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LOCAL LIMIT THEOREMS FOR SMOOTHED

BERNOULLI AND OTHER CONVOLUTIONS

SERGEY G. BOBKOV1 AND ARNAUD MARSIGLIETTI2

Abstract. We explore an asymptotic behavior of densities of sums of independent random
variables that are convoluted with a small continuous noise.

1. Introduction

Let (Xn)n≥1 be independent Bernoulli random variables taking the values ±1 with probability
1/2. Given a random variable X with density p, let us consider densities pn of the normalized
sums

Zn =
1√
n
(X +X1 + · · ·+Xn).

By the central limit theorem, Zn are convergent weakly in distribution to the standard normal
law, which means that, as n → ∞,

sup
a<b

∣

∣

∣

∫ b

a
(pn(x)− ϕ(x)) dx

∣

∣

∣
→ 0, where ϕ(x) =

1√
2π

e−x2/2.

Therefore, one may wonder whether or not this property can be sharpened as convergence
of pn to ϕ in a stronger sense. This question appears naturally in the area of entropic limit
theorems with involved problems of estimation of the entropy of X, especially in a high-
dimensional setting (here, we however do not discuss such applications). When X = 0 and the
Xk’s are i.i.d., a celebrated result of Gnedenko provides necessary and sufficient conditions for
the uniform convergence of pn when these densities exist ([G-K], [B-RR]). Here, we will see
that the presence of a non-zero noise X/

√
n in Zn may enlarge the range of applicability of

local limit theorems. Let us focus on the possible convergence in the L2-distance

‖pn − ϕ‖2 =

(
∫ ∞

−∞
|pn(x)− ϕ(x)|2 dx

)1/2

and on the uniform convergence, i.e, for the L∞-norm ‖pn − ϕ‖∞ (which is stronger than the
L2-convergence). As it turns out, the answers essentially depend on some delicate properties
of the density p of X, as may be seen from the following characterization in terms of the
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characteristic function

f(t) = E eitX =

∫ ∞

−∞
eitx p(x) dx, t ∈ R.

Theorem 1.1. If

‖pn − ϕ‖2 → 0 as n → ∞, (1.1)

then

f(πk) = 0 for all k ∈ Z, k 6= 0. (1.2)

Conversely, if E |X| < ∞, and f ′ is square integrable, then the L2-convergence (1.1) holds

under the condition (1.2).

Under a stronger assumption on f , the L2-convergence of densities may be strengthened to
the uniform convergence.

Theorem 1.2. Assume that the condition (1.2) is fulfilled. If E |X| < ∞, and f ′ is

integrable, then the random variables Zn have continuous densities pn such that

sup
x

|pn(x)− ϕ(x)| → 0 as n → ∞. (1.3)

The square integrability assumption in Theorem 1.1 is not so restrictive. By Plancherel’s
theorem, it may be stated in terms of the density of X as the property

∫ ∞

−∞
x2p(x)2 dx < ∞.

This holds true as long as p is bounded, and EX2 < ∞.
As for the condition (1.2), it is of a different nature and is also fulfilled for a certain family

of characteristic functions. This family includes, for example, f(t) = sin t
t which corresponds

to the uniform distribution U on the interval [−1, 1], and more generally f(t) = g(t) sin t
t with

an arbitrary characteristic function g, which means that the distribution of X contains U as
a component. The condition (1.2) may also be stated explicitly in terms of the density p, by
virtue of the Poisson summation formula. As we will see, if p has a bounded total variation,
(1.2) is equivalent to the property that

2
∑

k∈Z

∫ ∞

−∞
p(2k + x) p(x) dx = 1.

As a relatively large subfamily, one may involve all characteristic functions f that are
supported on [−π, π], in which case we obtain the uniform convergence (1.3). But, staying
in a similar class, one may remove the assumption that Xn have a Bernoulli distribution and
allow a multidimensional setting. In the sequel, we use the standard notations 〈·, ·〉 and | · |
to denote respectively the canonical inner product and the Euclidean norm in R

d. A random
vector Y = (Y1, . . . , Yd) in R

d is said to have an isotropic distribution, if

E 〈Y, θ〉2 = |θ|2 for all θ ∈ R
d.

Equivalently, EYjYk = δjk for all j, k ≤ d, where δjk is the Kronecker symbol.
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In the next statement, we assume that X is a random vector in R
d with characteristic

function f(t) = E ei〈t,X〉, t ∈ R
d, and that (Xn)n≥1 are mean zero, independent, identically

distributed random vectors in R
d with an isotropic distribution. By the central limit theorem,

the normalized sums Zn are convergent weakly in distribution to the standard normal law in
R
d with density

ϕ(x) =
1

(2π)d/2
e−|x|2/2, x ∈ R

d. (1.4)

Theorem 1.3. There exists T > 0 depending on the distribution of X1 with the following

property. If f is supported on the ball |t| ≤ T , then the random vectors Zn have continuous

densities pn such that (1.3) holds true. If

β3 = sup
|θ|=1

E | 〈X1, θ〉 |3

is finite, one may take T = 1/β3. If X1 has a non-lattice distribution, T may be arbitrary.

Theorems 1.1-1.2 also admit multidimensional extensions, which we discuss in Sections 2-3.
Theorem 1.3 is proved in Section 4. In Sections 5-6 we recall the Poisson formula, including
the multidimensional case, and discuss its applications to (1.2). In the last Section 7, we
consider an asymptotic behavior of densities pn in dimension one without the property (1.2).
Under mild regularity assumptions on the distribution of X, it will be shown in particular that
uniformly over all x

pn(x) = An(x)ϕ(x) +O
( log n√

n

)

, An(x) = 2
∑

m∈Z
p(2m+ x

√
n+ n).

This asymptotic representation illustrates a strong oscillatory behavior of the densities pn(x)
for all points x 6= 0, which may actually be different for even n versus odd values of n.

2. Multidimensional variant of Theorem 1.1

We denote by Lr, r ≥ 1, the space of all (complex-valued) functions u on R
d with finite norm

‖u‖r =
(
∫

Rd

|u(x)|r dx
)1/r

.

Turning to the multidimensional variant of Theorem 1.1, suppose that (Xn)n≥1 are in-
dependent random vectors uniformly distributed in the discrete cube {−1, 1}d, so that their
components (coordinates) represent independent Bernoulli random variables. Also, let X be
a random vector in R

d with characteristic function

f(t) = E ei〈t,X〉, t ∈ R
d.

Like the one dimensional case, if X has an absolutely continuous distribution, the normalized
sums

Zn =
1√
n
(X +X1 + · · · +Xn)
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have (some) densities pn. In addition, the distributions of Zn are convergent weakly as n → ∞
to the standard normal law in R

d with density ϕ given in (1.4). We would like to strengthen
this convergence with respect to the L2-distance ‖pn − ϕ‖2.

Theorem 2.1. If Zn have densities pn such that

‖pn − ϕ‖2 → 0 as n → ∞, (2.1)

then

f(πk) = 0 for all k ∈ Z
d, k 6= 0. (2.2)

Conversely, suppose that E |X| < ∞ and

∫

Rd

|f(t)| |f ′(t)|
‖t‖d−1

dt < ∞, (2.3)

where ‖t‖ denotes the distance from the point t ∈ R
d to the lattice πZd. Then, Zn have

densities pn, and the L2-convergence (2.1) holds true under the condition (2.2).

The moment assumption on X guarantees that the characteristic function f has a contin-
uous derivative (gradient) f ′ = ∇f with its Euclidean norm |f ′|, so that (2.3) makes sense.
This condition implies that f is in L2 as stated in Lemma 2.2 below, hence necessarily X and
all Zn have densities. In dimension one, the condition (2.3) is fulfilled as long as f and f ′ are
in L2 (by Cauchy’s inequality). If d ≥ 2, (2.3) is a bit more complicated; it is fulfilled when

∑

k∈Zd

max
t∈Qk

|f(t)| |f ′(t)| < ∞,

where Qk = Q + πk, Q = [−π
2 ,

π
2 ]

d. This is true, for example, under the decay assumptions
such as

|f(t)| ≤ c

((1 + |t1|) . . . (1 + |td|))α
, |f ′(t)| ≤ c

((1 + |t1|) . . . (1 + |td|))α
,

holding for all t = (t1, . . . , td) ∈ R
d with some constants α > 1

2 and c > 0. For instance, this

is the case, when X is uniformly distributed in the cube [−1, 1]d.

Lemma 2.2. If the characteristic function f of the random vector X in R
d with finite

first absolute moment satisfies the condition (2.3), and
∑

k∈Zd |f(πk)|2 < ∞, then X has an

absolutely continuous distribution with density in L2. Moreover, if

∫

Rd

|f ′(t)|
‖t‖d−1

dt < ∞,

and
∑

k∈Zd |f(πk)| < ∞, then X has a bounded continuous density.

For the proof of the lemma, as well as of Theorem 2.1 and Theorem 3.1, we partition R
d

into the cubes Qk = Q+ πk introduced above, so that ‖t‖ = |t− πk| for t ∈ Qk.
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Proof. For a given C1-smooth function w on R
d, consider the functions wk(t) = w(πk+ t),

k ∈ Z
d. Since wk(t) = wk(0) +

∫ 1
0 〈w′

k(ξt), t〉 dξ, we have

|wk(t)| ≤ |wk(0)|+ |t|
∫ 1

0
|w′

k(ξt)| dξ. (2.4)

Change of the variable ξt = s leads to
∫

Qk

|w(t)| dt − πd |w(πk)| ≤
∫

Q

∫ 1

0
|t| |w′

k(ξt)| dt dξ

=

∫

Q
|w′

k(s)| |s|
[
∫ 1

2

π
‖s‖∞

ξ−d−1 dξ

]

ds ≤ cd

∫

Q

|w′
k(s)|

|s|d−1
ds

with some constant cd depending on d only, where ‖s‖∞ = maxk |sk| for s = (s1, . . . , sd) ∈ R
d.

It follows that
∫

Rd

|w(t)| dt ≤ πd
∑

k

|w(πk)| + cd

∫

Rd

|w′(t)|
‖t‖d−1

dt. (2.5)

For the first claim of the lemma, we apply this inequality with w(t) = |f(t)|2 = f(t)f(−t).
It is C1-smooth and satisfies |w′(t)| ≤ 2 |f(t)| |f ′(t)|. Hence, the right-hand side of (2.5) is
finite, which means that f ∈ L2. Hence, X has density in L2 as well, by the Plancherel
theorem. Choosing w(t) = f(t), we obtain that f is integrable, so that the second claim
follows from the inverse Fourier formula. �

Before turning to the proof of Theorem 2.1, note that the property (2.1) is equivalent to
the convergence of the L2-norms

‖pn‖2 → ‖ϕ‖2 as n → ∞. (2.6)

Indeed, formally the latter is weaker than (2.1). On the other hand, assuming (2.6) and
applying the central limit theorem with weak convergence, we have

‖pn − ϕ‖22 = ‖pn‖22 + ‖ϕ‖22 − 2Eϕ(Zn) → 2 ‖ϕ‖22 − 2Eϕ(Z) = 0,

where Z is a standard normal random vector in R
d.

Now, (2.1) requires that, for all n large enough, the characteristic functions

fn(t) = E ei〈t,Zn〉 = f
( t√

n

)

vn
( t√

n

)

belong to L2, where

v(t) = cos(t1) . . . cos(td) for t = (t1, . . . , td) ∈ R
d.

Thus, introducing the characteristic function g(t) = e−|t|2/2 of Z and applying the Plancherel
theorem, (2.1) may be restated as the property that

‖fn‖22 → ‖g‖22 = πd/2. (2.7)

Proof of Theorem 2.1.

Necessity part. To explore the latter property, consider the integrals

‖fn‖22 =

∫

Rd

|fn(t)|2 dt = nd/2

∫

Rd

w(t) v2n(t) dt, w(t) = |f(t)|2.
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Using the partition of Rd as before and the periodicity of the cosine function, we have

‖fn‖22 = nd/2
∑

k

∫

Qk

w(t) v2n(t) dt = nd/2
∑

k

In,k, (2.8)

where

In,k =

∫

Q
w(πk + t) v2n(t) dt.

Given ε > 0, choose t0 > 0 small enough such that w(t) ≥ 1− ε in |t| ≤ t0. We have

In,0 ≥ (1− ε)

∫

|t|≤t0

v2n(t) dt =
1− ε

nd/2

∫

|t|≤t0
√
n
v2n

( t√
n

)

dt,

implying that

lim inf
n→∞

[

nd/2 In,0
]

≥ (1− ε)

∫

Rd

e−|t|2 dt = (1− ε)πd/2.

Since ε > 0 was arbitrary, we get

lim inf
n→∞

[

nd/2 In,0
]

≥ πd/2.

A similar upper bound on lim sup is obvious, and we conclude that

nd/2 In,0 → πd/2. (2.9)

Now, suppose that (2.2) is violated for some k 6= 0, that is, w(πk) > 0. By the continuity
of w, there exist ε > 0 and t0 > 0 such that w(πk + t) ≥ ε in |t| ≤ t0. Hence,

In,k ≥ ε

∫

|t|≤t0

v2n(t) dt =
ε

nd/2

∫

|t|≤t0
√
n
v2n

( t√
n

)

dt,

implying that

lim inf
n→∞

[

nd/2 In,k
]

≥ ε

∫

Rd

e−|t|2 dt = ε πd/2.

Combining this bound with (2.9), we eventually obtain in (2.8) that

lim inf
n→∞

‖fn‖22 ≥ (1 + ε)πd/2,

which contradicts to (2.7). This proves the necessity part in Theorem 2.1.

Sufficiency part. By Lemma 2.2, the characteristic functions fn belong to L2, so that
the densities pn are in L2 as well. To prove the required relation (2.7), let us return to the
representation (2.8). Recalling (2.9), our task is therefore to show that

nd/2
∑

k 6=0

In,k → 0 (n → ∞). (2.10)

To this aim, for a fixed k 6= 0, using 0 ≤ cosu ≤ e−u2/2 for |u| ≤ π
2 , we have

In,k ≤ Jn,k =

∫

Q
wk(t) e

−n|t|2 dt,
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where wk(t) = w(πk + t), w(t) = |f(t)|2 as in the proof of Lemma 2.2. Hence, by (2.4), and
changing the variable ξt = s, and then ξ =

√
n |s| 1

u , we get

Jn,k ≤
∫

Q

∫ 1

0
|t| |w′

k(ξt)| e−n|t|2 dt dξ

≤
∫

Q
|w′

k(s)| |s|
[
∫ 1

0
ξ−d−1 e−n|s|2/ξ2 dξ

]

ds

≤ n−d/2

∫

Q
|w′

k(s)| |s|−(d−1)

[
∫ ∞

|s|√n
ud−1 e−u2

du

]

ds

≤ cd n
−d/2

∫

Q

|w′
k(s)|

|s|d−1
e−n|s|2/2 ds

with some constant cd depending on the dimension, only. Performing summation over all
k 6= 0, we get

nd/2
∑

k 6=0

In,k ≤ cd

∫

‖s‖∞>π

2

|w′(s)|
‖s‖d−1

e−n ‖s‖2/2 ds. (2.11)

Since |w′(s)| ≤ 2 |f(s)| |f ′(s)|, and recalling the assumption (2.3), one may apply the Lebesgue
dominated convergence theorem and conclude that the right-hand side of (2.11) tends to zero,
and thus (2.7) and (2.10) hold true.

�

3. Multidimensional extension of Theorem 1.2

Keeping notations and the setting of the previous section, the multidimensional variant of
Theorem 1.2 reads as follows.

Theorem 3.1. Let X be a random vector in R
d with E |X| < ∞ and with characteristic

function f such that
∫

Rd

|f ′(t)|
‖t‖d−1

dt < ∞, (3.1)

where ‖t‖ denotes the distance from t ∈ R
d to the lattice πZd. If f(πk) = 0 for all k ∈ Z

d,

k 6= 0, then the normalized sums Zn have continuous densities pn such that

sup
x

|pn(x)− ϕ(x)| → 0 as n → ∞. (3.2)

In dimension one, (3.1) means that |f ′| is integrable. If d ≥ 2, this condition is fulfilled
when

∑

k∈Zd

max
t∈Qk

|f ′(t)| < ∞,

for example, under the decay assumptions such as

|f ′(t)| ≤ c

((1 + |t1|) . . . (1 + |td|))α
, t = (t1, . . . , td) ∈ R

d,

with some constants α > 1 and c > 0. Note that this is not the case, when X is uniformly
distributed in the cube [−1, 1]d.
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This claim is very similar to Theorem 2.1, and only minor modifications should be done in
the proof of the sufficiency part.

Proof. As before, put v(t) = cos(t1) . . . cos(td). By Lemma 2.2, the characteristic functions

fn(t) = f
( t√

n

)

vn
( t√

n

)

are integrable. Hence, Zn have continuous densities given by the Fourier inversion formula

pn(x) =
1

(2π)d

∫

Rd

e−i〈t,x〉fn(t) dt = nd/2
∑

k∈Zd

In,k(x), (3.3)

where

In,k(x) =
1

(2π)d

∫

Qk

e−i〈t,x〉√n f(t)vn(t) dt. (3.4)

In particular,

nd/2In,0(x) =
1

(2π)d

∫

√
nQ

e−i〈t,x〉 f
( t√

n

)

vn
( t√

n

)

dt.

Here, one may remove f from the integrand by using the bound |f( t√
n
)−1| ≤ |t|√

n
E |X|. More

precisely, this may be done at the expense of an error not exceeding in absolute value

1√
n
E |X|

∫

√
nQ

|t| vn
( t√

n

)

dt ≤ 1√
n
E |X|

∫

√
nQ

|t| e−|t|2/2 dt ≤ c√
n
E |X|

up to some absolute constant c > 0. Hence

nd/2In,0(x) =
1

(2π)d

∫

√
nQ

e−i〈t,x〉 vn
( t√

n

)

dt+ θn(x), (3.5)

where supx |θn(x)| → 0 as n → ∞. One may now turn to the approximation of vn by the
Gaussian function. With some absolute constant c > 0, we have

∣

∣

∣
cosn

( u√
n

)

− e−u2/2
∣

∣

∣
≤ c

n
e−u2/4, |u| ≤ π

2
,

which implies
∣

∣

∣
vn

( t√
n

)

− e−|t|2/2
∣

∣

∣
≤ cd

n
e−|t|2/4, t = (t1, . . . , td) ∈ Q.

Therefore, after another replacement, (3.5) is simplified to

nd/2In,0(x) =
1

(2π)d

∫

√
nQ

e−i〈t,x〉 e−|t|2/2 dt+ θn,1(x) = ϕ(x) + θn,2(x),

where supx |θn,j(x)| → 0 as n → ∞. Thus, the term in (3.3) corresponding to k = 0 produces
the desired normal approximation, and we are left to show that

∑

k 6=0 |In,k(x)| → 0 as n → ∞
uniformly over all x ∈ R

d.

For a fixed k 6= 0, put wk(t) = f(πk + t). Applying again 0 ≤ cos u ≤ e−u2/2 for |u| ≤ π
2 in

(3.4), we have

|In,k(x)| ≤ Jn,k, Jn,k =
1

(2π)d

∫

Q
|wk(t)| e−n|t|2/2 dt.
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Using (2.4), we therefore obtain in full analogy with the derivation from the previous section
that

Jn,k ≤ cd n
−d/2

∫

Q

|w′
k(s)|

|s|d−1
e−n|s|2/2 ds

with some constant cd depending on the dimension, only. Performing summation over all
k 6= 0, we get

nd/2
∑

k 6=0

|In,k(x)| ≤ cd

∫

‖s‖∞>π

2

|f ′(s)|
‖s‖d−1

e−n ‖s‖2/2 ds. (3.6)

Finally, by (3.1), one may apply the Lebesgue dominated convergence theorem and conclude
that the right-hand side of (3.6) tends to zero, and thus (3.2) holds true.

�

4. Proof of Theorem 1.3

The argument is rather standard, cf. e.g. [P1-2]. Let v(t) = E ei〈t,X1〉, t ∈ R
d, be the common

characteristic function ofXk’s. If f is supported on the ball |t| ≤ T , the characteristic functions

fn(t) = f
( t√

n

)

vn
( t√

n

)

of the normalized sums Zn are supported on the ball Bn of radius T
√
n. Hence, Zn have

continuous densities given according to the Fourier inversion formula

pn(x) =
1

(2π)d

∫

Rd

e−i〈t,x〉fn(t) dt =
1

(2π)d

∫

Bn

e−i〈t,x〉fn(t) dt. (4.1)

In order to explore an asymptotic behavior of these integrals, first note that one may always
choose a number T > 0 such that, for any 0 < t0 < T ,

c(t0) = max
t0≤|t|≤T

|v(t)| < 1. (4.2)

Moreover, by the second moment assumption,

v(t) = 1− 1

2
|t|2 + ε(t) |t|2

with ε(t) → 0 as t → 0. Let us choose t0 ∈ (0, T ] such that |ε(t)| ≤ 1
4 for all |t| ≤ t0. Then

|v(t)| ≤ 1− 1
4 |t|2 in this ball, and

|fn(t)| ≤
(

1− 1

4n
|t|2

)n
≤ e−|t|2/4, |t| ≤ t0

√
n.

Combining this estimate with (4.2), we conclude that for any sequence Tn ↑ ∞ with Tn ≤ t0
√
n,

∫

Tn≤|t|≤T
√
n
|fn(t)| dt ≤ cn (2T

√
n)dωd +

∫

|t|≥Tn

e−|t|2/4 dt → 0, (4.3)

where c = c(t0), and ωd denotes the volume of the d-dimensional Euclidean unit ball.
Using the principal value of the logarithm, by Taylor expansion, for |t| ≤ t0 we also have

log v(t) = log
(

1− 1

2
|t|2 + ε(t) |t|2

)

= −1

2
|t|2 + ε1(t) |t|2
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with ε1(t) → 0 as t → 0. Therefore,

vn
( t√

n

)

= exp
{

− 1

2
|t|2 + ε

( t√
n

)

|t|2
}

→ g(t) = e−|t|2/2,

where the convergence is uniform in the balls |t| ≤ Tn such that Tn = o(
√
n) as n → ∞. Hence,

δn = sup
|t|≤Tn

|fn(t)− g(t)| → 0.

Moreover, if Tn ↑ ∞ sufficiently slow,
∫

|t|≤Tn

|fn(t)− g(t)| dt ≤ δn (2Tn)
d → 0

as n → ∞. Thus, by (4.3),
∫

Qn

|fn(t)− g(t)| dt ≤
∫

|t|≤Tn

|fn(t)− g(t)| dt

+

∫

Tn≤|t|≤T
√
n
|fn(t)| dt+

∫

Tn≤|t|≤T
√
n
|g(t)| dt → 0.

In view of (4.1), we obtain the desired relation (1.3), that is,

|pn(x)− ϕ(x)| ≤ 1

(2π)d

∫

Rd

|fn(t)− g(t)| dt → 0.

If X1 has a non-lattice distribution, the property (4.2) holds true with any T > 0, cf.
[BR-R], Section 21. Otherwise, let us mention how one may quantify the choice of T satisfying
(4.2). If ξ is a mean zero random variable with E |ξ|3 < ∞, one has (cf. e.g. [B], Lemma 15.1)

|E eirξ| ≤ exp
{

− r2

2
Eξ2 +

r3

3
E |ξ|3

}

, r ∈ R.

Applying this bound with ξ = 〈X1, θ〉, θ = t/|t|, r = |t|, t ∈ R
d, we get

|v(t)| ≤ exp
{

− |t|2
2

+
|t|3
3

β3(θ)
}

≤ exp
{

− |t|2
2

+
|t|3
3

β3

}

,

where β3(θ) = E | 〈X1, θ〉 |3. If |t| ≤ 1/β3, the above right-hand side does not exceed e−|t|2/6.
Hence, T = 1/β3 is admissible. �

Remark 4.1. One may remove the 3rd moment assumption and take T = π in Theorem
1.3 (in dimension one) under the following hypotheses about the distribution of X1 (in addition
to the basic moment assumptions EX1 = 0 and EX2

1 = 1):

a) The distribution of X1 is symmetric about the origin;
b) P{X1 = 0} = 0;
c) The distribution of X1 is different than the symmetric Bernoulli distribution on {−1, 1}.

In that case, the property (4.2) still holds true. Indeed, otherwise take the smallest t0 > 0
such that |v(t0)| = 1. This implies that X1 has a lattice distribution supported on a+hZ with
h = 2π/t0 (cf. [P2], Chapter 1, Lemma 3). Equivalently, X1 = a+ hξ for some integer-valued
random variable ξ. By the assumption a), necessarily a = hm/2 for some integer m. Adding
an integer number to ξ, we may assume without loss of generality that m = 0 or m = 1.
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In the first case, X1 = hξ, so that, by b), |X1| ≥ h and thus 1 = EX2
1 ≥ h2. Hence

t0 =
2π
h ≥ 2π, implying that (4.2) holds with any T < 2π. In the second case, X1 = h(12 + ξ),

hence |X1| ≥ 1
2 h and thus 1 = EX2

1 ≥ h2/4. Here, by a), the equality is only possible when
ξ takes the values 0 and 1 with probability 1/2, which is excluded by c). Hence h < 2 and
t0 =

2π
h > π, implying that (4.2) holds with T = π.

5. Poisson formula

As we mentioned before, the property (1.2), needed in Theorems 1.1-1.2 and their multidimen-
sional variants, may be stated explicitly in terms of the density of X. Such a reformulation is
based on the Poisson formula which we recall in this section.

Consider the Fourier transform

f(t) =

∫

Rd

ei〈t,x〉p(x) dx, t ∈ R
d,

for a given integrable function p : Rd → C. The Poisson formula indicates that, under certain
mild assumptions on p (or f), we have the equality

∑

m∈Zd

p(m) =
∑

k∈Zd

f(2πk). (5.1)

In dimension d = 1, it is sufficient to require that p be continuous and have a bounded total
variation on the real line. In this case, the left series in (5.1) is absolutely convergent, while
the value of the right series is understood as the limit of the corresponding symmetric sums,
cf. [Z], Theorem 13.5. For higher dimensions, (5.1) holds true as long as p belongs to the
Schwarz space of functions on R

d, as mentioned in [I-K], Theorem 4.5.
Let us recall a standard argument and indicate somewhat weaker conditions in terms of f ,

enlarging the Schwarz class, but restricting ourselves to the case where p or f are real-valued
and non-negative.

Proposition 5.1. Let p be an integrable non-negative function on R
d whose Fourier

transform f is also integrable and has a continuous derivative f ′ = ∇f satisfying
∫

Rd

|f ′(t)|
‖t‖d−1

dt < ∞,

where ‖t‖ denotes the distance from the point t to the lattice 2πZd. Then we have the equality

(5.1), in which the second series is absolutely convergent.

As the next proof shows, the differentiability assumption may slightly be relaxed, assuming
that f is locally Lipschitz and using the generalized modulus of the gradient

|f ′(t)| = lim inf
s→t

|f(s)− f(t)|
|s− t| . (5.2)

Note that the function p in Proposition 5.1 is bounded and continuous (which we require
below), by the integrability of f and by the inverse Fourier formula which may be written as

p(x/2π) =

∫

Rd

ei〈t,x〉 f(−2πt) dt.
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This formula also shows that the role of p and f in (5.1) may be interchanged. In that case,
Proposition 5.1 may be restated as follows.

Proposition 5.2. Let p be an integrable, locally Lipschitz function on R
d whose Fourier

transform f is integrable and non-negative. Suppose that

∫

Rd

|p′(x)|
‖x‖d−1

dx < ∞,

where ‖x‖ denotes the distance from the point x to the lattice Z
d. Then we have the equality

(5.1), in which the first series is absolutely convergent.

In dimension d = 1, the above condition on p just means that p has bounded total variation
on the real line, and then we arrive at the usual one-dimensional formulation of (5.1) under
an additional assumption that f is non-negative.

Proof of Proposition 5.1. Let us partition R
d into the cubesQk = Q+2πk, Q = [−π, π]d,

k ∈ Z
d, and apply the bound

|f(2πk + t)− f(2πk)| ≤ |t|
∫ 1

0
|f ′(2πk + ξt)| dξ, t ∈ R

d. (5.3)

It holds true as long as f is locally Lipschitz, with definition (5.2) of the modulus of the gradient
of f . Indeed, for any x, t ∈ R

d, the function u(ξ) = f(x + ξt) − f(x) is locally Lipschitz on
the line, and therefore it is absolutely continuous. If u′ is a Radon-Nikodym derivative of u,

it follows from (5.2) that |u′(ξ)| ≤ |t| |f ′(x+ ξt)| a.e., while |u(1)| ≤
∫ 1
0 |u′(ξ)| dξ.

Now, arguing as in the proof of Lemma 2.2, we have

∫

Q
|f(2πk + t)− f(2πk)| dt ≤

∫ 1

0

∫

Q
|f ′(2πk + ξt)| |t| dξ dt

=

∫

Q

[

|f ′(2πk + s)| |s|
∫ 1

‖s‖∞
π

dξ

ξd+1

]

ds ≤ cd

∫

Q

|f ′(2πk + s)|
|s|d−1

ds

with some constant cd depending on d only. Hence

(2π)d |f(2πk)| ≤
∫

Qk

|f(t)| dt+ cd

∫

Qk

|f ′(t)|
‖t‖d−1

dt.

The next summation over all k leads to

∑

k∈Zd

|f(2πk)| ≤ 1

(2π)d

∫

Rd

|f(t)| dt+ cd
(2π)d

∫

Rd

|f ′(t)|
‖t‖d−1

dt < ∞, (5.4)

so that the second series in (5.1) is absolutely convergent.
Next, consider the periodic function

P (x) =
∑

m∈Zd

p(m+ x), x ∈ R
d.
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It is a.e. finite and integrable on the unit cube K = [0, 1]d, since
∫

K

∑

m∈Zd

p(m+ x) dx =

∫

Rd

p(x) dx < ∞.

Therefore, P admits a multiple Fourier series expansion
∑

k∈Zd ak e
−2πi〈k,x〉 with coefficients

ak =

∫

K
e2πi〈k,x〉 P (x) dx =

∑

m∈Zd

∫

K
e2πi〈k,x〉 p(x+m) dx

=
∑

m∈Zd

∫

K+m
e2πi〈k,y〉 p(y) dy =

∫

Rd

e2πi〈k,y〉 p(y) dy = f(2πk).

The Fourier series is thus absolutely convergent, and as a consequence, P (x) = P̃ (x) a.e.,
where

P̃ (x) =
∑

k∈Zd

f(2πk) e−2πi〈k,x〉.

By (5.4), P̃ represents a continuous function. Once P is finite and continuous as well, we could

conclude that P (x) = P̃ (x) for all x ∈ R
d. But, for x = 0, the latter equality becomes the

Poisson formula (5.1).
The boundedness and continuity of P (needed at zero only) may be explored in terms of

smoothness properties of p. Instead, let us apply a smoothing argument. Using the Fourier
couple on the real line,

w(x) =
(sin(πx)

πx

)2
, ŵ(t) =

(

1− |t|
2π

)+
,

the function wT (x) = w(x/T ) with a parameter T ≥ 1 has the Fourier transform ŵT (t) =
T ŵ(T t), x, t ∈ R. Define

wT (x) = wT (x1) . . . wT (xd), x = (x1, . . . , xd) ∈ R
d,

with its Fourier transform

ŵT (t) = ŵT (t1) . . . ŵT (td), t = (t1, . . . , td) ∈ R
d.

Put pT (x) = p(x)wT (x) with the corresponding periodic function

PT (x) =
∑

m∈Zd

p(m+ x)wT (m+ x). (5.5)

Since p is bounded, the above series is absolutely convergent. Indeed, using |w(x/T )| ≤ cT 2

1+x2 ,

x ∈ R, we have, for any x = (x1, . . . , xd) ∈ R
d with ‖x‖∞ ≤ 1,

wT (m+ x) ≤ (cT 2)d

(1 + (m1 + x1)2) . . . (1 + (md + xd)2)

≤ (cT 2)d

(1 +m2
1) . . . (1 +m2

d)
, m = (m1, . . . ,md) ∈ Z

d,

where c denotes an absolute constant which may be different in different places. It follows that
the sum of the series in (5.5) is uniformly bounded. Since all terms in (5.5) are continuous in
x, we may conclude that PT is continuous as well.
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It also follows from (5.5) and the property wT (0) = 1 that

lim
T→∞

PT (0) = P (0). (5.6)

It is the only place where the property that p is non-negative is used. Since 0 ≤ wT ≤ 1, we
have lim supT→∞ PT (0) ≤ P (0). On the other hand, since wT (x) → 1, for any fixed N ≥ 1

lim inf
T→∞

PT (0) ≥ lim inf
T→∞

∑

‖m‖∞≤N

p(m)wT (m) =
∑

‖m‖∞≤N

p(m).

Since N is arbitrary, we get lim infT→∞ PT (0) ≥ P (0) and thus arrive at (5.6).
Now, the Fourier transform fT of pT represents the normalized convolution (2π)−d f ∗ ŵT ,

which is integrable and satisfies
∫

Rd

|f ′
T (t)|

‖t‖d−1
dt < ∞.

The latter follows from the equality f ′
T = (2π)−d f ′ ∗ ŵT = (2π)−d f ∗ ŵ′

T together with the

bound
∫

Rd

|w′
T
(t)|

‖t−s‖d−1
dt ≤ C(T ) holding true with a constant C(T ) independent of s. Thus,

∑

k∈Zd

|fT (2πk)| < ∞,

and we obtain the Poisson formula for the smoothed functions, that is,

PT (0) = P̃T (0) ≡
∑

k∈Zd

fT (2πk). (5.7)

In order to turn to the limit in this equality, note that (2π)−d
∫

Rd ŵT (t) dt = wT (0) =
w(0) = 1, so that we may write

fT (2πk) − f(2πk) = (2π)−d

∫

Rd

(f(2πk + t)− f(2πk)) ŵT (t) dt.

Hence, by (5.3),

|fT (2πk) − f(2πk)| ≤ (2π)−d

∫ 1

0

∫

Rd

|f ′(2πk + ξt)| |t| ŵT (t) dξ dt.

Changing the variable ξt = s and using ŵT (t) = 0 for ‖t‖∞ ≥ 2π/T , with |ŵT (t)| ≤ (cT )d for
‖t‖∞ ≤ 2π/T , the last double integral may be bounded by

(cT )d
∫

‖s‖∞≤ 2π

T

[

|f ′(2πk + s)| |s|
∫ 1

T ‖s‖∞

dξ

ξd+1

]

ds ≤ cd

∫

‖s‖∞≤ 2π

T

|f ′(2πk + s)|
|s|d−1

ds

with some constant cd depending on d only. Hence, summing over all k, we get

∑

k∈Zd

|fT (2πk) − f(2πk)| ≤ cd (2π)
−d

∫

RT

|f ′(t)|
‖t‖d−1

dt, (5.8)

where RT =
⋃

k

(

[−2π
T , 2πT ]d + 2πk

)

. This region shrinks to the lattice 2πZd for growing T ,
while the integral on the right is finite, when the integration is performed over the whole space.
Therefore, by the Lebesgue dominated convergence theorem, both sides of (5.8) tend to zero.

In particular, P̃T (0) → P̃ (0) as T → ∞. Thus, in the limit (5.7) together with (5.6) yield the

desired equality P̃ (0) = P (0). �
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6. Poisson formula for convoluted densities

Let us restate once more Propositions 5.1-5.2, assuming that f is the characteristic function
of a random vector X in R

d.

Proposition 6.1. Let E |X| < ∞, and assume that f is integrable and satisfies
∫

Rd

|f ′(t)|
‖t‖d−1

dt < ∞, (6.1)

where ‖t‖ denotes the distance from t to the lattice 2πZd. Then X has a bounded continuous

density p, and we have the equality (5.1), in which the second series is absolutely convergent.

Here, the moment assumption on X ensures that f has a continuous derivative f ′.

Proposition 6.2. Let f be integrable and non-negative, and assume that the density p of

X is locally Lipschitz and satisfies
∫

Rd

|p′(x)|
‖x‖d−1

dx < ∞, (6.2)

where ‖x‖ denotes the distance from x to the lattice Z
d. Then we have the equality (5.1), in

which the sums of both series are finite.

By the integrability of f , the random vector X has a bounded continuous density p given by
the inverse Fourier formula. It implies in particular that p has a bounded continuous derivative
p′ as soon as

∫

Rd |t| |f ′(t)| dt < ∞. The latter condition is however not necessary.
Recall that in dimension d = 1, the assumptions in Proposition 6.2 may be weakened. It

is sufficient to require that X have a continuous density of bounded total variation (removing
any hypotheses on f). This requirement may be related to the properties of the characteristic
function. For example, it is sufficient to have (cf. e.g. [B-C-G], Proposition 5.2) that

∫ ∞

−∞
t2
(

|f(t)|2 + |f ′(t)|2
)

dt < ∞.

In case d ≥ 2, the assumptions (6.1) and (6.2) are respectively fulfilled under decay bounds

|f ′(t)| ≤ c

((1 + |t1|) . . . (1 + |td|))α
, |p′(x)| ≤ c

((1 + |x1|) . . . (1 + |xd|))α
,

holding for all t = (t1, . . . , td) ∈ R
d and respectively x = (x1, . . . , xd) ∈ R

d with some constants
α > 1 and c > 0. These bounds may be strengthened to

|f ′(t)| ≤ c

(1 + |t|)αd , |p′(x)| ≤ c

(1 + |x|)αd .

The latter is fulfilled for all functions on R
d from the Schwarz space.

Let us now turn to the density description of the condition f(πk) = 0 for all k 6= 0 appearing
in Theorems 1.1-1.2 and 2.1-3.1. It may equivalently be stated as the property

∑

k∈Zd

|f(πk)|2 = 1. (6.3)
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Note that v(t) = |f(t/2)|2 is non-negative and represents the characteristic function of the
random vector Y = (X −X ′)/2, where X ′ is an independent copy of X. If X has density p,
the density of Y is given by

q(x) = 2d
∫

Rd

p(2x+ y) p(y) dy.

Hence, under the corresponding regularity assumptions, the Poisson formula (5.1) for the
couple (q, v) becomes

∑

k∈Zd

|f(πk)|2 =
∑

k∈Zd

q(k) = 2d
∑

k∈Zd

∫

Rd

p(2k + x) p(x) dx,

which is equivalent to (6.3), if and only if

∑

k∈Zd

∫

Rd

p(2k + x) p(x) dx = 2−d. (6.4)

Let us precise the regularity assumptions. Since |v′(t)| ≤ 2 |f(t)| |f ′(t)|, the condition (6.1)
is fulfilled as long as

∫

Rd

|f(t)| |f ′(t)|
‖t‖d−1

dt < ∞, (6.5)

where ‖t‖ denotes the distance from t to the lattice 2πZd. Hence, from Proposition 6.1 we
obtain:

Corollary 6.3. Let E |X| < ∞, and assume that f is square integrable and satisfies the

condition (6.5). Then f(πk) = 0 for all k ∈ Z
d, k 6= 0, if and only if the equality (6.4) holds.

The assumption that f ∈ L2 implies that X has a square integrable density p, in which case
the density q is continuous. Let us also note that the condition (6.5) is exactly the assumption
(2.3) from Theorem 2.1. Hence, under (6.5), (6.4) is equivalent to the local limit theorem
(2.1), that is, to the property

‖pn − ϕ‖2 → 0 as n → ∞.

One may also develop an application of Proposition 6.2 to the density q (in place of p).
Assuming that the density p has a continuous derivative, we have that q has the derivative

q′(x) = 2d+1

∫

Rd

p′(2x+ y) p(y) dy.

To weaken the assumptions, consider the one-dimensional case. Then, the only requirement
we need to meet is that q is continuous and has a bounded total variation on the real line.
The continuity is met as long as p ∈ L2, while ‖q‖TV ≤ 2 ‖p‖TV. Hence, we arrive at:

Corollary 6.4. Assume that the random variable X has a density p with bounded total

variation. Then f(πk) = 0 for all k ∈ Z, k 6= 0, if and only if

∑

k∈Z

∫ ∞

−∞
p(2k + x) p(x) dx =

1

2
. (6.6)
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7. Asymptotic behavior of densities without condition (1.2)

Let us now return to the setting of Theorem 1.2, thus restricting ourselves to dimension d = 1.
Without the condition (1.2), the densities pn(x) of the normalized sums Zn have an oscillating
character at all points x 6= 0. Here we describe a typical situation, assuming that the density
p of the random variable X is sufficiently regular.

Theorem 7.1. Assume that X has a continuous density p of bounded total variation, with

finite second moment. If the characteristic function f = E eitX and its derivatives f ′ and f ′′

are integrable, then Zn have uniformly bounded densities pn satisfying uniformly over all x

pn(x) = An(x)ϕ(x) +O
( log n√

n

)

, (7.1)

where

An(x) =
∑

k∈Z
e−iπk (x

√
n+n) f(πk) = 2

∑

m∈Z
p(2m+ x

√
n+ n).

Thus, the behavior of pn might be different for n even and n odd. The point x = 0 turns
out to be special, since then the oscillatory character disappears along even and odd values of
n respectively.

Corollary 7.2. Under the same assumptions,

lim
n→∞

p2n(0) =
2√
2π

∑

m∈Z
p(2m),

lim
n→∞

p2n+1(0) =
2√
2π

∑

m∈Z
p(2m+ 1).

Proof of Theorem 7.1. Since f is integrable, the random variables Zn have bounded
continuous densities described by the inverse Fourier formula

pn(x) =
1

2π

∫ ∞

−∞
e−itxfn(t) dt, x ∈ R, (7.2)

where

fn(t) = f
( t√

n

)

cosn
( t√

n

)

are the characteristic functions of Zn. As before, let us split the integration in (7.2) into the
intervals 1√

n
Qk, Qk = [πk − π

2 , πk + π
2 ], k ∈ Z, to get the representation

pn(x) =
1

2π

√
n

∑

k

(−1)nk e−iπk x
√
n In,k(x), (7.3)
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with

In,k(x) =

∫ π

2

−π

2

e−itx
√
n f(πk + t) cosn(t) dt

= f(πk)

∫ π

2

−π

2

e−itx
√
n cosn(t) dt

+

∫ π

2

−π

2

e−itx
√
n (f(πk + t)− f(πk)) cosn(t) dt. (7.4)

Using θ, θj to denote quantities bounded by an absolute constant, from the asymptotic
expression

cosn(t) = e−nt2/2 +
θ

n
e−t2/4, |t| ≤ π

2
, (7.5)

we obtain that
∫ π

2

−π

2

e−itx
√
n cosn(t) dt =

∫ π

2

−π

2

e−itx
√
n e−nt2/2 dt+

θ1
n

=

∫ ∞

−∞
e−itx

√
n e−nt2/2 dt+

θ2
n

=

√
2π√
n

e−x2/2 +
θ2
n
. (7.6)

This gives an asymptotic representation for the first integral in (7.4).

The second integral has a smaller order. Put εn =
√
2 logn√

n
(assuming that εn ≤ π

2 ). We use

0 ≤ cos t ≤ e−t2/2, |t| ≤ π
2 , so that cosn t ≤ 1

n for εn < |t| < π
2 . This implies that

∫ π

2

εn

|f(πk + t)− f(πk)| cosn(t) dt ≤
∫ π

2

εn

[
∫ t

0
|f ′(πk + s)| cosn(t) ds

]

dt

≤
∫ π

2

εn

[
∫ t

0
|f ′(πk + s)| e−nt2/2 ds

]

dt

≤ 2

n

∫ π

2

0
|f ′(πk + s)| ds.

With a similar bound for the interval −π
2 < t < −εn, we get

∫

εn<|t|<π

2

|f(πk + t)− f(πk)| cosn(t) dt ≤ 2

n

∫ π

2

−π

2

|f ′(πk + s)| ds. (7.7)

For the interval |t| < εn, we use the Taylor integral formula up to the quadratic form,

f(πk + t)− f(πk) = f ′(πk)t+
∫ t

0
(t− s)f ′′(πk + s) ds.

By (7.5), the linear term makes a contribution
∫ εn

−εn

e−itx
√
n t cosn(t) dt =

∫ εn

−εn

e−itx
√
n t e−nt2/2 dt+

θ3
n

=
1

n

∫ εn
√
n

−εn
√
n
e−isx s e−s2/2 ds+

θ3
n

=
θ4
n
.
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Hence, for the integral

Jn,k(x) =

∫

|t|<εn

e−itx
√
n (f(πk + t)− f(πk)) cosn(t) dt,

we get

|Jn,k(x)| ≤ θ4
n

|f ′(πk)| +
∣

∣

∣

∣

∫ εn

−εn

e−itx
√
n

∫ t

0
(t− s)f ′′(πk + s) cosn(t) dt ds

∣

∣

∣

∣

≤ θ4
n

|f ′(πk)| +
∫ εn

−εn

∫ |t|

−|t|
(|t| − |s|) |f ′′(πk + s)| dt ds

≤ θ4
n

|f ′(πk)| +
∫ εn

−εn

(εn − |s|)2 |f ′′(πk + s)| ds

≤ θ4
n

|f ′(πk)| + 2 log n

n

∫ π

2

−π

2

|f ′′(πk + s)| ds.

Together with (7.6)-(7.7), we thus arrive at

√
n In,k(x) =

(√
2π e−x2/2 +

θj√
n
|f ′(πk)|

)

f(πk)

+ θ̃j
log n√

n

∫ π

2

−π

2

(|f ′(πk + s)|+ |f ′′(πk + s)|) ds

with bounded quantities θj and θ̃j.
To perform summation over all k ∈ Z, first note that

∑

k |f(πk)| < ∞, as was emphasized
in Proposition 6.1. Similarly,

∑

k |f ′(πk)| < ∞, since f ′′ is integrable. Returning to (7.3), we
thus obtain that

pn(x) =
(

ϕ(x) +O(1/
√
n)
)

∑

k

(−1)nke−iπk x
√
n f(πk)

+ θ
log n√

n

∫ ∞

−∞
(|f ′(s)|+ |f ′′(s)|) ds,

that is, uniformly over all x

pn(x) = An(x)ϕ(x) +O
( log n√

n

)

, An(x) =
∑

k∈Z
e−iπk (x

√
n+n) f(πk).

Since the factors An are uniformly bounded, so are pn. We now apply Proposition 6.1 to
the random variables

ξn =
1

2
(X − x

√
n− n),

whose characteristic functions and densities are given by

vn(t) = E eitξn = e−it (x
√
n+n)/2 f(t/2), qn(y) = 2 p(2y + x

√
n+ n).

With this choice we get

An(x) =
∑

k∈Z
vn(2πk) =

∑

m∈Z
qn(m) = 2

∑

m∈Z
p(2m+ x

√
n+ n).

�
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This observation implies that we cannot hope to obtain the convergence of pn to ϕ even in
L1. For example, let us consider the two-sided exponential distribution with density p(x) =
1
2 e

−|x|. In this case, by Corollary 7.2,

lim
n→∞

p2n(0) =
1√
2π

∑

m

e−2|m| =
1√
2π

e2 + 1

e2 − 1
> ϕ(0),

lim
n→∞

p2n+1(0) =
1√
2π

∑

m

e−|2m+1| =
1√
2π

2e

e2 − 1
< ϕ(0).

The same expressions are obtained for the values x = 2k/
√
n. The function An(x) has period

2/
√
n. Let x

√
n = 2k + h, k ∈ Z, 0 < h < 2. Then along even indexes n,

An(x) = 2
∑

m∈Z
p(2m+ h) =

eh + e2−h

e2 − 1
.

The latter expression is bounded away from zero for all h small enough. Hence, according to
(7.1), we have

∫∞
−∞ |pn(x)− ϕ(x)| dx ≥ c > 0.
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