µ and ν is defined
as

dBL(µ, ν) = sup
‖g‖BL≤1

∣

∣

∣

∣

∫

g dµ−
∫

g dν

∣

∣

∣

∣

,
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where for a function g : R → R,

‖g‖BL = max

{

‖g‖∞, sup
x 6=y

|g(x) − g(y)|
|x− y|

}

.

2. The Lévy-Prokhorov distance between two probability measures µ and ν is defined as

dLP (µ, ν) = inf {ǫ > 0 : µ(A) ≤ ν(Aε) + ǫ for all Borel set A ⊂ R} ,
where Aε = {x ∈ R : d(x,A) < ε}.

Using the Ky-Fan distance, which is defined for two random variables X and Y as

K(X,Y ) = inf{ε > 0 : P(|X − Y | > ε) < ε},
the Lévy-Prokhorov distance admits the following coupling representation,

dLP (µ, ν) = inf K(X,Y ), (1)

where the infimum runs over all random variables X with distribution µ and random
variables Y with distribution ν (see, e.g., [19]).

3. The total variation distance between two probability measures µ and ν is defined as

dTV (µ, ν) = 2 sup
A⊂R

|µ(A) − ν(A)|.

The total variation distance admits the following coupling representation,

dTV (µ, ν) = inf P(X 6= Y ), (2)

where the infimum runs over all random variables X with distribution µ and random
variables Y with distribution ν (see, e.g., [10]). Moreover, for integer valued measures,
one has the following identity,

dTV (µ, ν) =
∑

k∈Z
|µ({k}) − ν({k})|. (3)

4. The p-th Wasserstein distance, p ≥ 1, between two probability measures µ and ν is
defined as

Wp(µ, ν) = inf E[|X − Y |p]
1
p ,

where the infimum runs over all random variables X with distribution µ and random
variables Y with distribution ν.

5. Let f : [0,+∞) → R be a convex function such that f(1) = 0. The f -divergence between
two probability measures µ and ν on Z is defined as

df (µ||ν) =
∑

k∈Z
ν({k})f

(

µ({k})

ν({k})

)

.

Note that the choice of convex function f(x) = x log(x), x ≥ 0, leads to the Kullback-
Leibler divergence

D(µ||ν) =
∑

k∈Z
µ({k}) log

(

µ({k})

ν({k})

)

,

the function f(x) = (x − 1)2 yields the so-called χ2-divergence, while f(x) = |x − 1|
returns us to the total variation distance.
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Let us review the known relationships between the above distances. It is known [8,
Corollaries 2 and 3] that bounded Lipschitz and Lévy-Prokhorov distances are equivalent,

1

2
dBL(µ, ν) ≤ dLP (µ, ν) ≤

√

3

2
dBL(µ, ν).

One also has
dLP (µ, ν) ≤ dTV (µ, ν),

and, for µ, ν integer valued probability measures,

dTV (µ, ν) ≤ W1(µ, ν),

see [10]. By Hölder’s inequality, if p ≤ q, then

Wp(µ, ν) ≤ Wq(µ, ν).

As for divergences, the Pinsker-Csiszár inequality ([18], [6]) states that

dTV (µ, ν) ≤
√

2D(µ||ν).

Also, one has
D(µ||ν) ≤ log(1 + χ2(µ||ν)).

The article is organized as follows. In Section 2, we establish properties for log-concave
distributions on Z that are of independent interests. In section 3, we present our results and
proofs.

2 Preliminaries

In this section we gather the main tools used throughout the proofs. First, recall that a
real-valued random variable X is said to be isotropic if

E[X] = 0, E[X2] = 1.

We start with an elementary lemma that will allow us to pass results for log-concave distri-
butions on N to log-concave distributions on Z, however with sub-optimal constants.

Lemma 2.1. If X is symmetric log-concave on Z, then |X| is log-concave on N.

Proof. Denote by p (resp. q) the p.m.f. of X (resp. |X|). Then, q(0) = p(0) and q(k) = 2p(k)
for k ≥ 1. Therefore,

q2(1) = 4p2(1) ≥ 4p(0)p(2) = 2q(0)q(2),

and for all k ≥ 2,

q2(k) = 4p2(k) ≥ 4p(k + 1)p(k − 1) = q(k + 1)q(k − 1).

Hence, q is log-concave.

We note that Lemma 2.1 no longer holds for non-symmetric log-concave random variables,
as can be seen by taking X supported on {−1, 0, 1, 2, 3} with distribution P(X = −1) =
P(X = 3) = 0.1, P(X = 0) = P(X = 2) = 0.2, and P(X = 1) = 0.4. In this case,
P(|X| = 2)2 < P(|X| = 1)P(|X| = 3).

The next lemma provides moments bounds for log-concave distributions on Z.
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Lemma 2.2. If X is log-concave on Z, then for all β ≥ 1,

E[|X − E[X]|β ]
1
β ≤ Γ(β + 1)

1
β (2E[|X − E[X]|] + 1).

Proof. It has been shown in [13, Corollary 4.5] that for all log-concave random variable X
on N, for all β ≥ 1,

E[Xβ ]
1
β ≤ Γ(β + 1)

1
β (E[X] + 1). (4)

Let X be a symmetric log-concave random variable on Z, then by Lemma 2.1, |X| is log-
concave on N so one may apply inequality (4) to obtain

E[|X|β ]
1
β ≤ Γ(β + 1)

1
β (E[|X|] + 1). (5)

Now, let X be a log-concave random variable on Z. Let Y be an independent copy of X, so
that X − Y is symmetric log-concave. Applying inequality (5), we deduce that

E[|X−E[X]|β ]
1
β ≤ E[|X−Y |β ]

1
β ≤ Γ(β+1)

1
β (E[|X−Y |]+1) ≤ Γ(β+1)

1
β (2E[|X−E[X]|]+1),

where the first inequality follows from Hölder’s inequality and the last inequality from triangle
inequality.

Let us derive concentration inequalities for log-concave distributions on Z.

Lemma 2.3. For each log-concave random variable X on Z, one has for all t ≥ 0,

P(|X − E[X]| ≥ t) ≤ 2e
− t

2(2E[|X−E[X]|]+1) .

Proof. The proof is a standard application of the moments bounds obtained in Lemma 2.2
(see, e.g., [22]). For λ > 0,

E[eλ|X−E[X]|] = 1 +
∑

β≥1

λβ

β!
E[|X − E[X]|β ] ≤ 1 +

∑

β≥1

λβ

β!
β!(2E[|X − E[X]|] + 1)β

=
∑

β≥0

[λ(2E[|X − E[X]|] + 1)]β

=
1

1 − λ(2E[|X − E[X]|] + 1)
,

where the last identity holds for all 0 < λ < 1
2E[|X−E[X]|]+1 . Choosing λ = 1

2(2E[|X−E[X]|]+1)
yields

E[eλ|X−E[X]|] ≤ 2.

Therefore, by Markov’s inequality,

P(|X − E[X]| ≥ t) = P(eλ|X−E[X]| ≥ eλt) ≤ E[eλ|X−E[X]|]e−λt ≤ 2e
− t

2(2E[|X−E[X]|]+1) .

The following lemma, which provides a bound on the variance and maximum of the
probability mass function of log-concave distributions on Z, was established in [3] and [1]
(see, also, [2], [11]).
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Lemma 2.4 ([3], [1]). Let X be a log-concave distribution on Z with probability mass function
p, then

√

1 + Var(X) ≤ 1

‖p‖∞
≤
√

1 + 12 Var(X).

The following lemma is standard in information theory and provides an upper bound on
the entropy of an integer valued random variable (see [15]). Recall that the Shannon entropy
of an integer valued random variable X with p.m.f. p is defined as

H(X) = E[− log(p(X))] = −
∑

k∈Z
p(k) log(p(k)).

Lemma 2.5 ([15]). For any integer valued random variable X with finite second moment,

H(X) ≤ 1

2
log

(

2πe

(

Var(X) +
1

12

))

.

The last lemma of this section provides a bound on the second moment of the information
content of a log-concave distribution on Z.

Lemma 2.6. Let X be a discrete log-concave random variable on Z with probability mass
function p. Then,

E[log2(p(X))] ≤ 4

(

4e−2 + 1 +
H2(X)

‖p‖∞

)

.

Proof. Let X be a log-concave random variable with p.m.f. p. Then p is unimodal, that is,
there exists m ∈ Z such that for all k ≤ m, p(k−1) ≤ p(k) and for all k ≥ m, p(k) ≥ p(k+1).
Note that p(m) = ‖p‖∞. Define, for k ∈ Z,

pր(k) =
p(k)

∑

l≤m p(l)
1{k≤m},

and

pց(k) =
p(k)

∑

l≥m p(l)
1{k≥m}.

Note that both pր and pց are monotone log-concave probability mass functions. Denote by
Xր (resp. Xց) a random variable with p.m.f. pր (resp. pց). Denote also a =

∑

l≤m p(l)
and b =

∑

l≥m p(l). On one hand, by a result of Melbourne and Palafox-Castillo [17, Theorem
2.5],

Var(log(pր(Xր))) ≤ 1, Var(log(pց(Xց))) ≤ 1.

On the other hand,

H(Xր) =
∑

k≤m

p(k)

a
log

(

a

p(k)

)

≤ 1

a

∑

k≤m

p(k) log

(

1

p(k)

)

≤ 1

a
H(X),

and similarly,

H(Xց) ≤ H(X)

b
.

Therefore,

E[log2(pր(Xր))] = Var(log(pր(Xր))) + H2(Xր) ≤ 1 +
H2(X)

a2
,
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and similarly,

E[log2(pց(Xց))] ≤ 1 +
H2(X)

b2
.

We deduce that

E[log2(p(X))] =
∑

k∈Z
p(k) log2(p(k))

≤
∑

k∈Z
apր(k) log2(apր(k)) +

∑

k∈Z
bpց(k) log2(bpց(k))

≤ 2
(

a log2(a) + aE[log2(pր(Xր))] + b log2(b) + bE[log2(pց(Xց))]
)

≤ 2

(

4e−2 + a +
H2(X)

a
+ 4e−2 + b +

H2(X)

b

)

≤ 4

(

4e−2 + 1 +
H2(X)

‖p‖∞

)

,

where we used the fact that a, b ∈ [‖p‖∞, 1].

Remark 2.7. For an isotropic log-concave random variable X on Z with probability mass
function p, the above bounds reduce to

E[|X|β ]
1
β ≤ 3Γ(β + 1)

1
β , β ≥ 1, (6)

P(|X| ≥ t) ≤ 2e−
t
6 , t ≥ 0, (7)

√
2 ≤ 1

‖p‖∞
≤

√
13, (8)

H(X) ≤ 1

2
log

(

2πe

(

1 +
1

12

))

≤ 3, (9)

in particular, we also deduce

E[log2(p(X))] ≤ 4(4e−2 + 1 + 9
√

13) ≤ 136. (10)

3 Main results and proofs

This section contains our main results together with the proofs. The first theorem establishes
quantitative reversal bounds between 1-Wasserstein distance and Lévy-Prokhorov distance.

Theorem 3.1. Let µ and ν be isotropic log-concave probability measures on Z, then

W1(µ, ν) ≤ 12dLP (µ, ν) log

(

4e

dLP (µ, ν)

)

.

Proof. Let R > 0. Let X (resp. Y ) be distributed according to µ (resp. ν). Note that for all
t ≥ 0,

P(|X − Y | > t) = P(|X − Y | ≥ ⌊t⌋ + 1) ≤ P(|X − Y | ≥ 1) ≤ K(X,Y ),

therefore,

E[|X − Y |] =

∫ R

0
P(|X − Y | > t)dt +

∫ ∞

R
P(|X − Y | > t)dt

≤ RK(X,Y ) +

∫ ∞

R
P

(

|X| > t

2

)

dt +

∫ ∞

R
P

(

|Y | > t

2

)

dt.

6



Applying inequality (7), we obtain

W1(µ, ν) ≤ E[|X − Y |] ≤ RK(X,Y ) + 2

∫ ∞

R
2e−

t
12 dt = RK(X,Y ) + 48e−

R
12 .

The above inequality being true for any random variable X with distribution µ and any
random variable Y with distribution ν, we deduce by taking infimum over all couplings that

W1(µ, ν) ≤ RdLP (µ, ν) + 48e−
R
12 .

Choosing R = 12 log(4/dLP (µ, ν)), which is nonnegative, yields the desired result.

The next theorem demonstrates that Wasserstein distances are equivalent for discrete
log-concave distributions.

Theorem 3.2. Let µ and ν be isotropic log-concave probability measures on Z, then for all
1 ≤ p ≤ q,

W q
q (µ, ν) ≤ 24q−pW p

p (µ, ν) logq−p

(

6q
√

Γ(2q + 1)

W p
p (µ, ν)

)

+ 2W p
p (µ, ν),

Proof. Let X (resp. Y ) be distributed according to µ (resp. ν). Let R > 0. One has

E[|X − Y |q] = E[|X − Y |q−p+p1{|X−Y |<R}] + E[|X − Y |q1{|X−Y |≥R}]

≤ Rq−p
E[|X − Y |p] +

√

P(|X − Y | ≥ R)E[|X − Y |2q],

where we used the Cauchy-Schwarz inequality. Note that by inequality (6),

E[|X − Y |2q]
1
2q ≤ E[|X|2q]

1
2q + E[|Y |2q]

1
2q ≤ 6Γ(2q + 1)

1
2q .

Moreover, by inequality (7),

P(|X − Y | ≥ R) ≤ P(|X| ≥ R

2
) + P(|Y | ≥ R

2
) ≤ 4e−

R
12 .

Combining the above and taking infimum over all couplings yield

W q
q (µ, ν) ≤ Rq−pW p

p (µ, ν) + 6q2
√

Γ(2q + 1)e−
R
24 .

The result follows by choosing R = 24 log

(

6q
√

Γ(2q+1)

W p
p (µ,ν)

)

, which is nonnegative since by in-

equality (6) and log-convexity of the Gamma function,

W p
p (µ, ν) ≤

(

E[|X|p]
1
p + E[|Y |p]

1
p

)p
≤ 6pΓ(p + 1) ≤ 6q

√

Γ(2q + 1).

Let us now turn to f -divergences. Considering f -divergences, such as the Kullback-Leibler
divergence, the main question lies in figuring out the distribution of the reference measure.
In general, if the support of a measure µ is not included in the support of a measure ν, then
D(µ||ν) = +∞. Our choice of reference measure will therefore be a measure fully supported
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on Z, but it turns out that it needs not be log-concave. Given a > 0 and c ≥ 1, let us
introduce the following class of functions:

Q(a, c) = {q : Z → [0, 1], ∀k ∈ Z, q(k) > 0 and log

(

1

q(k)

)

≤ ak2 + log(c)}.

Before stating our next result, let us note that important distributions belong to such a
class.

Remark 3.3. The isotropic symmetric Poisson distribution, whose probability mass function
is

q(k) = C
λ|k|

|k|! , k ∈ Z,

with λ > 0 such that
∑

k∈Z k
2q(k) = 1 and C = (2eλ − 1)−1 being the normalizing constant,

belongs to Q(1 + log(4), 2e − 1). Indeed, since

1 =
∑

k∈Z
k2q(k) =

2eλ

2eλ − 1
λ(1 + λ),

then one may choose λ ∈ [1/4, 1]. Therefore, using |k|! ≤ |k||k|,

0 ≤ log

(

1

q(k)

)

= log(|k|!) + |k| log

(

1

λ

)

+ log(2eλ − 1) ≤ (1 + log(4))k2 + log(2e− 1).

One may also note that the isotropic symmetric geometric distribution and isotropic dis-
cretized Gaussian distribution (whose p.m.f. is of the form q(k) = Ce−λk2) belong to Q(a, c)
for some numerical constants a, c > 0. The above three measures are natural candidates as a
reference measure for Kullback-Leibler divergence.

As for examples of non-log-concave distributions, consider p.m.f. of the form Ce−λkα, for
α ∈ (0, 1).

The next result provides a comparison between total variation distance and f -divergences.
The result is general as it holds for arbitrary convex function f , however the statement is not
in a closed form formula. We state it as a lemma, and then apply it to two specific convex
functions, yielding a comparison with Kullback-Leibler divergence and χ2-divergence.

Lemma 3.4. Let f : [0,+∞) → R be a convex function such that f(1) = 0. Let a > 0 and
c ≥ 1. Let ν be a measure on Z whose p.m.f. q belongs to the class Q(a, c). Let µ be an
isotropic log-concave measure on Z with p.m.f. p. Then, denoting by Y a random variable
with distribution µ and W = p(Y )/q(Y ),

df (µ||ν) ≤ inf
R≥c

[(

max{f(0), 0} +
f(R)

R− 1

)

dTV (µ, ν) +

√

√

√

√E

[

(

f(W )

W

)2

1{W>1}

]

√
2e

− 1
12

√

1
a
log(R

c )



 .

Proof. The idea of proof comes from [16] (see also [14]). Denote by p (resp. q) the p.m.f. of
µ (resp. ν). Denote by Y a random variable with p.m.f. p, by Z a random variable with
p.m.f. q, and denote

X =
p(Z)

q(Z)
, W =

p(Y )

q(Y )
.

8



Using identity (3), one has
E[|X − 1|] = dTV (µ, ν). (11)

Let R ≥ 1 and write

df (µ||ν) = E[f(X)] = E[f(X)1{X<1}] + E[f(X)1{1≤X≤R}] + E[f(X)1{X>R}].

Let us bound all three parts. For the first part, since f is convex and f(1) = 0, it holds that
for all x ∈ [0, 1],

f(x) ≤ f(0)|x− 1| ≤ max{f(0), 0}|x − 1|.
Therefore, using (11),

E[f(X)1{X<1}] ≤ max{f(0), 0}E[|X − 1|1{X<1}] ≤ max{f(0), 0}dTV (µ, ν). (12)

For the second part, since f is convex and f(1) = 0, it holds that for all x ∈ [1, R],

f(x) ≤ f(R)

R− 1
(x− 1).

Hence, using (11),

E[f(X)1{1≤X≤R}] ≤ f(R)

R− 1
E[(X − 1)1{1≤X≤R}] ≤ f(R)

R− 1
dTV (µ, ν). (13)

For the last part, note that

E[f(X)1{X>R}] = E

[

f(W )

W
1{W>R}

]

≤

√

√

√

√E

[

(

f(W )

W

)2

1{W>1}

]

√

P(W > R), (14)

where we used the Cauchy-Schwarz inequality. It remains to upper bound P(W > R). Using
that q ∈ Q(a, c) and ‖p‖∞ ≤ 1, we have

P(W > R) = P

(

p(Y )

q(Y )
> R

)

≤ P
(

log(c) + aY 2 > log(R)
)

.

Using (7), we deduce that for all R ≥ c,

P(W > R) ≤ P

(

|Y | >
√

1

a
log

(

R

c

)

)

≤ 2e
− 1

6

√

1
a
log(R

c ). (15)

The result follows by combining (12), (13), (14), and (15), and by taking infimum over all
R ≥ c.

Applying Lemma 3.4 to the convex function f(x) = x log(x), x ≥ 0, yields a comparison
between total variation distance and Kullback-Leibler divergence.

Theorem 3.5. Let a > 0 and c ≥ 2. Let ν be a measure on Z whose p.m.f. belongs to the
class Q(a, c). Let µ be an isotropic log-concave measure on Z. Then,

D(µ||ν) ≤ dTV (µ, ν)

(

288a log2

(

(√
136 + 46a + log(c)

)√
2

24
√
adTV (µ, ν)

)

+ 2 log(c) + 24
√
a

)

.
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Proof. Recall the notation W = p(Y )/q(Y ) from Lemma 3.4. With the choice of convex
function f(x) = x log(x), x ≥ 0, Lemma 3.4 tells us that for all R ≥ c ≥ 2,

D(µ||ν) ≤ 2 log(R)dTV (µ, ν) +
√

E[| log(W )|2]
√

2e
− 1

12

√

1
a
log(R

c ).

Next, let us upper bound the term E[| log(W )|2]1/2. On one hand, since q ∈ Q(a, c),

E[| log(q(Y ))|2] ≤ E[
(

log(c) + aY 2
)2

] ≤ log2(c) + 2a log(c) + 1944a2 := C(a, c), (16)

where we used (6). On the other hand, by inequality (10),

E[| log(p(Y ))|2] ≤ 136. (17)

Therefore, combining (16) and (17),

E[| log(W )|2]
1
2 ≤ E[| log(p(Y ))|2]

1
2 + E[| log(q(Y ))|2]

1
2 ≤

√
136 +

√

C(a, c), (18)

implying

D(µ||ν) ≤ 2 log(R)dTV (µ, ν) + (
√

136 +
√

C(a, c))
√

2e
− 1

12

√

1
a
log(R

c ).

Putting t =
√

log(Rc ), the above inequality reads

D(µ||ν) ≤ 2 log(c)dTV (µ, ν) + 2dTV (µ, ν)t2 + (
√

136 +
√

C(a, c))
√

2e
− t

12
√

a .

Choosing t = 12
√
a log

(

(√
136+

√
C(a,c)

)√
2

24
√
adTV (µ,ν)

)

, which is nonnegative, and using the bound

√

C(a, c) =
√

(a + log(c))2 + 1943a2 ≤ 46a + log(c)

yields the desired result.

As a last illustration, the next result provides a comparison between total variation dis-
tance and χ2-divergence, under an extra moment assumption.

Theorem 3.6. Let a > 0 and c ≥ 1. Let ν be a measure on Z whose p.m.f. belongs to the
class Q(a, c). Let µ be an isotropic log-concave measure on Z. Under the moment assumption

E[e2aY
2
] < +∞,

where Y denotes a random variable with distribution µ, one has

dχ2(µ||ν) ≤ c
(

dTV (µ, ν) +
√

dTV (µ, ν)
)

+ c

√

E[e2aY 2 ]
√

2e
− 1

12

√

1
a
log

(

1+ 1√
dTV (µ,ν)

)

.

Proof. Recall the notation W = p(Y )/q(Y ) from Lemma 3.4. With the choice of convex
function f(x) = (x− 1)2, x ≥ 0, Lemma 3.4 tells us that for all R ≥ c,

dχ2(µ||ν) ≤ RdTV (µ, ν) +

√

E

[

(W − 1)4

W 2
1{W>1}

]√
2e

− 1
12

√

1
a
log(R

c ).
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Note that

E

[

(W − 1)4

W 2
1{W>1}

]

≤ E
[

W 2
]

≤ E

[

1

q2(Y )

]

≤ c2E[e2aY
2
],

where the last inequality comes from q ∈ Q(a, c). Therefore,

dχ2(µ||ν) ≤ RdTV (µ, ν) + c

√

E[e2aY 2 ]
√

2e
− 1

12

√

1
a
log(R

c ).

Choosing R = c

(

1 + 1√
dTV (µ,ν)

)

yields the desired result.
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