Borell's generalized Prékopa-Leindler inequality: A simple proof

Arnaud Marsiglietti*

Abstract

We present a simple proof of Christer Borell's general inequality in the Brunn-Minkowski theory. We then discuss applications of Borell's inequality to the log-Brunn-Minkowski inequality of Böröczky, Lutwak, Yang and Zhang.

2010 Mathematics Subject Classification. Primary 28A75, 52A40.
Keywords. Brunn-Minkowski, Convex body, log-Brunn-Minkowski inequality, mass transportation.

1 Introduction

Let us denote by $\operatorname{supp}(f)$ the support of a function f. In [6] Christer Borell proved the following inequality (see [6, Theorem 2.1]), which we will call the Borell-Brunn-Minkowski inequality.

Theorem 1 (Borell-Brunn-Minkowski inequality). Let $f, g, h: \mathbb{R}^{n} \rightarrow[0,+\infty)$ be measurable functions. Let $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right): \operatorname{supp}(f) \times \operatorname{supp}(g) \rightarrow \mathbb{R}^{n}$ be a continuously differentiable function with positive partial derivatives, such that $\varphi_{k}(x, y)=\varphi_{k}\left(x_{k}, y_{k}\right)$ for every $x=\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{supp}(f), y=\left(y_{1}, \ldots, y_{n}\right) \in \operatorname{supp}(g)$. Let $\Phi:[0,+\infty) \times[0,+\infty) \rightarrow[0,+\infty)$ be a continuous function, homogeneous of degree 1 and increasing in each variable. If the inequality

$$
\begin{equation*}
h(\varphi(x, y)) \Pi_{k=1}^{n}\left(\frac{\partial \varphi_{k}}{\partial x_{k}} \rho_{k}+\frac{\partial \varphi_{k}}{\partial y_{k}} \eta_{k}\right) \geq \Phi\left(f(x) \Pi_{k=1}^{n} \rho_{k}, g(y) \Pi_{k=1}^{n} \eta_{k}\right) \tag{1}
\end{equation*}
$$

holds for every $x \in \operatorname{supp}(f)$, for every $y \in \operatorname{supp}(g)$, for every $\rho_{1}, \ldots, \rho_{n}>0$ and for every $\eta_{1}, \ldots, \eta_{n}>0$, then

$$
\int h \geq \Phi\left(\int f, \int g\right) .
$$

C. Borell proved a slightly more general statement, involving an arbitrary number of functions. For simplicity, we restrict ourselves to the statement of Theorem 1 ,

Theorem 1 yields several important consequences. For example, applying Theorem 1 to indicators of compact sets (i.e. $f=1_{A}, g=1_{B}, h=1_{\varphi(A, B)}$) yields the following generalized Brunn-Minkowski inequality.
Corollary 2 (Generalized Brunn-Minkowski inequality). Let A, B be compact subsets of \mathbb{R}^{n}. Let $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right): A \times B \rightarrow \mathbb{R}^{n}$ be a continuously differentiable function with positive partial derivatives, such that $\varphi_{k}(x, y)=\varphi_{k}\left(x_{k}, y_{k}\right)$ for every $x=\left(x_{1}, \ldots, x_{n}\right) \in A, y=\left(y_{1}, \ldots, y_{n}\right) \in$ B. Let $\Phi:[0,+\infty) \times[0,+\infty) \rightarrow[0,+\infty)$ be a continuous function, homogeneous of degree 1 and increasing in each variable. If the inequality

$$
\Pi_{k=1}^{n}\left(\frac{\partial \varphi_{k}}{\partial x_{k}} \rho_{k}+\frac{\partial \varphi_{k}}{\partial y_{k}} \eta_{k}\right) \geq \Phi\left(\Pi_{k=1}^{n} \rho_{k}, \Pi_{k=1}^{n} \eta_{k}\right)
$$

[^0]holds for every $\rho_{1}, \ldots, \rho_{n}, \eta_{1}, \ldots, \eta_{n}>0$, then
$$
|\varphi(A, B)| \geq \Phi(|A|,|B|),
$$
where $|\cdot|$ denotes Lebesgue measure and $\varphi(A, B)=\{\varphi(x, y): x \in A, y \in B\}$.
The classical Brunn-Minkowski inequality (see e.g. [23, [13) follows from Corollary 2 by taking $\varphi(x, y)=x+y, x \in A, y \in B$, and $\Phi(a, b)=\left(a^{1 / n}+b^{1 / n}\right)^{n}, a, b \geq 0$. Although the Brunn-Minkowski inequality goes back to more than a century ago, it still attracts a lot of attention (see e.g. [20, [11], [14, [18, 9], [10], [12], [15], [17]).

Theorem 1 also allows us to recover the so-called Borell-Brascamp-Lieb inequality. Let us denote by $M_{s}^{\lambda}(a, b)$ the s-mean of the real numbers $a, b \geq 0$ with weight $\lambda \in[0,1]$, defined as

$$
M_{s}^{\lambda}(a, b)=\left((1-\lambda) a^{s}+\lambda b^{s}\right)^{\frac{1}{s}} \quad \text { if } s \notin\{-\infty, 0,+\infty\},
$$

$M_{-\infty}^{\lambda}(a, b)=\min (a, b), M_{0}^{\lambda}(a, b)=a^{1-\lambda} b^{\lambda}, M_{+\infty}^{\lambda}(a, b)=\max (a, b)$. We will need the following Hölder inequality (see e.g. [16]).
Lemma 3 (Generalized Hölder inequality). Let $\alpha, \beta, \gamma \in \mathbb{R} \cup\{+\infty\}$ such that $\beta+\gamma \geq 0$ and $\frac{1}{\beta}+\frac{1}{\gamma}=\frac{1}{\alpha}$. Then, for every $a, b, c, d \geq 0$ and $\lambda \in[0,1]$,

$$
M_{\alpha}^{\lambda}(a c, b d) \leq M_{\beta}^{\lambda}(a, b) M_{\gamma}^{\lambda}(c, d) .
$$

Corollary 4 (Borell-Brascamp-Lieb inequality). Let $\gamma \geq-\frac{1}{n}, \lambda \in[0,1]$ and $f, g, h: \mathbb{R}^{n} \rightarrow$ $[0,+\infty)$ be measurable functions. If the inequality

$$
h((1-\lambda) x+\lambda y) \geq M_{\gamma}^{\lambda}(f(x), g(y))
$$

holds for every $x \in \operatorname{supp}(f), y \in \operatorname{supp}(g)$, then

$$
\int_{\mathbb{R}^{n}} h \geq M_{\frac{\gamma}{1+\gamma^{n}}}^{\lambda}\left(\int_{\mathbb{R}^{n}} f, \int_{\mathbb{R}^{n}} g\right) .
$$

Corollary 4 follows from Theorem 1 by taking $\varphi(x, y)=(1-\lambda) x+\lambda y, x \in \operatorname{supp}(f), y \in$ $\operatorname{supp}(g)$, and $\Phi(a, b)=M_{\frac{\gamma}{1+\gamma n}}^{\lambda^{\lambda}}(a, b), a, b \geq 0$. Indeed, using Lemma 3, one obtains that for every $x \in \operatorname{supp}(f), y \in \operatorname{supp}(g)$, and for every $\rho_{1}, \ldots, \rho_{n}, \eta_{1}, \ldots, \eta_{n}>0$,

$$
\begin{aligned}
h(\varphi(x, y)) \Pi_{k=1}^{n}\left(\frac{\partial \varphi}{\partial x_{k}} \rho_{k}+\frac{\partial \varphi}{\partial y_{k}} \eta_{k}\right) & =h((1-\lambda) x+\lambda y) \Pi_{k=1}^{n}\left((1-\lambda) \rho_{k}+\lambda \eta_{k}\right) \\
& \geq M_{\gamma}^{\lambda}(f(x), g(y)) M_{\frac{1}{n}}^{\lambda}\left(\Pi_{k=1}^{n} \rho_{k}, \Pi_{k=1}^{n} \eta_{k}\right) \\
& \geq M_{\frac{\gamma}{1+\gamma n}}^{\lambda}\left(f(x) \Pi_{k=1}^{n} \rho_{k}, g(y) \Pi_{k=1}^{n} \eta_{k}\right) \\
& =\Phi\left(f(x) \Pi_{k=1}^{n} \rho_{k}, g(y) \Pi_{k=1}^{n} \eta_{k}\right) .
\end{aligned}
$$

Corollary 4 was independently proved by Borell (see [6, Theorem 3.1]), and by Brascamp and Lieb [8].

Another important consequence of the Borell-Brunn-Minkowski inequality is obtained when considering φ to be nonlinear. Let us denote for $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in[-\infty,+\infty]^{n}, x=$ $\left(x_{1}, \ldots, x_{n}\right) \in[0,+\infty]^{n}$ and $y=\left(y_{1}, \ldots, y_{n}\right) \in[0,+\infty]^{n}$,

$$
M_{\mathbf{p}}^{\lambda}(x, y)=\left(M_{p_{1}}^{\lambda}\left(x_{1}, y_{1}\right), \ldots, M_{p_{n}}^{\lambda}\left(x_{n}, y_{n}\right)\right) .
$$

Corollary 5 (nonlinear extension of the Brunn-Minkowski inequality). Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right) \in$ $[0,1]^{n}, \gamma \geq-\left(\sum_{i=1}^{n} p_{i}^{-1}\right)^{-1}, \lambda \in[0,1]$, and $f, g, h:[0,+\infty)^{n} \rightarrow[0,+\infty)$ be measurable functions. If the inequality

$$
h\left(M_{\mathbf{p}}^{\lambda}(x, y)\right) \geq M_{\gamma}^{\lambda}(f(x), g(y))
$$

holds for every $x \in \operatorname{supp}(f), y \in \operatorname{supp}(g)$, then

$$
\int_{[0,+\infty)^{n}} h \geq M_{\left(\sum_{i=1}^{n} p_{i}^{-1}+\gamma^{-1}\right)^{-1}}^{\lambda}\left(\int_{[0,+\infty)^{n}} f, \int_{[0,+\infty)^{n}} g\right) .
$$

Corollary 5 follows from Theorem 1 by taking $\varphi(x, y)=M_{\mathbf{p}}^{\lambda}(x, y), x \in \operatorname{supp}(f), y \in \operatorname{supp}(g)$, and $\Phi(a, b)=M_{\left(\sum_{i=1}^{n} p_{i}^{-1}+\gamma^{-1}\right)^{-1}}^{\lambda}(a, b), a, b \geq 0$. Indeed, using Lemma 3, one obtains that for every $x \in \operatorname{supp}(f), y \in \operatorname{supp}(g)$, and for every $\rho_{1}, \ldots, \rho_{n}, \eta_{1}, \ldots, \eta_{n}>0$,

$$
\begin{aligned}
h(\varphi(x, y)) \Pi_{k=1}^{n}\left(\frac{\partial \varphi}{\partial x_{k}} \rho_{k}+\frac{\partial \varphi}{\partial y_{k}} \eta_{k}\right) & =h\left(M_{\mathbf{p}}^{\lambda}(x, y)\right) \Pi_{k=1}^{n} M_{\frac{p_{k}}{1-p_{k}}}^{\lambda}\left(x_{k}^{1-p_{k}}, y_{k}^{1-p_{k}}\right) M_{1}\left(x_{k}^{p_{k}-1} \rho_{k}, y_{k}^{p_{k}-1} \eta_{k}\right) \\
& \geq M_{\gamma}^{\lambda}(f(x), g(y)) \Pi_{k=1}^{n} M_{p_{k}}^{\lambda}\left(\rho_{k}, \eta_{k}\right) \\
& \geq M_{\gamma}^{\lambda}(f(x), g(y)) M_{\left(\sum_{i=1}^{\lambda} p_{i}^{-1}\right)^{-1}}^{\lambda}\left(\Pi_{k=1}^{n} \rho_{k}, \Pi_{k=1}^{n} \eta_{k}\right) \\
& \geq M_{\left(\sum_{i=1}^{n} p_{i}^{-1}+\gamma^{-1}\right)^{-1}}\left(f(x) \Pi_{k=1}^{n} \rho_{k}, g(y) \Pi_{k=1}^{n} \eta_{k}\right) \\
& =\Phi\left(f(x) \Pi_{k=1}^{n} \rho_{k}, g(y) \Pi_{k=1}^{n} \eta_{k}\right) .
\end{aligned}
$$

In the particular case where $\mathbf{p}=(0, \ldots, 0)$, Corollary 5 was rediscovered by Ball [1]. In the general case, Corollary 5 was rediscovered by Uhrin [24].

Notice that the condition on p in Corollary 5 is less restrictive in dimension 1. It reads as follows:

Corollary 6 (nonlinear extension of the Brunn-Minkowski inequality on the line). Let $p \leq 1$, $\gamma \geq-p$, and $\lambda \in[0,1]$. Let $f, g, h:[0,+\infty) \rightarrow[0,+\infty)$ be measurable functions such that for every $x \in \operatorname{supp}(f), y \in \operatorname{supp}(g)$,

$$
h\left(M_{p}^{\lambda}(x, y)\right) \geq M_{\gamma}^{\lambda}(f(x), g(y))
$$

Then,

$$
\int_{0}^{+\infty} h \geq M_{\left(\frac{1}{p}+\frac{1}{\gamma}\right)^{-1}}^{\lambda}\left(\int_{0}^{+\infty} f, \int_{0}^{+\infty} g\right)
$$

A simple proof of Corollary 6 was recently given by Bobkov et al. [4].
In section 2, we present a simple proof of Theorem 1, based on mass transportation. In section 3, we discuss applications of the above inequalities to the log-Brunn-Minkowski inequality of Böröczky, Lutwak, Yang and Zhang. We also prove an equivalence between the log-BrunnMinkowski inequality and its possible extensions to convex measures (see section 3 for precise definitions).

2 A simple proof of the Borell-Brunn-Minkowski inequality

In this section, we present a simple proof of Theorem [1.
Proof of Theorem 1. The proof is done by induction on the dimension. To prove the theorem in dimension 1, we use a mass transportation argument.

Step 1 : (In dimension 1)
First let us see that if $\int f=0$ or $\int g=0$, then the result holds. Let us assume, without loss of generality, that $\int g=0$. By taking $\rho=1$, by letting η go to 0 and by using continuity and homogeneity of Φ in the condition (1), one obtains

$$
h(\varphi(x, y)) \frac{\partial \varphi}{\partial x} \geq \Phi(f(x), 0)=f(x) \Phi(1,0)
$$

It follows that, for fixed $y \in \operatorname{supp}(g)$,

$$
\int h(z) \mathrm{d} z \geq \int_{\varphi(\operatorname{supp}(f), y)} h(z) \mathrm{d} z=\int_{\operatorname{supp}(f)} h(\varphi(x, y)) \frac{\partial \varphi}{\partial x} \mathrm{~d} x \geq \int f \Phi(1,0)=\Phi\left(\int f, \int g\right) .
$$

A similar argument shows that the result holds if $\int f=+\infty$ or $\int g=+\infty$. Thus we assume thereafter that $0<\int f<+\infty$ and $0<\int g<+\infty$.

Let us show that one may assume that $\int f=\int g=1$. Let us define, for $x, y \in \mathbb{R}$ and $a, b \geq 0$,

$$
\begin{gathered}
\widetilde{f}(x)=f\left(\Phi\left(\int f, 0\right) x\right) \Phi(1,0), \quad \widetilde{g}(x)=g\left(\Phi\left(0, \int g\right) x\right) \Phi(0,1), \\
\widetilde{h}(x)=h\left(\Phi\left(\int f, \int g\right) x\right) \\
\widetilde{\varphi}(x, y)=\frac{\varphi\left(\Phi\left(\int f, 0\right) x, \Phi\left(0, \int g\right) y\right)}{\Phi\left(\int f, \int g\right)}, \quad \widetilde{\Phi}(a, b)=\Phi\left(a \frac{\int f}{\Phi\left(\int f, \int g\right)}, b \frac{\int g}{\Phi\left(\int f, \int g\right)}\right) .
\end{gathered}
$$

Let $x \in \operatorname{supp}(\widetilde{f}), y \in \operatorname{supp}(\widetilde{g})$, and let $\widetilde{\rho}, \widetilde{\eta}>0$. One has,

$$
\begin{aligned}
\widetilde{h}(\widetilde{\varphi}(x, y))\left(\frac{\partial \widetilde{\varphi}}{\partial x} \widetilde{\rho}+\frac{\partial \widetilde{\varphi}}{\partial y} \widetilde{\eta}\right) & \geq \Phi\left(f\left(\Phi\left(\int f, 0\right) x\right) \frac{\Phi\left(\int f, 0\right)}{\Phi\left(\int f, \int g\right)} \widetilde{\rho}, g\left(\Phi\left(0, \int g\right) y\right) \frac{\Phi\left(0, \int g\right)}{\Phi\left(\int f, \int g\right)} \widetilde{\eta}\right) \\
& =\widetilde{\Phi}(\widetilde{f}(x) \widetilde{\rho}, \widetilde{g}(y) \widetilde{\eta}) .
\end{aligned}
$$

Notice that the functions $\widetilde{\varphi}$ and $\widetilde{\Phi}$ satisfy the same assumptions as the functions φ and Φ respectively, and that $\int \widetilde{f}=\int \widetilde{g}=1$. If the result holds for functions of integral one, then

$$
\int \widetilde{h}(w) \mathrm{d} w \geq \widetilde{\Phi}(1,1)=1
$$

The change of variable $w=z / \Phi\left(\int f, \int g\right)$ leads us to

$$
\int h(z) \mathrm{d} z \geq \Phi\left(\int f, \int g\right) .
$$

Assume now that $\int f=\int g=1$. By standard approximation, one may assume that f and g are compactly supported positive Lipschitz functions (relying on the fact that Φ is continuous and increasing in each coordinate, compare with [2, page 343]). Thus there exists a non-decreasing map $T: \operatorname{supp}(f) \rightarrow \operatorname{supp}(g)$ such that for every $x \in \operatorname{supp}(f)$,

$$
f(x)=g(T(x)) T^{\prime}(x)
$$

see e.g. [3], [25]. Since T is non-decreasing and $\partial \varphi / \partial x, \partial \varphi / \partial y>0$, the function $\Theta: \operatorname{supp}(f) \rightarrow$ $\varphi(\operatorname{supp}(f), T(\operatorname{supp}(f)))$ defined by $\Theta(x)=\varphi(x, T(x))$ is bijective. Hence the change of variable $z=\Theta(x)$ is admissible and one has,

$$
\begin{aligned}
\int h(z) \mathrm{d} z \geq \int_{\operatorname{supp}(f)} h(\varphi(x, T(x)))\left(\frac{\partial \varphi}{\partial x}+\frac{\partial \varphi}{\partial y} T^{\prime}(x)\right) \mathrm{d} x & \geq \int_{\operatorname{supp}(f)} \Phi\left(f(x), g(T(x)) T^{\prime}(x)\right) \mathrm{d} x \\
& =\int \Phi(f(x), f(x)) \mathrm{d} x
\end{aligned}
$$

Using homogeneity of Φ, one deduces that

$$
\int h \geq \Phi(1,1) \int f(x) \mathrm{d} x=\Phi\left(\int f, \int g\right) .
$$

Step 2 : (Tensorization)
Let n be a positive integer and assume that Theorem 1 holds in \mathbb{R}^{n}. Let f, g, h, φ, Φ satisfying the assumptions of Theorem 1 in \mathbb{R}^{n+1}. Recall that the inequality

$$
\begin{equation*}
h(\varphi(x, y)) \Pi_{k=1}^{n+1}\left(\frac{\partial \varphi_{k}}{\partial x_{k}} \rho_{k}+\frac{\partial \varphi_{k}}{\partial y_{k}} \eta_{k}\right) \geq \Phi\left(f(x) \Pi_{k=1}^{n+1} \rho_{k}, g(y) \Pi_{k=1}^{n+1} \eta_{k}\right) \tag{2}
\end{equation*}
$$

holds for every $x \in \operatorname{supp}(f), y \in \operatorname{supp}(g)$, and for every $\rho_{1}, \ldots, \rho_{n+1}, \eta_{1}, \ldots, \eta_{n+1}>0$. Let us define, for $x_{n+1}, y_{n+1}, z_{n+1} \in \mathbb{R}$,

$$
F\left(x_{n+1}\right)=\int_{\mathbb{R}^{n}} f\left(x, x_{n+1}\right) \mathrm{d} x, \quad G\left(y_{n+1}\right)=\int_{\mathbb{R}^{n}} g\left(x, g_{n+1}\right) \mathrm{d} x, \quad H\left(z_{n+1}\right)=\int_{\mathbb{R}^{n}} h\left(x, z_{n+1}\right) \mathrm{d} x .
$$

Since $\int f>0, \int g>0$, the support of F and the support of G are nonempty. Let $x_{n+1} \in$ $\operatorname{supp}(F), y_{n+1} \in \operatorname{supp}(G)$, and let $\rho_{n+1}, \eta_{n+1}>0$. Let us define, for $x, y, z \in \mathbb{R}^{n}$,

$$
\begin{gathered}
f_{x_{n+1}}(x)=f\left(x, x_{n+1}\right) \rho_{n+1}, \quad g_{y_{n+1}}(y)=g\left(y, y_{n+1}\right) \eta_{n+1}, \quad \bar{\varphi}(x, y)=\left(\varphi_{1}\left(x_{1}, y_{1}\right), \ldots, \varphi_{n}\left(x_{n}, y_{n}\right)\right), \\
h_{\varphi_{n+1}}(z)=h\left(z, \varphi_{n+1}\left(x_{n+1}, y_{n+1}\right)\right)\left(\frac{\partial \varphi_{n+1}}{\partial x_{n+1}} \rho_{n+1}+\frac{\partial \varphi_{n+1}}{\partial y_{n+1}} \eta_{n+1}\right) .
\end{gathered}
$$

Let $x \in \operatorname{supp}\left(f_{x_{n+1}}\right), y \in \operatorname{supp}\left(g_{y_{n+1}}\right)$, and let $\rho_{1}, \ldots, \rho_{n}, \eta_{1}, \ldots, \eta_{n}>0$. One has

$$
\begin{aligned}
h_{\varphi_{n+1}}(\bar{\varphi}(x, y)) \Pi_{k=1}^{n}\left(\frac{\partial \overline{\varphi_{k}}}{\partial x_{k}} \rho_{k}+\frac{\partial \overline{\varphi_{k}}}{\partial y_{k}} \eta_{k}\right) & =h\left(\varphi\left(x, x_{n+1}, y, y_{n+1}\right)\right) \Pi_{k=1}^{n+1}\left(\frac{\partial \varphi_{k}}{\partial x_{k}} \rho_{k}+\frac{\partial \varphi_{k}}{\partial y_{k}} \eta_{k}\right) \\
& \geq \Phi\left(f\left(x, x_{n+1}\right) \Pi_{k=1}^{n+1} \rho_{k}, g\left(y, y_{n+1}\right) \Pi_{k=1}^{n+1} \eta_{k}\right) \\
& =\Phi\left(f_{x_{n+1}}(x) \Pi_{k=1}^{n} \rho_{k}, g_{y_{n+1}}(y) \Pi_{k=1}^{n} \eta_{k}\right),
\end{aligned}
$$

where the inequality follows from inequality (2). Hence, applying Theorem 11 in dimension n, one has

$$
\int_{\mathbb{R}^{n}} h_{\varphi_{n+1}}(x) \mathrm{d} x \geq \Phi\left(\int_{\mathbb{R}^{n}} f_{x_{n+1}}(x) \mathrm{d} x, \int_{\mathbb{R}^{n}} g_{y_{n+1}}(x) \mathrm{d} x\right)
$$

This yields that for every $x_{n+1} \in \operatorname{supp}(F), y_{n+1} \in \operatorname{supp}(G)$, and for every $\rho_{n+1}, \eta_{n+1}>0$,

$$
H\left(\varphi_{n+1}\left(x_{n+1}, y_{n+1}\right)\right)\left(\frac{\partial \varphi_{n+1}}{\partial x_{n+1}} \rho_{n+1}+\frac{\partial \varphi_{n+1}}{\partial y_{n+1}} \eta_{n+1}\right) \geq \Phi\left(F\left(x_{n+1}\right), G\left(y_{n+1}\right)\right) .
$$

Hence, applying Theorem 1 in dimension 1, one has

$$
\int_{\mathbb{R}} H(x) \mathrm{d} x \geq \Phi\left(\int_{\mathbb{R}} F(x) \mathrm{d} x, \int_{\mathbb{R}} G(x) \mathrm{d} x\right) .
$$

This yields the desired inequality.

3 Applications to the log-Brunn-Minkowski inequality

In this section, we discuss applications of the above inequalities to the log-Brunn-Minkowski inequality of Böröczky, Lutwak, Yang and Zhang [7].

Recall that a convex body in \mathbb{R}^{n} is a compact convex subset of \mathbb{R}^{n} with nonempty interior. Böröczky et al. conjectured the following inequality.
Conjecture 7 (log-Brunn-Minkowski inequality). Let K, L be symmetric convex bodies in \mathbb{R}^{n} and let $\lambda \in[0,1]$. Then,

$$
\left|(1-\lambda) \cdot K \oplus_{0} \lambda \cdot L\right| \geq|K|^{1-\lambda}|L|^{\lambda} .
$$

Here,

$$
(1-\lambda) \cdot K \oplus_{0} \lambda \cdot L=\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq h_{K}(u)^{1-\lambda} h_{L}(u)^{\lambda}, \text { for all } u \in S^{n-1}\right\},
$$

where S^{n-1} denotes the n-dimensional Euclidean unit sphere, h_{K} denotes the support function of K, defined by $h_{K}(u)=\max _{x \in K}\langle x, u\rangle$, and $|\cdot|$ stands for Lebesgue measure.

Böröczky et al. 7 proved that Conjecture 7 holds in the plane. Using Corollary 5 with $\mathbf{p}=(0, \ldots, 0)$, Saroglou [21] proved that Conjecture 7 holds for unconditional convex bodies
in \mathbb{R}^{n} (a set $K \subset \mathbb{R}^{n}$ is unconditional if for every $\left(x_{1}, \ldots, x_{n}\right) \in K$ and for every $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in$ $\{-1,1\}^{n}$, one has $\left.\left(\varepsilon_{1} x_{1}, \ldots, \varepsilon_{n} x_{n}\right) \in K\right)$.

Recall that a measure μ is s-concave, $s \in[-\infty,+\infty]$, if the inequality

$$
\mu((1-\lambda) A+\lambda B) \geq M_{s}^{\lambda}(\mu(A), \mu(B))
$$

holds for all compact sets $A, B \subset \mathbb{R}^{n}$ such that $\mu(A) \mu(B)>0$ and for every $\lambda \in[0,1]$ (see [5], 6]). The 0 -concave measures are also called log-concave measures, and the $-\infty$-concave measures are also called convex measures. A function $f: \mathbb{R}^{n} \rightarrow[0,+\infty)$ is α-concave, $\alpha \in$ $[-\infty,+\infty]$, if the inequality

$$
f((1-\lambda) x+\lambda y) \geq M_{\alpha}^{\lambda}(f(x), f(y))
$$

holds for every $x, y \in \mathbb{R}^{n}$ such that $f(x) f(y)>0$ and for every $\lambda \in[0,1]$.
Saroglou [22] recently proved that if the log-Brunn-Minkowski inequality holds, then the inequality

$$
\mu\left((1-\lambda) \cdot K \oplus_{0} \lambda \cdot L\right) \geq \mu(K)^{1-\lambda} \mu(L)^{\lambda}
$$

holds for every symmetric log-concave measure μ, for all symmetric convex bodies K, L in \mathbb{R}^{n} and for every $\lambda \in[0,1]$.

An extension of the log-Brunn-Minkowski inequality for convex measures was proposed by the author in [19], and reads as follows:

Conjecture 8. Let $p \in[0,1]$. Let μ be a symmetric measure in \mathbb{R}^{n} that has an α-concave density function, with $\alpha \geq-\frac{p}{n}$. Then for every symmetric convex body K, L in \mathbb{R}^{n} and for every $\lambda \in[0,1]$,

$$
\begin{equation*}
\mu\left((1-\lambda) \cdot K \oplus_{p} \lambda \cdot L\right) \geq M_{\left(\frac{n}{p}+\frac{1}{\alpha}\right)^{-1}}^{\lambda}(\mu(K), \mu(L)) . \tag{3}
\end{equation*}
$$

Here,

$$
(1-\lambda) \cdot K \oplus_{p} \lambda \cdot L=\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq M_{p}^{\lambda}\left(h_{K}(u), h_{L}(u)\right), \text { for all } u \in S^{n-1}\right\} .
$$

In Conjecture 8, if α or p is equal to 0 , then $(n / p+1 / \alpha)^{-1}$ is defined by continuity and is equal to 0 . Notice that Conjecture 7 is a particular case of Conjecture 8 when taking μ to be Lebesgue measure and $p=0$.

By using Corollary 6, we will prove that Conjecture 7 implies Conjecture 8, when $\alpha \leq 1$, generalizing Saroglou's result discussed earlier.

Theorem 9. If the log-Brunn-Minkowski inequality holds, then the inequality

$$
\mu\left((1-\lambda) \cdot K \oplus_{p} \lambda \cdot L\right) \geq M_{\left(\frac{n}{p}+\frac{1}{\alpha}\right)^{-1}}^{\lambda}(\mu(K), \mu(L))
$$

holds for every $p \in[0,1]$, for every symmetric measure μ in \mathbb{R}^{n} that has an α-concave density function, with $1 \geq \alpha \geq-\frac{p}{n}$, for every symmetric convex body K, L in \mathbb{R}^{n} and for every $\lambda \in[0,1]$.
Proof. Let K_{0}, K_{1} be symmetric convex bodies in \mathbb{R}^{n} and let $\lambda \in(0,1)$. Let us denote $K_{\lambda}=$ $(1-\lambda) \cdot K_{0} \oplus_{p} \lambda \cdot K_{1}$ and let us denote by ψ the density function of μ. Let us define, for $t>0$, $h(t)=\left|K_{\lambda} \cap\{\psi \geq t\}\right|, f(t)=\left|K_{0} \cap\{\psi \geq t\}\right|$ and $g(t)=\left|K_{1} \cap\{\psi \geq t\}\right|$. Notice that

$$
\mu\left(K_{\lambda}\right)=\int_{K_{\lambda}} \psi(x) \mathrm{d} x=\int_{K_{\lambda}} \int_{0}^{\psi(x)} \mathrm{d} t \mathrm{~d} x=\int_{0}^{+\infty}\left|K_{\lambda} \cap\{\psi \geq t\}\right|=\int_{0}^{+\infty} h(t) \mathrm{d} t .
$$

Similarly, one has

$$
\mu\left(K_{0}\right)=\int_{0}^{+\infty} f(t) \mathrm{d} t, \quad \mu\left(K_{1}\right)=\int_{0}^{+\infty} g(t) \mathrm{d} t .
$$

Let $t, s>0$ such that the sets $\{\psi \geq t\}$ and $\{\psi \geq s\}$ are nonempty. Let us denote $L_{0}=\{\psi \geq t\}$, $L_{1}=\{\psi \geq s\}$ and $L_{\lambda}=\left\{\psi \geq M_{\alpha}^{\lambda}(t, s)\right\}$. If $x \in L_{0}$ and $y \in L_{1}$, then $\psi((1-\lambda) x+\lambda y) \geq$ $M_{\alpha}^{\lambda}(\psi(x), \psi(y)) \geq M_{\alpha}^{\lambda}(t, s)$. Hence,

$$
L_{\lambda} \supset(1-\lambda) L_{0}+\lambda L_{1} \supset(1-\lambda) \cdot L_{0} \oplus_{p} \lambda \cdot L_{1}
$$

the last inclusion following from the fact that $p \leq 1$. We deduce that
$K_{\lambda} \cap L_{\lambda} \supset\left((1-\lambda) \cdot K_{0} \oplus_{p} \lambda \cdot K_{1}\right) \cap\left((1-\lambda) \cdot L_{0} \oplus_{p} \lambda \cdot L_{1}\right) \supset(1-\lambda) \cdot\left(K_{0} \cap L_{0}\right) \oplus_{p} \lambda \cdot\left(K_{1} \cap L_{1}\right)$.
Hence,

$$
h\left(M_{\alpha}^{\lambda}(t, s)\right)=\left|K_{\lambda} \cap L_{\lambda}\right| \geq\left|(1-\lambda) \cdot\left(K_{0} \cap L_{0}\right) \oplus_{p} \lambda \cdot\left(K_{1} \cap L_{1}\right)\right| \geq M_{\frac{p}{n}}^{\lambda}(f(t), g(s)),
$$

the last inequality is valid for $p \geq 0$ and follows from the log-Brunn-Minkowski inequality by using homogeneity of Lebesgue measure (see [7, beginning of section 3]). Thus we may apply Corollary 6 to conclude that

$$
\mu\left(K_{\lambda}\right)=\int_{0}^{+\infty} h \geq M_{\left(\frac{n}{p}+\frac{1}{\alpha}\right)^{-1}}^{\lambda}\left(\int_{0}^{+\infty} f, \int_{0}^{+\infty} g\right)=M_{\left(\frac{n}{p}+\frac{1}{\alpha}\right)^{-1}}^{\lambda}\left(\mu\left(K_{0}\right), \mu\left(K_{1}\right)\right) .
$$

Since the log-Brunn-Minkowski inequality holds true in the plane, we deduce that Conjecture 8 holds true in the plane (with the restriction $\alpha \leq 1$). Notice that Conjecture 8 holds true in the unconditional case as a consequence of Corollary 5 (see [19).

References

[1] K. Ball, Some remarks on the geometry of convex sets, Geometric aspects of functional analysis (1986/87), 224-231, Lecture Notes in Math., 1317, Springer, Berlin, 1988.
[2] F. Barthe, On a reverse form of the Brascamp-Lieb inequality, (English summary) Invent. Math. 134 (1998), no. 2, 335-361.
[3] F. Barthe, Autour de l'inégalité de Brunn-Minkowski, (French) [On the Brunn-Minkowski inequality], Ann. Fac. Sci. Toulouse Math. (6) 12 (2003), no. 2, 127-178.
[4] S. G. Bobkov, A. Colesanti, I. Fragalà, Quermassintegrals of quasi-concave functions and generalized Prekopa-Leindler inequalities, Manuscripta Mathematica 143 (2014), no. 1-2, pp. 131-169.
[5] C. Borell, Convex measures on locally convex spaces, Ark. Mat. 12 (1974), 239-252.
[6] C. Borell, Convex set functions in d-space, Period. Math. Hungar. 6:2 (1975), 111-136.
[7] K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The log-Brunn-Minkowski inequality, Adv. Math. 231 (2012), 1974-1997.
[8] H. J. Brascamp, E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis 22 (1976), no. 4, 366-389.
[9] E. A. Carlen, F. Maggi, Stability for the Brunn-Minkowski and Riesz rearrangement inequalities, with applications to Gaussian concentration and finite range non-local isoperimetry, preprint, arXiv:1507.03454 [math.OC].
[10] W. Chen, N. Dafnis, G. Paouris, Improved Hölder and reverse Hölder inequalities for Gaussian random vectors, Adv. Math. 280 (2015), 643-689.
[11] M. A. Hernández Cifre, J. Yepes Nicolás, Refinements of the Brunn-Minkowski inequality, J. Convex Anal. 21 (2014), no. 3, 727-743.
[12] A. Colesanti, E. Saorín Gómez, J. Yepes Nicolás, On a linear refinement of the PrékopaLeindler inequality, preprint, arXiv:1503.08297 [math.FA].
[13] R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39:3 (2002), 355-405.
[14] R. J. Gardner, D. Hug, and W. Weil, The Orlicz-Brunn-Minkowski theory: A general framework, additions, and inequalities, J. Differential Geom. 97:3 (2014), 427-476.
[15] D. Ghilli, P. Salani, Quantitative Borell-Brascamp-Lieb inequalities for compactly supported power concave functions (and some applications), preprint, arXiv:1502.02810 [math.AP].
[16] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge, at the University Press, 1952. 2d ed.
[17] G. Livshyts, A. Marsiglietti, P. Nayar, A. Zvavitch, On the Brunn-Minkowski inequality for general measures with applications to new isoperimetric-type inequalities, preprint, arXiv:1504.04878 [math.PR].
[18] A. Marsiglietti, On the improvement of concavity of convex measures, Proc. Amer. Math. Soc. (2015), doi: http://dx.doi.org/10.1090/proc/12694.
[19] A. Marsiglietti, A note on an L^{p}-Brunn-Minkowski inequality for convex measures in the unconditional case, Pacific Journal of Mathematics 277-1 (2015), 187-200. doi: 10.2140/pjm.2015.277.187.
[20] P. Nayar, T. Tkocz, A note on a Brunn-Minkowski inequality for the Gaussian measure, Proc. Amer. Math. Soc. 141 (2013), no. 11, 4027-4030, DOI 10.1090/S0002-9939-2013-11609-6.
[21] C. Saroglou, Remarks on the conjectured log-Brunn-Minkowski inequality, Geom. Dedicata 177 (2015), 353-365.
[22] C. Saroglou, More on logarithmic sums of convex bodies, preprint, arXiv:1409.4346 [math.FA].
[23] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993.
[24] B. Uhrin, Curvilinear Extensions of the Brunn-Minkowski-Lusternik Inequality, Adv. Math., 109 (1994), no. 2, 288-312.
[25] C. Villani, Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009. xxii+973 pp. ISBN: 978-3-540-71049-3.

Arnaud Marsiglietti

Institute for Mathematics and its Applications
University of Minnesota

207 Church Street SE, 434 Lind Hall,
Minneapolis, MN 55455, USA
E-mail address: arnaud.marsiglietti@ima.umn.edu

[^0]: *Supported in part by the Institute for Mathematics and its Applications with funds provided by the National Science Foundation.

