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Abstract

Let us define, for a compact set A ⊂ Rn, the Minkowski averages of A:

A(k) =

{
a1 + · · ·+ ak

k
: a1, . . . , ak ∈ A

}
=

1

k

(
A+ · · ·+A︸ ︷︷ ︸

k times

)
.

We study the monotonicity of the convergence of A(k) towards the convex hull of A,
when considering the Hausdorff distance, the volume deficit and a non-convexity index of
Schneider as measures of convergence. For the volume deficit, we show that monotonic-
ity fails in general, thus disproving a conjecture of Bobkov, Madiman and Wang. For
Schneider’s non-convexity index, we prove that a strong form of monotonicity holds, and
for the Hausdorff distance, we establish that the sequence is eventually nonincreasing.

1 Introduction

This note announces and proves some of the results obtained in [3]. Let us denote for a
compact set A ⊂ Rn and for a positive integer k,

A(k) =

{
a1 + · · ·+ ak

k
: a1, . . . , ak ∈ A

}
=

1

k

(
A+ · · ·+A︸ ︷︷ ︸

k times

)
. (1)

Denoting by conv(A) the convex hull of A, and by

d(A) := inf{r > 0 : conv(A) ⊂ A+ rBn
2 }

the Hausdorff distance between a set A and its convex hull, it is a classical fact (proved inde-
pendently by [7, 2] in 1969, and often called the Shapley-Folkmann-Starr theorem) that A(k)
converges in Hausdorff distance to conv(A) as k → ∞. Furthermore [7, 2] also determined
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the rate of convergence: it turns out that d(A(k)) = O(1/k) for any compact set A. For sets
of nonempty interior, this convergence of Minkowski averages to the convex hull can also be
expressed in terms of the volume deficit ∆(A) of a compact set A in Rn, which is defined as:

∆(A) := Voln(conv(A) \A) = Voln(conv(A))−Voln(A),

where Voln denotes Lebesgue measure in Rn. It was shown by [2] that if A is compact
with nonempty interior, then the volume deficit of A(k) also converges to 0; more precisely,
∆(A(k)) = O(1/k) for any compact set A with nonempty interior.

Our original motivation came from a conjecture made by Bobkov, Madiman and Wang
[1]:

Conjecture 1.1 ([1]). Let A be a compact set in Rn for some n ∈ N, and let A(k)
be defined as in (1). Then the sequence ∆(A(k)) is non-increasing in k, or equivalently,
{Voln(A(k))}k≥1 is non-decreasing.

We show that Conjecture 1.1 fails to hold in general, even for moderately high dimension.

Theorem 1.1. Conjecture 1.1 is false in Rn for n ≥ 12, and true for R1.

Notice that Conjecture 1.1 remains open for 1 < n < 12. In particular, the arguments
presented in this note do not seem to work. In analogy with Conjecture 1.1, we also consider
whether one can have monotonicity of {c(A(k))}k≥1, where c is a non-convexity index defined
by Schneider [6] as follows:

c(A) := inf{λ ≥ 0 : A+ λ conv(A) is convex}.

A nice property of Schneider’s index is that it is affine-invariant, i.e., c(TA + x) = c(A) for
any nonsingular linear map T on Rn and any x ∈ Rn.

Contrary to the volume deficit, we prove that Schneider’s non-convexity index c satisfies
a strong kind of monotonicity in any dimension.

Theorem 1.2. Let A be a compact set in Rn and k ∈ N∗. Then

c (A(k + 1)) ≤ k

k + 1
c (A(k)) .

Finally, we also prove that eventually, for k ≥ c(A), the Hausdorff distance between A(k)
and conv(A) is also strongly decreasing.

Theorem 1.3. Let A be a compact set in Rn and k ≥ c(A) be an integer. Then

d (A(k + 1)) ≤ k

k + 1
d (A(k)) .

Moreover, Schneider proved in [6] that c(A) ≤ n for every compact subset A of Rn. It
follows that the eventual monotonicity of the sequence d (A(k)) holds true for k ≥ n.

It is natural to ask what the relationship is in general between convergence of c, ∆ and d
to 0, for arbitrary sequences (Ck) of compact sets. In fact, none of these 3 notions of approach
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to convexity are comparable with each other in general. To see why, observe that while c is
scaling-invariant, neither ∆ nor d are; so it is easy to construct examples of sequences (Ck)
such that c(Ck)→ 0 but ∆(Ck) and d(Ck) remain bounded away from 0. The same argument
enables us to construct examples of sequences (Ck) such that c(Ck) remain bounded away
from 0, whereas ∆(Ck) and d(Ck) converge to 0. Furthermore, ∆(Ck) remains bounded away
from 0 for any sequence Ck of finite sets, whereas c(Ck) and d(Ck) could converge to 0 if the
finite sets form a finer and finer grid filling out a convex set. An example where ∆(Ck)→ 0
but both c(Ck) and d(Ck) are bounded away from 0 is given by taking a 3-point set with 2 of
the points getting arbitrarily closer but staying away from the third. One can obtain further
relationships between these measures of non-convexity if further conditions are imposed on
the sequence Ck; details may be found in [3].

The rest of this note is devoted to the examination of whether A(k) becomes progres-
sively more convex as k increases, when measured through the functionals ∆, d and c. The
concluding section contains some additional discussion.

2 The behavior of volume deficit

We prove Theorem 1.1 in this section. We start by constructing a counterexample to the
conjecture in Rn, for n ≥ 12. Let F be a p-dimensional subspace of Rn, where p ∈ {1, . . . , n−
1}. Let us consider A = I1 ∪ I2, where I1 ⊂ F and I2 ⊂ F⊥ are convex sets, and F⊥ denotes
the orthogonal complement of F . One has

A+A = 2I1 ∪ (I1 × I2) ∪ 2I2,

A+A+A = 3I1 ∪ (2I1 × I2) ∪ (I1 × 2I2) ∪ 3I2.

Notice that
Voln(A+A) = Volp(I1)Voln−p(I2),

Voln(A+A+A) = Volp(I1)Voln−p(I2)(2
p + 2n−p − 1).

Thus, Voln(A(3)) ≥ Voln(A(2)) if and only if

2p + 2n−p − 1 ≥
(

3

2

)n

. (2)

Notice that inequality (2) does not hold when n ≥ 12 and p = dn2 e.
For R1, the conjecture may be proved by adapting a proof of [4] on cardinality of integer

sumsets; this was also independently observed by F. Barthe. Let k ≥ 1. Set S = A1+ · · ·+Ak

and for i ∈ [k], let ai = minAi, bi = maxAi,

Si =
∑

j∈[k]\{i}

Aj ,

si =
∑

j<i aj +
∑

j>i bj , S
−
i = {x ∈ Si;x ≤ si} and S+

i = {x ∈ Si;x > si}. For all i ∈ [k− 1],
one has

S ⊃ (ai + S−i ) ∪ (bi+1 + S+
i+1).

Since ai + si =
∑

j≤i aj +
∑

j>i bj = bi+1 + si+1, the above union is a disjoint union. Thus
for i ∈ [k − 1]

Vol1(S) ≥ Vol1(ai + S−i ) + Vol1(bi+1 + S+
i+1) = Vol1(S

−
i ) + Vol1(S

+
i+1).
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Figure 1: A counterexample in R12.

Notice that S−1 = S1 and S+
k = Sk \ {sk}, thus adding the above k− 1 inequalities we obtain

(k − 1)Vol1(S) ≥
k−1∑
i=1

(
Vol1(S

−
i ) + Vol1(S

+
i+1)

)
= Vol1(S

−
1 ) + Vol1(S

+
k ) +

k−1∑
i=2

Vol1(Si)

=
k∑

i=1

Vol1(Si).

Now taking all the sets Ai = A, and dividing through by k(k − 1), we see that we have
established Conjecture 1.1 in dimension 1.

3 The behavior of Schneider’s non-convexity index and the
Hausdorff distance

We establish Theorems 1.2 and 1.3 in this section. This relies crucially on the elementary ob-
servations that conv(A+B) = conv(A)+conv(B) and (t+s)conv(A) = tconv(A)+sconv(A)
for any t, s > 0 and any compact sets A,B.

Proof of Theorem 1.2. Denote λ = c (A(k)). Since conv(A(k)) = conv(A), from the
definition of c, one knows that A(k) + λconv(A) = conv(A) + λconv(A) = (1 + λ)conv(A).
Using that A(k + 1) = A

k+1 + k
k+1A(k), one has

A(k + 1) +
k

k + 1
λconv(A) =

A

k + 1
+

k

k + 1
A(k) +

k

k + 1
λconv(A)

=
A

k + 1
+

k

k + 1
conv(A) +

k

k + 1
λconv(A)

⊃ conv(A)

k + 1
+

k

k + 1
A(k) +

k

k + 1
λconv(A)

=
conv(A)

k + 1
+

k

k + 1
(1 + λ)conv(A)

=

(
1 +

k

k + 1
λ

)
conv(A).
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Since the other inclusion is trivial, we deduce that A(k + 1) + k
k+1λconv(A) is convex which

proves that

c(A(k + 1)) ≤ k

k + 1
λ =

k

k + 1
c (A(k)) .

Proof of Theorem 1.3. Let k ≥ c(A), then, from the definitions of c(A) and d(A(k)),
one has

conv(A) =
A

k + 1
+

k

k + 1
conv(A) ⊂ A

k + 1
+

k

k + 1
(A(k) + d(A(k))Bn

2 )

= A(k + 1) +
k

k + 1
d(A(k))Bn

2 .

We conclude that

d (A(k + 1)) ≤ k

k + 1
d (A(k)) .

4 Discussion

1. By repeated application of Theorem 1.2, it is clear that the convergence of c(A(k)) is
at a rate O(1/k) for any compact set A ⊂ Rn; this observation appears to be new. In
[3], we study the question of the monotonicity of A(k), as well as convergence rates,
when considering several different ways to measure non-convexity, including some not
mentioned in this note.

2. Some of the results in this note are of interest when one is considering Minkowski sums
of different compact sets, not just sums of A with copies of itself. Indeed, the original
conjecture of [1] was of this form, and would have provided a strengthening of the
classical Brunn-Minkowski inequality for more than 2 sets; of course, that conjecture
is false since the weaker Conjecture 1.1 is false. Nonetheless we do have some related
observations in [3]; for instance, it turns out that in general dimension, for compact
sets A1, . . . , Ak,

Voln

(
k∑

i=1

Ai

)
≥ 1

k − 1

k∑
i=1

Voln

 ∑
j∈[k]\{i}

Aj

 .

For convex sets Bi, an even stronger fact is true (that this is stronger may not be
immediately obvious, but if follows from well known results, see, e.g., [5]):

Voln(B1 +B2 +B3) + Voln(B1) ≥ Voln(B1 +B2) + Voln(B1 +B3).

3. There is a variant of the strong monotonicity of Schneider’s index when dealing with
different sets. If A,B,C are subsets of Rn, then it is shown in [3] (by a similar argument
to that used for Theorem 3) that c(A+B + C) ≤ max{c(A+B), c(B + C)}.
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