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ON THE STABILITY

OF BRUNN-MINKOWSKI TYPE INEQUALITIES

ANDREA COLESANTI, GALYNA LIVSHYTS, ARNAUD MARSIGLIETTI

ABSTRACT. We establish the stability near a Euclidean ball of two conjectured inequal-

ities: the dimensional Brunn-Minkowski inequality for radially symmetric log-concave

measures in R
n, and of the log-Brunn-Minkowski inequality.

1. INTRODUCTION

The classical Brunn-Minkowski inequality states that for λ ∈ [0, 1] and for Borel mea-

surable sets A and B in Rn, such that (1− λ)A+ λB is measurable as well,

(1) |λA+ (1− λ)B|
1

n ≥ λ|A|
1

n + (1− λ)|B|
1

n .

Here | · | denotes the Lebesgue measure, the addition between sets is the standard vector

addition, and multiplication of sets by non-negative reals is the usual dilation.

This inequality has found many important applications in Geometry and Analysis (see

e.g. Gardner [16] for an exhaustive survey on this subject). For example, the classical

isoperimetric inequality can be deduced in a few lines from (1). Also, Maurey [29] de-

duced from this inequality the Poincaré inequality for the Gaussian measure and Gaussian

concentration properties. Based on Maurey’s results, Bobkov and Ledoux proved that

the Brunn-Minkowski inequality implies Brascamp-Lieb and log-Sobolev inequalities [3];

they also deduced sharp Sobolev and Gagliardo-Nirenberg inequalities [4]. A different

argument was developed by the first named author in [11] to deduce Poincaré type inequal-

ities on the boundary of convex bodies from the Brunn-Minkowski inequality.

Recall that a convex body is a convex compact set with non-empty interior. The family

of convex bodies of Rn will be denoted by Kn. For the theory of convex bodies we refer

the reader to the books by Ball [1], Bonnesen, Fenchel [5], Koldobsky [20], Milman and

Schechtman [30], Schneider [38] and others. A measure γ on Rn is called log-concave if

for any pair of sets A and B and for any scalar λ ∈ [0, 1],

(2) γ(λA+ (1− λ)B) ≥ γ(A)λγ(B)1−λ.

Borell showed [6] that a measure is log-concave if it has a density (with respect to the

Lebesgue measure) which is log-concave (see also Prékopa [34], Leindler [24]). In partic-

ular, the Lebesgue measure on Rn is log-concave:

(3) |λA+ (1− λ)B| ≥ |A|λ|B|1−λ.

Inequality (1) implies (3) by the arithmetic-geometric mean inequality. Conversely, a sim-

ple argument based on the homogeneity of Lebesgue measure shows that (3) implies (1)

(see, for example, [16]). In general, a property analogous to (1) may not hold for log-

concave measures which are not homogeneous. The transposition of (1) to a measure γ,

(4) γ(λA+ (1− λ)B)
1

n ≥ λγ(A)
1

n + (1− λ)γ(B)
1

n , ∀λ ∈ [0, 1],
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as A and B vary in some class of sets, will be called a dimensional Brunn-Minkowski

inequality. If γ is the Gaussian measure, A = {p}, p ∈ R
n, and B is measurable set with

positive measure, then the set A + B is the translate of B by p. Hence, letting |p| → ∞,

and keeping B fixed, (4) fails. Moreover, Nayar and Tkocz [32] constructed an example in

which (4) fails for the Gaussian measure while both A and B contain the origin. Gardner

and Zvavitch [17] proved that, for the Gaussian measure, (4) holds if the sets A and B are

convex symmetric dilates of each other. They also proposed a conjecture for the Gaussian

measure, that we state it in a more general form.

Conjecture 1.1 (Gardner, Zvavitch – generalized). Let n ≥ 2. Let γ be a log-concave

symmetric measure (i.e. γ(A) = γ(−A) for every measurable set A) on Rn. Let K and L

be symmetric convex bodies in Rn. Then

(5) γ(λK + (1− λ)L)
1

n ≥ λγ(K)
1

n + (1− λ)γ(L)
1

n .

Next, we pass to describe the log-Brunn-Minkowski inequality. For a scalar λ ∈ [0, 1]
and for convex bodiesK andL containing the origin in their interior, with support functions

hK and hL, respectively (see section 2 for the definition), define their geometric average as

follows:

(6) KλL1−λ := {x ∈ R
n : 〈x, u〉 ≤ hλK(u)h

1−λ
L (u) ∀u ∈ S

n−1},

where 〈·, ·〉 is the standard scalar product in Rn. This set is again a convex body, whose

support function is, in general, smaller than the geometric mean of the support functions

of K and L. The following is widely known as log-Brunn-Minkowski conjecture (see [7]).

Conjecture 1.2 (Böröczky, Lutwak, Yang, Zhang). Let n ≥ 2 be an integer. Let K and L

be symmetric convex bodies in Rn. Then

(7) |KλL1−λ| ≥ |K|λ|L|1−λ.

Important applications and motivations for Conjecture 1.2 can be found in [8], [9].

It is not difficult to see that the condition of symmetry is necessary (see [7] or Remark

1.5 below). Böröczky, Lutwak, Yang and Zhang showed that this conjecture holds for

n = 2. Saroglou [36] and Cordero, Fradelizi, Maurey [15] proved that (7) is true when the

sets K and L are unconditional (i.e. they are symmetric with respect to every coordinate

hyperplane). Rotem [35] showed that log-Brunn-Minkowski conjecture holds for complex

convex bodies. Saroglou showed [37] that the validity of Conjecture 1.2 would imply the

same statement for every log-concave symmetric measure γ on Rn: for every symmetric

K,L ∈ Kn and for every λ ∈ [0, 1],

(8) γ(KλL1−λ) ≥ γ(K)λγ(L)1−λ.

Note that the straightforward inclusion

KλL1−λ ⊂ λK + (1− λ)L

tells us that (8) is stronger than (2), for every measure.

In [27] the second and third named authors, Nayar and Zvavitch showed that (8) implies

(5) for every ray-decreasing measure γ on Rn and for every pair of convex sets K and L.

Therefore, Conjecture 1.1 holds on the plane and for unconditional sets.

The main results of this paper are the two theorems below.

Theorem 1.3 (The dimensional Brunn-Minkowski inequality near a ball). Let γ be a rota-

tion invariant log-concave measure on Rn. Let R ∈ (0,∞). Let ψ ∈ C2(Sn−1). Then there
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exists a sufficiently small a > 0 such that for every ǫ1, ǫ2 ∈ (0, a) and for every λ ∈ [0, 1],
one has

γ(λK1 + (1− λ)K2)
1

n ≥ λγ(K1)
1

n + (1− λ)γ(K2)
1

n ,

where K1 is the convex set with the support function h1 = R + ǫ1ψ and K2 is the convex

set with the support function h2 = R + ǫ2ψ.

Theorem 1.4 (The log-Brunn-Minkowski inequality near a ball). Let γ be a rotation invari-

ant log-concave measure on Rn. Let R ∈ (0,∞). Let ϕ ∈ C2(Sn−1) be even and strictly

positive. Then there exists a sufficiently small a > 0 such that for every ǫ1, ǫ2 ∈ (0, a) and

for every λ ∈ [0, 1], one has

γ(Kλ
1K

1−λ
2 ) ≥ γ(K1)

λγ(K2)
1−λ,

where K1 is the convex set with the support function h1 = Rϕǫ1 and K2 is the convex set

with the support function h2 = Rϕǫ2 .

Theorem 1.4 can be used to obtain a local uniqueness result for log-Minkowski problem

(see Böröczky, Lutwak, Yang, Zhang [7], [8] and the references therein), and the corre-

sponding investigation shall be carried out in a separate manuscript.

Remark 1.5. Theorems 1.3 and 1.4 indicate a difference between the local behaviors of

the dimensional Brunn-Minkowski inequality and the log-Brunn-Minkowski inequality. In-

deed, (7) fails for the simplest possible odd perturbation: the shift (which is equivalent to

chosing ϕ as the restriction of a linear function to Sn−1). In contrast, by Theorem 1.3 the

Brunn-Minkowski inequality holds for radially symmetric log-concave measures when K

and L are perturbations, non necessarily even, of RBn
2 .

This paper is structured as follows. Section 2 contains some preliminary material for the

subsequent part of the paper. In Section 3 we discuss the relations between the dimensional

Brunn-Minkowski inequality and the log-Brunn-Minkowski inequality and their infinitesi-

mal forms. Theorems 1.3 and 1.4 are proved in Sections 4 and 5, respectively. Finally, we

provide some technical details in the Section 6.

1.1. Acknowledgement. The second author would like to thank Fedor Nazarov and Artem

Zvavitch for useful discussions. The second author would also like to thank the University

of Florence, Italy for the hospitality. The third author would like to thank Georgia Institute

of Technology for the hospitality, and was supported in part by the Walter S. Baer and Jeri

Weiss CMI Postdoctoral Fellowship. The authors are thankful to the anonymous reviewer

for valuable suggestions which helped to improve the presentation of this paper.

2. PRELIMINARIES

We work in the n−dimensional Euclidean space R
n with norm | · | and scalar product

〈·, ·〉. We set Bn
2 := {x ∈ Rn : |x| ≤ 1} and Sn−1 := {x ∈ Rn : |x| = 1}, to denote

the unit ball and the unit sphere, respectively. We shall denote the Lebesgue measure (the

volume) in Rn by | · |.
We say that a set A ⊂ R

n is symmetric if for every x ∈ A one has −x ∈ A. All

measures under consideration will be tacitly assumed to be Radon measures, and all sets

will be assumed to be measurable. A measure γ on Rn is called symmetric if for every set

S ⊂ Rn, γ(S) = γ(−S). If the measure has a density then it is symmetric whenever the

density is an even function.
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A measure γ on Rn is said to be rotation invariant if for every set A ⊂ Rn, and for every

rotation T , γ(A) = γ(TA). If a rotation invariant measure γ has a density F , we may write

F in the form:

F (x) = f(|x|),

for a suitable f : [0,∞) → [0,∞).
For K ∈ Kn, the support function of K, hK : Sn−1 → R, is defined as

hK(u) = sup
x∈K

〈x, u〉.

By the geometric viewpoint, hK(u) represents the (signed) distance from the origin of the

supporting hyperplane to K with outer unit normal u. We shall use the notation HK(x) for

the 1-homogenous extension of hK , that is,

HK(x) =







|x| hK

(

x

|x|

)

if x 6= 0,

0 if x = 0.

The function HK is convex in Rn, for every K ∈ Kn. Vice versa, for every continuous

1-homogeneous convex function H on Rn, there exists a unique convex body K such that

H = HK .

Note that K ∈ Kn contains the origin (resp., in its interior) if and only if hK ≥ 0 (resp.

hK > 0) on S
n−1. For convex bodies K and L, and for α, β ≥ 0, we have:

(9) hαK+βL(u) = αhK(u) + βhL(u).

We say that a convex body K is C2,+ if ∂K is of class C2 and the Gauss curvature is

strictly positive at every x ∈ ∂K. In particular, if K is C2,+ then it admits outer unit

normal νK(x) at every boundary point x. Recall that the Gauss map νK : ∂K → Sn−1 is

the map assigning the unit normal to each point of ∂K.

C2,+ convex bodies can be characterized through their support function. We recall that

an orthonormal frame on the sphere is a map which associates a collection of n − 1 or-

thonormal vectors to every point of Sn−1. Let ψ ∈ C2(Sn−1). We denote by ψi(u) and

ψij(u), i, j ∈ {1, . . . , n − 1}, the first and second covariant derivatives of ψ at u ∈ Sn−1,

with respect to a fixed local orthonormal frame on an open subset of Sn−1. We define the

matrix

(10) Q(ψ; u) = (qij)i,j=1,...,n−1 = (ψij(u) + ψ(u)δij)i,j=1,...,n−1 ,

where the δij’s are the usual Kronecker symbols. On an occasion, instead of Q(ψ; u) we

writeQ(ψ). Note thatQ(ψ; u) is symmetric by standard properties of covariant derivatives.

The meaning of this matrix becomes particularly important when ψ is the support function

of a convex body K. In this case we shall call it curvature matrix of K (see the following

Remark 2.2). The proof of the following proposition can be deduced from Schneider [38,

Section 2.5].

Proposition 2.1. Let K ∈ Kn and let h be its support function. Then K is of class C2,+ if

and only if h ∈ C2(Sn−1) and

Q(h; u) > 0 ∀ u ∈ S
n−1.

In view of the previous results it is convenient to introduce the following set of functions

C2,+(Sn−1) = {h ∈ C2(Sn−1) : Q(h; u) > 0 ∀ u ∈ S
n−1}.

Hence C2,+(Sn−1) is the set of support functions of convex bodies of class C2,+.
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Remark 2.2. Let K be a C2,+ convex body. Then νK : ∂K → Sn−1 is a diffeomorphism.

The matrix Q(h; u) represents the inverse of the Weingarten map at x = ν−1
K (u), and its

eigenvalues are the principal radii of curvature of ∂K at x. Consequently we have

det(Q(h; u)) =
1

G(x)

where G denotes the Gauss curvature.

Let K be a C2,+ convex body, with support function hK and its homogenous extension

HK . HK is of classC1(Rn\{0}). By ∇HK we denote its gradient with respect to Cartesian

coordinates. The following useful relation holds: for every u ∈ Sn−1, ∇HK(u) is the

(unique) point on ∂K where the outer unit normal is u:

∇HK(u) = ν−1
K (u) ∀ u ∈ S

n−1.

In other words,

〈∇HK(u), νK(u)〉 = HK(u) ∀ u ∈ S
n−1.

Remark 2.3. Let ψ ∈ C1(Sn−1). The notation ∇σψ stands for the spherical gradient of

ψ, i.e. the vector (ψ1, . . . , ψn−1), where ψi are the covariant derivatives of ψ with respect

to the i-th element of a fixed orthonormal system on Sn−1. Let Φ be the 1-homogeneous

extension of ψ to R
n. Then we have

(11) |∇Φ(u)|2 = ψ2(u) + |∇σψ(u)|
2

for every u ∈ Sn−1.

3. INFINITESIMAL VERSIONS OF INEQUALITIES.

We denote the family of centrally symmetric convex bodies by Kn
s . The notationC2,+

e (Sn−1)
will stand for the set of support functions of centrally symmetric C2,+ convex bodies, i.e.

functions from C2,+(Sn−1) which are additionally even.

Let h be the support function of a C2,+ convex body K, and let ψ ∈ C2(Sn−1); then, by

Proposition 2.1,

(12) hs := h + sψ ∈ C2,+(Sn−1)

if s is sufficiently small, say |s| ≤ a for some appropriate a > 0. Hence for every s in

this range there exists a unique C2,+ convex body Ks with the support function hs. For an

interval I , we define the one-parameter family of convex bodies:

K(h, ψ, I) := {Ks : hKs
= h+ sψ, s ∈ I}.

Lemma 3.1. Assume that γ is a symmetric log-concave measure with continuously differ-

entiable density. Conjecture 1.1 holds for γ if and only if for every one-parameter family

K(h, ψ, I), with even h and ψ,

(13)
d2

ds2
[γ(Ks)]

∣

∣

∣

∣

s=0

· γ(K0) ≤
n− 1

n

(

d

ds
[γ(Ks)]

∣

∣

∣

∣

s=0

)2

.

In particular, if (13) holds for Ks in a fixed family K(h, ψ, I), then Conjecture 1.1 holds

for all sets Ks in that family.

Proof. Assume first that γ satisfies (5) on the system K(h, ψ, I). Then the equality hKs
=

h + sψ, s ∈ I , and the linearity of support function with respect to Minkowski addition,

imply that for every s, t ∈ I and for every λ ∈ [0, 1]

Kλs+(1−λ)t = λKs + (1− λ)Kt.
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By (5),

γ(Kλs+(1−λ)t)
1

n = γ(λKs + (1− λ)Kt)
1

n ≥ λγ(Ks)
1

n + (1− λ)γ(Kt)
1

n ,

which means that the function γ(Ks)
1

n is concave on I . Inequality (13) follows.

Conversely, suppose that for every system K(h, ψ, I) the function γ(Ks)
1

n has non-

positive second derivative at 0, i.e. (13) holds. We observe that this implies concav-

ity of γ(Ks)
1

n on the entire interval I . Indeed, given s0 in the interior of I , consider

h̃ = h + s0ψ, and define a new system K̃(h̃, ψ, J), where J is a new interval such that

h̃+ sψ = h+ (s+ s0)ψ ∈ C2,+ for every s ∈ J . Then the second derivative of γ(Ks)
1

n at

s = s0 is negative, as it is equal to the second derivative of γ(K̃s)
1

n at s = 0. On the other

hand, the concavity γ(Ks)
1

n on the family K(h, ψ, I) is equivalent to the validity of (5) on

this family. �

A similar approach can be used for the log-Brunn-Minkowski inequality. In order to do

this we introduce a corresponding type of one-parameter families of convex bodies. In this

case, additive perturbations are replaced by multiplicative perturbations.

Let h ∈ C2,+(Sn−1) and ϕ ∈ C2(Sn−1), with ϕ > 0 on Sn−1. Then there exists a > 0
such that

hs := hϕs ∈ C2,+(Sn−1) ∀ s ∈ [−a, a].

In particular, by Proposition 2.1, for every s ∈ [−a, a] there exists a C2,+ convex body Qs

whose support function is hs.

We introduce the corresponding 1-dimensional systems.

Q(h, ϕ, I) := {Qs ∈ Kn : hQs
= hϕs, s ∈ I}.

Lemma 3.2. Let γ be a symmetric log-concave measure with continuously differentiable

density. Assume that Conjecture 1.2 holds for a measure γ, i.e. (8) is valid for every pair

of symmetric convex sets K and L and for every λ ∈ [0, 1]. Then for every one-parameter

family Qs ∈ Q(h, ϕ, I), with h and ϕ even,

(14)
d2

ds2
log(γ(Qs))

∣

∣

∣

∣

s=0

≤ 0.

The converse is true locally: if (14) holds for all Qs in a fixed family Q(h, ϕ, I), then

Conjecture 1.2 holds for all sets Qs in Q(h, ϕ, [0, ǫ]) for a small enough interval [0, ǫ] ⊂ I .

Proof. Let h ∈ C2,+(Sn−1) and ϕ ∈ C2(Sn−1) be strictly positive even functions on Sn−1;

there exists a > 0 such that hs := hϕs is the support function of a convex body Qs for all

s ∈ [−a, a]. Note that for s, t ∈ [−a, a] we get

hλs+(1−λ)t = hλsh
1−λ
t ,

and thus

Qλs+(1−λ)t = Qλ
sQ

1−λ
t .

If the Conjecture 1.2 is true, then

γ(Qλs+(1−λ)t) = γ(Qλ
sQ

1−λ
t ) ≥ γ(Qs)

λγ(Qt)
1−λ,

which means that γ(Qs) is log-concave in [−a, a]. �
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4. PROOF OF THEOREM 1.3

The following Lemma is the key step in proving Theorem 1.3. To prove it, we express

a measure of a convex set in terms of its support function and run a long and technical

computation, involving integration by parts; the complete proof is outlined in the Section

6.

Lemma 4.1. Let R > 0. Let γ be a rotation invariant measure with density f(|x|), and let

A =
∫ 1

0
tn−1f(Rt)dt. In the case hK = R, (13) is equivalent to the validity of the following

inequality for every ψ ∈ C2(Sn−1):

(15)

Af(R)

|Sn−1|

(

(n− 1)

∫

Sn−1

ψ2du−

∫

Sn−1

|∇σψ|
2du

)

+
ARf ′(R)

|Sn−1|

∫

Sn−1

ψ2du ≤

n− 1

n
f(R)2

(

1

|Sn−1|

∫

Sn−1

ψdu

)2

.

By Lemma 3.1, to prove the Theorem, it suffices to show the validity of (15). Let us

denote the quadratic operators appearing in the left-hand side and in the right-hand side of

the inequality (15) by B1(ψ) and B2(ψ), correspondingly. That is,

B1(ψ) =
Af(R)

|Sn−1|

(

(n− 1)

∫

Sn−1

ψ2du−

∫

Sn−1

|∇σψ|
2du

)

+
ARf ′(R)

|Sn−1|

∫

Sn−1

ψ2du,

and

B2(ψ) =
n− 1

n
f(R)2

(

1

|Sn−1|

∫

Sn−1

ψdu

)2

.

The next step is to decompose ψ as the sum of a constant function and a function which is

orthogonal to constant functions. Let us write

ψ = ψ0 + ψ1

where

ψ0 =
1

|Sn−1|

∫

Sn−1

ψdu and

∫

Sn−1

ψ1du = 0.

Note that
∫

Sn−1

ψ2dσ =

∫

Sn−1

ψ2
0dσ +

∫

Sn−1

ψ2
1dσ.

Therefore,

B1(ψ) = B1(ψ0) +B1(ψ1),

as well as

B2(ψ) = B2(ψ0) +B2(ψ1).

Since γ is radially symmetric, one has f ′ ≤ 0. Moreover, by the standard Poincaré

inequality on the unit sphere,

(16) (n− 1)

∫

Sn−1

ψ2du−

∫

Sn−1

|∇σψ|
2du ≤ 0,

for every ψ such that

(17)

∫

Sn−1

ψdu = 0.

Thus

B1(ψ1) ≤ 0 = B2(ψ1).

To prove (15) it remains to show that

(18) B1(ψ0) ≤ B2(ψ0).
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This condition is equivalent to

(19) γ(λr1B
n
2 + (1− λ)r2B

n
2 )

1

n ≥ λγ(r1B
n
2 )

1

n + (1− λ)γ(r2B
n
2 )

1

n ,

for some r1, r2 ∈ [R,R + ǫ]. As was shown in [27] (see also the third named author [28]),

this statement follows from log-Brunn-Minkowski conjecture in the case of log-concave

spherically invariant measures and when K and L are Euclidean balls. The latter is indeed

true: it follows from the results of [15] and [36].

5. PROOF OF THE THEOREM 1.4

As before, we start with a Lemma, which shall be rigorously proved in Section 6.

Lemma 5.1. Let R > 0. Let γ be a rotation invariant measure with density f(|x|), and let

A =
∫ 1

0
tn−1f(Rt)dt. In the case hK = R, (14) is equivalent to the following inequality:

(20)

A [nf(R) +Rf ′(R)]
1

|Sn−1|

∫

Sn−1

ψ2du− Af(R)
1

|Sn−1|

∫

Sn−1

|∇σψ|
2du ≤

f(R)2
(

1

|Sn−1|

∫

Sn−1

ψdσ

)2

,

for every even ψ ∈ C2(Sn−1).

We follow the argument of the previous section and split the proof into two cases.

Case 1. Consider an even ψ ∈ C2(Sn−1) such that
∫

ψ = 0. Here we use some basic

facts from the theory of spherical harmonics, which can be found, for instance in [38,

Appendix], where the reader will find hints to the corresponding literature. We denote

by ∆σ the spherical Laplace operator (or Laplace-Beltrami operator), on S
n−1. The first

eigenvalue of ∆σ is 0, and the corresponding eigenspace if formed by constant functions.

Hence the zero-mean condition on ψ implies that ψ is orthogonal to such eigenspace. The

second eigenvalue of ∆σ is n − 1, and the corresponding eigenspace is formed by the

restrictions of linear functions of Rn to Sn−1. As each of them is odd and ψ is even, ψ

is orthogonal to this eigenspace as well. Finally, the third eigenvalue is 2n. Then the

inequality (20) amounts to

(21)
1

|Sn−1|

∫

Sn−1

ψ2du ≤
f(R)

nf(R) +Rf ′(R)

1

|Sn−1|

∫

Sn−1

|∇σψ|
2du.

Hence

(22)
1

|Sn−1|

∫

Sn−1

ψ2du ≤
1

2n

1

|Sn−1|

∫

Sn−1

|∇σψ|
2du.

Since f is decreasing, we have f ′(R) ≤ 0, and hence

(23)
f(R)

nf(R) +Rf ′(R)
≥

1

n
>

1

2n
.

The inequalities (22) and (23) imply (21).

Case 2. Let ψ be a constant function.The inequality (20) holds for constant functions

because, once again, the log-Brunn-Minkowski inequality holds in the case of spherically

invariant measures and Euclidean balls.

To summarize, we established (20) separately for constant functions and centered func-

tions. A polarization argument analogous to the one presented in the proof of Theorem 1.3

finishes the proof.
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6. AUXILIARY RESULTS

6.1. A formula expressing a measure of a convex set in terms of its support function.

Let γ be a probability measure on Rn; we assume that γ has a density F with respect to the

Lebesgue measure, and that F is sufficiently regular (e.g. continuous). We leave the proof

of the lemma below to the reader, as it is a standard argument involving polar coordinates.

Lemma 6.1. Let K be a C2,+ convex body; let h and H be the support function of K and

its homogenous extension, respectively. Assume that the origin is in the interior ofK. Then

(24) γ(K) =

∫

Sn−1

h(y) detQ(h; y)

∫ 1

0

tn−1F (t∇H(y))dtdy.

6.2. The cofactor matrix and related notions. Let M = (mij) be an N ×N symmetric

matrix, N ∈ N. We define C[M ], the cofactor matrix of M , as follows

C[M ] = (cij[M ])i,j=1,...,N where cij [M ] =
∂ det

∂mij
(M) i, j = 1, . . . , N.

C[M ] is an N ×N symmetric matrix. Using the homogeneity of the determinant we get

(25)

N
∑

i,j=1

cij[M ]mij = N det(M).

We shall also consider the second derivatives of the determinant of a matrix with respect

to its entries:

cij,kl[M ] =
∂2 det

∂mij∂mkl
(M).

By homogeneity we have that, for every i, j = 1, . . . , N

(26)

N
∑

k,l=1

cij,kl[M ]mkl = (N − 1)cij[M ].

6.3. The Cheng-Yau lemma and an extension. Let h ∈ C2,+(Sn−1), and assume addi-

tionally that h ∈ C3(Sn−1). Consider the cofactor matrix y → C[Q(h; y)]. This is a matrix

of functions on Sn−1. The lemma of Cheng and Yau asserts that each column of this matrix

is divergence-free.

Lemma 6.2 (Cheng-Yau.). Let h ∈ C2,+(Sn−1) ∩ C3(Sn−1). Then, for every index j ∈
{1, . . . , n− 1} and for every y ∈ Sn−1,

n−1
∑

i=1

(cij [Q(h; y)])i = 0,

where the sub-script i denotes the derivative with respect to the i-th element of an orthonor-

mal frame on Sn−1.

For simplicity of notation we shall often write C(h), cij(h) and cij,kl(h) in place of

C[Q(h)], cij[Q(h)] and cij,kl[Q(h)] respectively.

As a corollary of the previous result we have the following integration by parts formula.

If h ∈ C2,+(Sn−1) ∩ C3(Sn−1) and ψ, φ ∈ C2(Sn−1), then

(27)

∫

Sn−1

φ cij(h)(ψij + ψ δij)dy =

∫

Sn−1

ψ cij(h)(φij + φ δij)dy.

The Lemma of Cheng and Yau admits the following extension (see the paper by the

first-named author, Hug and Saorin-Gomez [14]).
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Lemma 6.3. Let ψ ∈ C2(Sn−1) and h ∈ C2,+(Sn−1) ∩ C3(Sn−1). Then, for every k ∈
{1, . . . , n− 1} and for every y ∈ S

n−1

n−1
∑

i=1

(cij,kl[Q(h; y)](ψij + ψδij))l = 0.

Correspondingly we have, for every h ∈ C2,+(Sn−1) ∩ C3(Sn−1), ψ, ϕ, φ ∈ C2(Sn−1)
and i, j ∈ {1, . . . , n− 1}

∫

Sn−1

ψ cij,kl(h)(ϕij + ϕδij)((φ)kl + φ δkl)dy

=

∫

Sn−1

φ cij,kl(h)(ϕij + ϕδij)((ψ)kl + ψ δkl)dy.(28)

6.4. Proof of the Lemma 4.1. As usual, γ is a radially symmetric log-concave measure

on Rn, with density F with respect to Lebesgue measure; in particular, we write F in the

form:

F (x) = f(|x|).

We will assume that f is smooth, more precisely f ∈ C2([0,∞)). Let us fix h ∈ C2,+(Sn−1)
and let K be a convex body with support function h. Let ψ ∈ C2(Sn−1) and consider the

one-parameter system of convex bodies K(h, ψ, [−a, a]) for a suitably small a > 0. In

particular for every s ∈ [−a, a] there exists a convex body Ks such that hKs
= hs. Hence

we may consider the function

g : [−a, a] → R, g(s) = γ(Ks).

The aim of this subsection is to derive formulas for the first and second derivative of g(s)
at s = 0. We start from the expression:

g(s) =

∫

Sn−1

hs(u) det(Q(hs; u))

∫ 1

0

tn−1f(t
√

h2s(u) + |∇σhs(u)|2)dtdu,

where we used Lemma 6.1, the rotation invariance of γ, and Remark 2.3. To simplify

notations we set

Qs = Q(hs; u) , Q = Q0; Ds =
[

h2s(u) + |∇σhs(u)|
2
]1/2

, D = D0;

As =

∫ 1

0

tn−1f(tDs)dt , A = A0; Bs =

∫ 1

0

tnf ′(tDs)dt , B = B0;

Cs =

∫ 1

0

tn+1f ′′(tDs)dt , C = C0.

Then

g′(s) =

∫

Sn−1

ψ det(Qs)Asdu+

∫

Sn−1

hscij(hs)(ψij + ψδij)Asdu

+

∫

Sn−1

hs det(Qs)Bs
hsψ + 〈∇σhs,∇σψ〉

Ds
du.(29)
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Passing to the second derivative (for s = 0) we get

g′′(0) = 2

∫

Sn−1

ψcij(h)(ψij + ψδij)Adu

+ 2

∫

Sn−1

ψ det(Q)B
hψ + 〈∇σh,∇σψ〉

D
du

+ 2

∫

Sn−1

hcij(h)(ψij + ψδij)B
hψ + 〈∇σh,∇σψ〉

D
du

+

∫

Sn−1

Ahcij,kl(h)(ψij + ψδij)(ψkl + ψδkl)du

+

∫

Sn−1

h det(Q)C

[

hψ + 〈∇σh,∇σψ〉

D

]2

du

+

∫

Sn−1

h det(Q)B

[

D(h2 + |∇σψ|
2)−

[hψ + 〈∇σh,∇σψ〉]
2

D

]

1

D2
du.(30)

We now focus on the fourth summand of the last expression. Applying formulas (28)

and (26) we get

∫

Sn−1

Ahcij,kl(h)(ψij + ψδij)(ψkl + ψδkl)du

=

∫

Sn−1

ψcij,kl(h)(ψij + ψδij)((Ah)kl + Ahδkl)du

=

∫

Sn−1

ψcij,kl(h)(ψij + ψδij)(A(hkl + hδkl) + 2Akhl + hAkl)du

=

∫

Sn−1

Aψcij,kl(h)(ψij + ψδij)(hkl + hδkl)du

+

∫

Sn−1

ψcij,kl(h)(ψij + ψδij)(2Akhl + hAkl)du

= (n− 2)

∫

Sn−1

Aψcij(h)(ψij + ψδij)du

+

∫

Sn−1

ψcij,kl(h)(ψij + ψδij)(2Akhl + hAkl)du.

Hence

g′′(0) = n

∫

Sn−1

ψcij(h)(ψij + ψδij)Adu+ 2

∫

Sn−1

ψ det(Q)B
hψ + 〈∇σh,∇σψ〉

D
du

+ 2

∫

Sn−1

hcij(h)(ψij + ψδij)B
hψ + 〈∇σh,∇σψ〉

D
du

+

∫

Sn−1

ψcij,kl(h)(ψij + ψδij)(2Akhl + hAkl)du

+

∫

Sn−1

h det(Q)C

[

hψ + 〈∇σh,∇σψ〉

D

]2

du

+

∫

Sn−1

h det(Q)B

[

D(ψ2 + |∇σψ|
2)−

[hψ + 〈∇σh,∇σψ〉]
2

D

]

1

D2
du.(31)
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Let h ≡ R, R > 0. This choice considerably simplifies the situation as:

Q = RIn−1; ∇σ ≡ R; D ≡ R; cij(h) ≡ Rn−2δij ;

A =

∫ 1

0

tn−1f(Rt)dt, B =

∫ 1

0

tnf ′(Rt)dt, C =

∫ 1

0

tn+1f ′′(Rt)dt.

Here In−1 denotes the (n − 1)× (n− 1) identity matrix. In particular A does not depend

on the point u on Sn−1, so that

Ai ≡ Aij ≡ 0 on S
n−1.

Hence g(0) = |Sn−1|RnA, and

g′(0) = Rn−1A

∫

Sn−1

ψdu+Rn−1A

∫

Sn−1

(∆σψ + (n− 1)ψ)du+RnB

∫

Sn−1

ψdu

= Rn−1(nA+RB)

∫

Sn−1

ψdu.(32)

Here we used the fact that, by the divergence theorem on Sn−1,
∫

Sn−1

∆σψdu = 0.

As for the second derivative, we have

g′′(0) = nRn−2A

∫

Sn−1

ψ(∆σψ + (n− 1)ψ)du+ 2Rn−1B

∫

Sn−1

ψ2du

+ 2Rn−1B

∫

Sn−1

ψ(∆σψ + (n− 1)ψ))du+RnC

∫

Sn−1

ψ2du

+ Rn−1B

∫

Sn−1

|∇σψ|
2du.

By the divergence theorem,
∫

Sn−1

ψ∆σψdu = −

∫

Sn−1

|∇σψ|
2du,

and thus

(33)

g′′(0) = Rn−2(An(n−1)+2nRB+R2C)

∫

Sn−1

ψ2du−Rn−2(nA+RB)

∫

Sn−1

|∇σψ|
2du.

Integrating by parts in t, we get

f(R) = nA+RB,

and

f ′(R) = (n+ 1)B +RC.

Thus we obtain

(34) g′(0) = Rn−1f(R)

∫

Sn−1

ψdu,

and

g′′(0) = Rn−2 [(n− 1)f(R) +Rf ′(R)]

∫

Sn−1

ψ2du− Rn−2f(R)

∫

Sn−1

|∇σψ|
2du

= Rn−2f(R)

(

(n− 1)

∫

Sn−1

ψ2du−

∫

Sn−1

|∇σψ|
2du

)

+Rn−1f ′(R)

∫

Sn−1

ψ2du.(35)

This concludes the proof of Lemma 4.1.
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6.5. Proof of the Lemma 5.1. Firstly, we state the following.

Lemma 6.4. Let n ≥ 2. Let γ be a measure on Rn. Fix h ∈ C2,+(Sn−1), ϕ ∈ C2(Sn−1),
ϕ > 0 and set ψ = h logϕ. Let K(h, ψ, I), with I = [−a, a] and a > 0, be the correspond-

ing one-parameter family. Consider the function f(s) = γ(Ks). Introduce the additional

notation for the operator F (h, ψ) := f ′(0). Set

(36) A(h, ψ) :=
dF

(

h, h+sψ
h
ψ
)

ds

∣

∣

∣

∣

∣

s=0

.

Consider the one-parameter family Q(h, ϕ, [−a, a]), i.e. the collection of sets with sup-

port functions hs = hϕs, s ∈ [−a, a]. Let g(s) = γ(Qs). Then

• g(0) = f(0);
• g′(0) = f ′(0);
• g′′(0) = f ′′(0) + A(h, ψ).

The proof of the Lemma immediately follows from the fact that

hϕs = h+ sh logϕ + o(s), as s→ 0,

with the selection ψ = h logϕ. When h ≡ R > 0, the additional term introduced in

Lemma 6.4 can be written as follows:

A(h, ψ) = f(R)

∫

Sn−1

ψ2du.

That, together with Lemma 4.1, implies Lemma 5.1.

6.6. Additional remarks. Finally, we note that Lemma 6.4 implies the following result.

Theorem 6.5 (Infinitesimal form of Log-Brunn-Minkowski conjecture). Let n ≥ 2 be an

integer. If Conjecture 1.2 is true, then for every h ∈ C2,+
e (Sn−1), ψ ∈ C2(Sn−1), ψ even

and strictly positive,

(37)
∫

Sn−1

ψ21 + tr(Q−1(h))h

h2
dV̄h − n

(
∫

Sn−1

ψ

h
dV̄h

)2

≤

∫

Sn−1

1

h
〈Q−1(h)∇ψ,∇ψ〉dV̄h.

Here h is the support function of K, Q(h) is the curvature matrix of K and

dV̄h =
1

|K|

1

n
hK(u) detQ(hK(u))du

is the normalized cone measure of the convex body K.

A corresponding infinitesimal Brunn-Minkowski inequality for Lebesgue measure was

obtained by the first named author in [11] and reads as:

(38)
∫

Sn−1

ψ2 tr(Q
−1(h))

h
dV̄h − (n− 1)

(
∫

Sn−1

ψ

h
dV̄h

)2

≤

∫

Sn−1

1

h
〈Q−1(h)∇ψ,∇ψ〉dV̄h.

Note that by the Cauchy-Schwarz inequality,
∫

Sn−1

ψ2

h2
dV̄h ≥

(
∫

Sn−1

ψ

h
dV̄h

)2

.

Hence, (37) is indeed a strengthening of (38).

In particular, letting ϕ ≡ 1 we arrive to the following corollary of Theorem 6.5.
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Corollary 6.6 (A strengthening of Minkowski’s second inequality.). Let K be a convex

symmetric set in the plane, or a convex unconditional set in R
n. Then,

(39) Vn(K)

(

Vn−2(K) +

∫

∂K

1

〈y, νK(y)〉
dσ(y)

)

≤ Vn−1(K)2,

where Vn−i are the intrinsic volumes of K, νK(y) stands for the unit normal at y ∈ ∂K

and dσ(y) is the surface area measure on ∂K.

Minkowski’s second inequality, which states that for every convex set K ⊂ Rn one has

Vn(K)Vn−2(K) ≤
n− 1

n
Vn−1(K)2,

is deduced from (39) by using the Cauchy-Schwarz inequality. For a more general version

of this inequality see, for example, Schneider [38, Chapter 4].
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[24] L. Leindler, On a certain converse of Hölder’s inequality. II, Acta Sci. Math. (Szeged) 33 (1972), no.

3-4, 217-223.

[25] A. Livne Bar-on, The B-conjecture for uniform measures in the plane, GAFA seminar notes, (2014),

10.

[26] G. V. Livshyts, Maximal Surface Area of a convex set in Rn with respect to log concave rotation invari-

ant measures, GAFA Seminar Notes, 2116, (2014), 355-384.

[27] G. Livshyts, A. Marsiglietti, P. Nayar, A. Zvavitch, On the Brunn-Minkowski inequality for general

measures with applications to new isoperimetric-type inequalities, to appear in the Transactions of the

A.M.S.

[28] A. Marsiglietti, On the improvement of concavity of convex measures, Proc. Amer. Math. Soc. 144

(2016), no. 2, 775-786.

[29] B. Maurey, Some deviation inequalities, Geom. Funct. Anal. 1 (1991), no. 2, 188-197.

[30] V. D. Milman, G. Schechtman, Asymptotic Theory of finite-dimensional normed spaces, Lecture notes

in Mathematics, (1980), 163.

[31] A. Naor, The Surface Measure and Cone Measure on the sphere of lp, Transactions of the AMS, Volume

359, Number 3 (March 2007), 1045-1079.

[32] P. Nayar, T. Tkocz, A Note on a Brunn-Minkowski Inequality for the Gaussian Measure, Proc. Amer.

Math. Soc. 141 (2013), 11, 4027-4030.

[33] F. L. Nazarov, On the maximal perimeter of a convex set in Rn with respect to Gaussian measure,

Geometric Aspects of Func. Anal., 1807 (2003), 169-187.
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