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Abstract

We characterize the symmetric real random variables which satisfy the one dimen-
sional convex infimum convolution inequality of Maurey. We deduce Talagrand’s two-
level concentration for random vectors of the form f(X1, . . . , Xn), where X1, . . . , Xn

are independent real random variables satisfying the above inequality, and f is convex.
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1 Introduction

In the past few decades a lot of attention has been devoted to study the concentration
of measure phenomenon, especially the concentration properties of random vectors with
independent coordinates, having values in the Euclidean space Rn. Through this note by |x|p
we denote the lp norm on Rn, namely |x|p = (

∑n
i=1 |xi|p)1/p, and let us take Bn

p = {x ∈ Rn :
|x|p ≤ 1}. We say that an Rn-valued random vector X satisfies concentration with a profile
αX(t) if for any set A ⊂ Rn with P (X ∈ A) ≥ 1/2 we have P (X ∈ A+ tBn

2 ) ≥ 1 − αX(t),
t ≥ 0, where Bn

2 is the Euclidean ball of radius 1, centered at the origin. An equivalent
statement is that for any 1-Lipschitz function f on Rn the random vector X satisfies the
inequality P (|f(X)−Med f(X)| > t) ≤ αX(t), t > 0, where Med f(X) is a median of f(X).
Moreover, with a slight modification of αX , the median can be replaced with the mean, see
[19, Proposition 1.8]. The above framework includes classical theory of large deviations for
sums of independent random variables. The concentration of measure has applications in
functional analysis, [20], theory of empirical processes (see [19, Chapter 7]), random matrix
theory and combinatorics (see [19, Chapter 8]), and statistical mechanics, [26]. It can be
also investigated in the context of infinite dimensional diffusion generators, see [5]. For the
study of concentration and isoperimetry under curvature bounds on Riemannian manifolds
see [23].
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A usual way to reach concentration is via certain functional inequalities. For example, we
say that an Rn-valued random vector X satisfies Poincaré inequality (also known as spectral
gap inequality) with constant C, if for any f ∈ C1(Rn,R) we have

Var(f(X)) ≤ CE|∇f(X)|22. (1)

We assume that C is the best possible constant. This inequality implies the exponential
concentration, namely concentration with a profile αX(t) = 2 exp(−t/2

√
C). As an example,

the symmetric exponential real random variable satisfies (1) with the constant 4 (see Lemma
2.1 in [10] for a one-line proof). In fact, there is a so-called Muckenhoupt condition, see
[24] and [22], that fully characterizes real random variables satisfying the one dimensional
Poincaré inequality.

Suppose that independent real random variables X1, . . . , Xn satisfy Poincaré inequality
with constant C. Then the same can be said about the random vector (X1, . . . , Xn) (see
e.g. Corollary 5.7 in [19]). Thus, one can say that Poincaré inequality is fully understood
in the case of Rn-valued random vectors with independent entries. Similar characterization
for real random variables as well as tensorization property are valid for the so-called log-
Sobolev inequality, implying the Gaussian concentration phenomenon, i.e., concentration
with a profile αX(t) = exp(−t2/2C), see [9] and [6]. See also the celebrated work [17] by Gross
for the proof of Gaussian log-Sobolev inequality and related hypercontractive estimates. For
the formulation of Poincaré and log-Sobolev inequalities in the context of Markov processes
via the notion of Dirichlet forms see [4, 19, 3]. For applications to mixing time bounds see
[12].

Another way to concentration leads through the so-called property (τ) that was first
introduce by Maurey in 1991 (see [21]) and studied in more details by Lata la and Wojtaszczyk
(see [18]). An Rn-valued random vector X is said to satisfy property (τ) with a nonnegative
cost function ϕ if the inequality (

Eef�ϕ(X)
) (

Ee−f(X)
)
≤ 1 (2)

holds for every bounded measurable function f on Rn. Here (f�ϕ)(x) = infy{f(y)+ϕ(x−y)}
is the so-called infimum convolution. Property (τ) implies concentration. Namely for every
measurable set A we have (see Lemma 4 in [21])

P (X /∈ A+ {ϕ < t}) ≤ P (X ∈ A)−1 e−t.

Let Y1, . . . , Yn be independent symmetric exponential random variables. In the seminal
paper [21] Maurey showed that Y1 satisfies the infimum convolution inequality with the cost
function ϕ(t) = min{ 1

36
t2, 2

9
(|t| − 2)}. As a consequence of tensorization (see Lemma 1 in

[21]) we get that the random vector Y = (Y1, . . . , Yn) satisfies (2) with the cost function
ϕ(x) =

∑n
i=1 ϕ(xi). This leads to the so-called Talagrand’s two level concentration (see

Corollary 1 in [21]),

P
(
Y ∈ A+ 6

√
tBn

2 + 9tBn
1

)
≥ 1− P (Y ∈ A)−1 e−t.

This gives a stronger conclusion than Poincaré inequality. In fact, it is well known that
the property (τ) with a cost function which is quadratic around 0, say ϕ(x) = C|x|2 for
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|x| ≤ 1, implies Poincaré inequality with the constant 1/(4C) (see Corollary 3 in [21]). We
shall sketch the argument in Section 2. Moreover, Bobkov, Gentil and Ledoux showed that
the property (τ) with a cost function ϕ(x) = min{|x|2/a, |x|22/a2} is equivalent to Poincaré
inequality for smooth f : Rn → R and provided quantitative relation between the constant
a and the Poincaré constant (see [7]).

The goal of this article is to investigate concentration properties of a wider class of random
vectors, i.e., vectors that may not even satisfy Poincaré inequality. For example, in the case of
random vector whose law is purely atomic, one can easily construct a non-constant function
f with E|∇f(X)|22 = 0. However, one can still hope to get concentration if one restricts
set A to the class of convex sets. It turns out that to reach exponential concentration for
convex sets, it suffices to prove that X satisfies the convex Poincaré inequality. Below we
state the definitions for the convex Poincaré inequality, the class of real random variables
with exponential tails, and the convex property (τ).

Definition 1. We say that a real random variable X satisfies the convex Poincaré inequality
with a constant Cp if for every convex function f : R→ R with f ′ bounded we have

Var(f(X)) ≤ CpEf ′(X)2. (3)

Here we adopt the standard convention that for a locally Lipschitz function f : R −→ R the
gradient f ′ is defined by

f ′(x) = lim sup
h→0

f(x+ h)− f(x)

h
. (4)

This definition applies in particular to convex f . If f is differentiable, (4) agrees with the
usual derivative.

We also need the following definition.

Definition 2. Let h > 0 and λ ∈ [0, 1). Let M(h, λ) be the class of symmetric real random
variables, satisfying the condition P (X ≥ x+ h) ≤ λP (X ≥ x) for x ≥ 0. Moreover, let
M+(h, λ) be the class of R+-valued real random variables, satisfying the same condition.

The convex Poincaré inequality has been investigated by Bobkov and Götze, see [8, The-
orem 4.2]. In particular, the authors proved (3) in the class M(h, λ) with a constant Cp
depending only on h and λ. This leads to the exponential concentration for 1-Lipschitz con-
vex functions f (as well as the exponential concentration for convex sets) via the standard
Herbst argument (see, e.g., Theorem 3.3 in [19]).

It is worth mentioning that a much stronger condition P (X ≥ x+ C/x) ≤ λP (X ≥ x),
x ≥ m, where m is a fixed positive number, has been considered. It implies log-Sobolev
inequalities for log-convex functions and the Gaussian concentration for convex sets. We
refer to the nice study [1] for the details.

In [21] the author showed that every real random variable having values in the set of
diameter 1 satisfies the convex property (τ), i.e. the inequality (2) for convex functions f ,
with the cost function 1

4
|x|2 (see Theorem 3 therein). The aim of this note is to extend this

result. We introduce the following definition.

Definition 3. Define

ϕ0(x) =

{
1
2
x2 |x| ≤ 1
|x| − 1

2
|x| > 1

.
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We say that a real random variable X satisfies convex exponential property (τ) with constant
Cτ if for any convex function f : R→ R with inf f > −∞ we have(

Eef�ϕ(X)
) (

Ee−f(X)
)
≤ 1 (5)

with ϕ(x) = ϕ0(x/Cτ ).

We are ready to state our main result.

Theorem 1. The following conditions are equivalent

(a) X ∈M(h, λ),

(b) There exists Cp > 0 such that X satisfies the convex Poincaré inequality with constant
Cp,

(c) There exists Cτ > 0 such that X satisfies the convex exponential property (τ) with
constant Cτ .

Moreover, (a) implies (c) with the constant Cτ = 17h/(1 − λ)2, (c) implies (b) with the
constant Cp = 1

2
C2
τ and (b) implies (a) with h =

√
8Cp and λ = 1/2.

This generalizes Maurey’s theorem due to the fact that any symmetric [−1, 1]-values real
random variable belongs to M(1, 0).

It is well known that the convex property (τ) tensorizes, namely, if some independent
real random variables X1, . . . , Xn have convex property (τ) with cost functions ϕ1, . . . , ϕn
then the vector X = (X1, . . . , Xn) has convex property (τ) with ϕ(x) =

∑n
i=1 ϕi(xi), see [21,

Lemma 5]. Therefore Theorem 1 implies the following Corollary.

Corollary 1. Let X1, . . . , Xn ∈ M(h, λ) be independent and let us take X = (X1, . . . , Xn).
Define the cost function ϕ(x) =

∑n
i=1 ϕ0(xi/Cτ ), where Cτ = 17h/(1 − λ)2. Then for any

convex function f we have (
Eef�ϕ(X)

) (
Ee−f(X)

)
≤ 1. (6)

As a consequence, one can deduce the two-level concentration for convex sets and convex
functions in Rn.

Corollary 2. Let X1, . . . , Xn ∈ M(h, λ) be independent. Let Cτ = 17h/(1 − λ)2. Take
X = (X1, . . . , Xn). Then for any convex set A with P (X ∈ A) > 0 we have

P
(
X ∈ A+

√
2tCτB

n
2 + 2tCτB

n
1

)
≥ 1− P (X ∈ A)−1 e−t.

Corollary 3. Let X1, . . . , Xn ∈ M(h, λ) be independent. Let Cτ = 17h/(1 − λ)2. Take
X = (X1, . . . , Xn). Then for any convex function f : Rn → R with

|f(x)− f(y)|2 ≤ a|x− y|2, |f(x)− f(y)|1 ≤ b|x− y|1, x, y ∈ Rn, (7)

we have

P (f(X) > Med(f(X)) + Cτ t) ≤ 2 exp

(
−1

8
min

{
t

b
,
t2

a2

})
, t ≥ 0, (8)

and

P (f(X) < Med(f(X))− Cτ t) ≤ 2 exp

(
−1

8
min

{
t

b
,
t2

a2

})
, t ≥ 0. (9)
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While writing this note, we were aware of a work in progress by Gozlan, Roberto, Samson,
Shu and Tetali (private communication), which shows an equivalence between the convex
property (τ) on the real line and certain mass transportation inequalities (see also [15]).

The rest of this article is organized as follows. In the next section we prove Theorem 1.
In Section 3 we deduce Corollaries 2 and 3.

2 Proof of Theorem 1

We need the following lemma, which is essentially included in Theorem 4.2 of [8]. For reader’s
convenience we provide a straightforward proof of this fact.

Lemma 1. Let X ∈M+(h, λ) and let g : R→ [0,∞) be non-decreasing with g(0) = 0. Then

Eg(X)2 ≤ 2(1 + λ)

(1− λ)2
· E(g(X)− g(X − h))2.

Proof. We first prove that λEg(X) ≥ Eg(X − h) for any non-decreasing g : R → [0,∞)
such that g(0) = 0. Both sides of this inequality are linear in g. Therefore, it is enough to
consider only functions of the form g(x) = 1[a,∞)(x) for a ≥ 0, since g can be expressed as a
mixture of these functions. For g(x) = 1[a,∞)(x) the above inequality reduces to λP (X ≥ a) ≥
P (X ≥ a+ h), which is clearly true due to our assumption on X.

The above inequality is equivalent to

(1− λ)Eg(X) ≤ E(g(X)− g(X − h)). (10)

Now, let us use (10) with g2 instead of g. Then,

Eg(X)2 ≤ 1

1− λ
E(g(X)2 − g(X − h)2)

=
1

1− λ
E(g(X)− g(X − h))(g(X) + g(X − h))

≤ 1

1− λ
(
E(g(X)− g(X − h))2

)1/2 (E(g(X) + g(X − h))2
)1/2

.

Moreover, again using (10) for g2, we get

E(g(X) + g(X − h))2 ≤ 2E(g(X)2 + g(X − h)2) ≤ 2(1 + λ)Eg(X)2.

We arrive at (
Eg(X)2

)1/2 ≤ √2(1 + λ)

1− λ
(
E(g(X)− g(X − h))2

)1/2
.

Our assertion follows.

In the rest of this note, we take f : R→ R to be convex. Let x0 be a point where f attains
its minimal value. Note that this point may not be unique. However, one can check that
what follows does not depend on the choice of x0. Moreover, if f is increasing (decreasing)
we adopt the notation x0 = −∞ (x0 =∞). Let us define a discrete version of gradient of f ,

(Df)(x) =


f(x)− f(x− h) x > x0 + h
f(x)− f(x0) x0 − h ≤ x ≤ x0 + h
f(x)− f(x+ h) x < x0 − h

.
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Lemma 2. Let f : R→ R be a convex function with f(0) = 0 and let X ∈M(h, λ). Then

E
(
ef(X)/2 − e−f(X)/2

)2 ≤ 8

(1− λ)2
E
(
ef(X)(Df(X))2

)
.

Proof. Step 1. We first assume that f is non-negative and non-decreasing. It follows that
f(x) = 0 for x ≤ 0. Correspondingly, the function g = ef/2 − e−f/2 is non-negative, non-
decreasing and g(0) = 0. Note that |X| ∈ M+(h, λ). From Lemma 1 we get

E
(
ef(X)/2 − e−f(X)/2

)2
=

1

2
Eg(|X|)2 ≤ 1 + λ

(1− λ)2
E(g(|X|)− g(|X| − h))2

=
2(1 + λ)

(1− λ)2
E(g(X)− g(X − h))2.

Observe that

g(x)− g(x− h) = e
f(x)
2 − e−

f(x)
2 − e

f(x−h)
2 + e−

f(x−h)
2

=
(
e
f(x)
2 − e

f(x−h)
2

)(
1 + e−

f(x)
2
− f(x−h)

2

)
≤ 2

(
e
f(x)
2 − e

f(x−h)
2

)
≤ e

f(x)
2 (f(x)− f(x− h)),

where the last inequality follows from the mean value theorem. Since λ ≤ 1, we arrive at

E
(
ef(X)/2 − e−f(X)/2

)2 ≤ 4

(1− λ)2
Eef(X)(Df(X))2.

Step 2. Now let f be non-decreasing but not necessarily non-negative. From convexity of
f and the fact that f(0) = 0 we get |f(−x)| ≤ f(x) for x ≥ 0. This implies the inequality
|ef(−x) − e−f(−x)| ≤ |ef(x) − e−f(x)|, x ≥ 0. From the symmetry of X one gets

E
(
ef(X)/2 − e−f(X)/2

)2 ≤ E
(
ef(|X|)/2 − e−f(|X|)/2

)2
.

Let f̃ = f1[0,∞). From Step 1 one gets

E
(
ef(|X|)/2 − e−f(|X|)/2

)2
= 2E

(
ef̃(X)/2 − e−f̃(X)/2

)2
≤ 8

(1− λ)2
Eef̃(X)(Df̃(X))2

≤ 8

(1− λ)2
Eef(X)(Df(X))2.

Step 3. The conclusion of Step 2 is also true in the case of non-increasing functions with
f(0) = 0. This is due to the invariance of our assertion under the symmetry x→ −x, which
is an easy consequence of the symmetry of X and the fact that for F (x) = f(−x) we have
(DF )(x) = (Df)(−x).

Step 4. Let us now eliminate of the assumption of monotonicity of f . Suppose that f
is not monotone. Then f has a (not necessarily unique) minimum attained at some point
x0 ∈ R. Due to the remark of Step 3 we can assume that x0 ≤ 0. Since f(0) = 0, we have
f(x0) ≤ 0. Take y0 = inf{y ∈ R : f(y) = 0}. Clearly y0 ≤ x0. We define

f1(x) =

{
f(x) x ≥ x0
f(x0) x < x0

, f2(x) =

{
0 x ≥ y0
f(x) x < y0

.
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Note that f1 is non-decreasing and f2 is non-increasing. Moreover, f1(0) = f2(0) = 0.
Therefore, from the previous steps applied for f1 and f2 we get

(ef(x0)/2 − e−f(x0)/2)2P (X ≤ x0) + E
(
ef(X)/2 − e−f(X)/2

)2
1{X≥x0}

≤ 8

(1− λ)2
E
(
ef(X)(Df(X))21{X≥x0}

) (11)

and

E
(
ef(X)/2 − e−f(X)/2

)2
1{X≤y0} ≤

8

(1− λ)2
E
(
ef(X)(Df(X))21{X≤y0}

)
. (12)

Moreover, since |f(x)| ≤ |f(x0)| on [y0, x0], we have

E
(
ef(X)/2 − e−f(X)/2

)2
1{y0≤X≤x0} ≤ (ef(x0)/2 − e−f(x0)/2)2P (X ∈ [y0, x0])

≤ (ef(x0)/2 − e−f(x0)/2)2P (X ≤ x0) .
(13)

Combining (11), (12) and (13), we arrive at

E
(
ef(X)/2 − e−f(X)/2

)2 ≤ 8

(1− λ)2
E
(
ef(X)(Df(X))2

)
.

The following lemma provides an estimate on the infimum convolution.

Lemma 3. Let C1, h > 0. Define ϕ1(x) = 1
C1
ϕ0(x/h). Assume that a convex function f

satisfies |f ′| ≤ 1/(C1h). Then

(f�ϕ1)(x) ≤ f(x)− C1

2
|(Df)(x)|2.

Proof. Let us consider the case when x ≥ x0 + h. We take θ ∈ [0, 1] and write y = θ(x −
h) + (1− θ)x. Note that x− y = hθ. By the convexity of f we have

(f�ϕ1)(x) ≤ f(y) + ϕ1(x− y) ≤ θf(x− h) + (1− θ)f(x) + ϕ1(hθ)

= θf(x− h) + (1− θ)f(x) +
1

2C1

θ2.

Let us now take θ = C1(f(x)− f(x−h)). Note that 0 ≤ f ′ ≤ 1/C1h yields θ ∈ [0, 1]. We get

(f�ϕ1)(x) ≤ f(x)− θ(f(x)− f(x− h)) +
1

2C1

θ2 = f(x)− C1

2
(f(x)− f(x− h))2.

The case x ≤ x0−h follows by similar computation (one has to take y = θ(x+h)+(1−θ)x).
Also, in the case x ∈ [x0 − h, x0 + h] it is enough to take y = θx0 + (1− θ)x and use the fact
that |x− y| = |θ(x− x0)| ≤ hθ.
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Proof of Theorem 1. We begin by showing that (a) implies (c). We do this in three steps.
Step 1. We first show that it is enough to consider only the case when f satisfies |f ′| ≤

1/Cτ . Let us show that (5) is actually satisfied for all convex f : R → R bounded from
below. To this end let us fix f and consider g(x) = supy∈R{(f�ϕ)(y) − ϕ(x − y)}, thus
g(x) = supy∈R infz∈R{f(z)+ϕ(y−z)−ϕ(x−y)}, and by taking z = x we get g(x) ≤ f(x) for
all x ∈ R. Moreover, since f is bounded from below, it is easy to see that g is also bounded
from below. Since f is convex, one can check that the function f�ϕ is also convex (classical
property of infimum convolution). Therefore writing g(x) = supu∈R{(f�ϕ)(x− u)− ϕ(u)},
the function g turns out to be convex as a supremum of convex functions. Moreover, since
x 7→ ϕ(x− y) is (1/Cτ )-Lipschitz for every y, the function g is also (1/Cτ )-Lipschitz. Finally
we check that g�ϕ = f�ϕ. Indeed, the inequality g�ϕ ≤ f�ϕ follows from g ≤ f . The
other direction is obtained by writing that

(g�ϕ)(x) = inf
y∈R

sup
z∈R

inf
w∈R
{f(w) + ϕ(z − w)− ϕ(y − z) + ϕ(x− y)}

and by taking z = x. Using g�ϕ = f�ϕ, g ≤ f and the fact that g is (1/Cτ )-Lipschitz, we
arrive at (

Eef�ϕ(X)
) (

Ee−f(X)
)
≤
(
Eeg�ϕ(X)

) (
Ee−g(X)

)
≤ 1.

Step 2. The inequality (5) stays invariant when we add a constant to the function f . Thus,
we may assume that f(0) = 0. Note that from the elementary inequality 4ab ≤ (a + b)2 we
have

4
(
Eef�ϕ(X)

) (
Ee−f(X)

)
≤
(
E
(
ef�ϕ(X) + e−f(X)

))2
.

Thus, it is enough to show that

E
(
ef�ϕ(X) + e−f(X)

)
≤ 2.

Step 3. Take C1 = 17/(1−λ)2, Cτ = C1h and ϕ(x) = ϕ0(x/Cτ ). Assume that |f ′| ≤ 1/Cτ .
By the convexity of ϕ0 we get ϕ(x) ≤ 1

C1
ϕ0(x/h), since C1 > 1. Thus, by Lemma 3 we get

f�ϕ ≤ f(x)− 1
2
C1|(Df)(x)|2. By the mean value theorem |(Df)(x)|/h ≤ 1/Cτ . Therefore,

1
2
C1|(Df)(x)|2 ≤ 1

2
C1(

h
Cτ

)2 = 1/2C1. Let α(C1) = 2C1(1− exp(− 1
2C1

)). The convexity of the
exponential function yields e−s ≤ 1− α(C1)s, s ∈ [0, 1/2C1]. Therefore,

E
(
ef�ϕ(X) + e−f(X)

)
≤ E

(
ef(X)− 1

2
C1|Df(X)|2 + e−f(X)

)
≤ E

(
ef(X)

(
1− 1

2
C1α(C1)|Df(X)|2

)
+ e−f(X)

)
.

Therefore, since ef + e−f − 2 = (ef/2 − e−f/2)2, we are to prove that

E
(
ef(X)/2 − e−f(X)/2

)2 ≤ C1

2
α(C1)E

(
ef(X)|Df(X)|2

)
.

From Lemma 2 this inequality is true whenever 1
2
C1α(C1) ≥ 8

(1−λ)2 . It suffices to observe
that

1

2
C1α(C1) = C2

1

(
1− e−

1
2C1

)
≥ C2

1

(
1− 1

1 + 1
2C1

)
=

C1

2 + 1
C1

≥ C1

2 + 1
8

=
8

(1− λ)2
.
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We now sketch the proof of the fact that (c) implies (b). Due to the standard approxima-
tion argument one can assume that f is a convex C2 smooth function with bounded first and
second derivative (note that in the definition of the convex Poincaré inequality we assumed
that f ′ is bounded). Consider the function fε = εf . The infimum of ψx(y) = ϕ(y)+εf(x−y)
is attained at the point y satisfying the equation ψ′x(y) = ϕ′(y)− εf ′(x− y) = 0. Note that
ϕ′ is strictly increasing on the interval [−Cτ , Cτ ]. If ε is sufficiently small, it follows that the
above equation has a unique solution yx and that yx ∈ [−Cτ , Cτ ]. Thus, yx = C2

τ εf
′(x− yx).

This implies yx = εC2
τ f
′(x) + o(ε), where the o(ε) dependence is uniform in x. We get

f�ϕ(x) = ϕ(yx) + εf(x− yx) =
1

2C2
τ

y2x + εf(x− εC2
τ f
′(x)) + o(ε2)

=
1

2
ε2C2

τ f
′(x)2 + εf(x)− ε2C2

τ f
′(x)2 + o(ε2)

= εf(x)− 1

2
ε2C2

τ f
′(x)2 + o(ε2).

Therefore, from the infimum convolution inequality we get(
Eeεf(X)− 1

2
ε2C2

τ f
′(X)2+o(ε2)

) (
Ee−εf(X)

)
≤ 1.

Testing (5) with f(x) = |x|/Cτ one gets that Eeϕ(X) < ∞ and therefore Ee|X|/Cτ < ∞.
Also, there exists a constant c > 0 such that |f(x)| ≤ c(1 + |x|), x ∈ R. As a consequence,
after some additional technical steps, one can consider the Taylor expansion of the above
quantities in ε = 0. This gives

E
(

1 + εf(X)− 1

2
ε2C2

τ f
′(X)2 +

1

2
ε2f(X)2 + o(ε2)

)
E
(

1− εf(X) +
1

2
ε2f(X)2 + o(ε2)

)
≤ 1.

Comparing the terms in front of ε2 leads to

Ef(X)2 − (Ef(X))2 ≤ 1

2
C2
τEf ′(X)2.

This is exactly the Poincaré inequality with constant 1
2
C2
τ .

We show that (b) implies (a). Suppose that a symmetric real random variable X satisfies
the convex Poincaré inequality with a constant Cp. Consider the function fu(x) = max{x−
u, 0}, u ≥ 0. We have E|f ′u(X)|2 = P (X ≥ u). Let Y be an independent copy of X. Since
fu(y) = 0 for y ≤ 0 and P (Y ≤ 0) ≥ 1/2, one gets

Var(fu(X)) =
1

2
E (fu(X)− fu(Y ))2 ≥ 1

2
E (fu(X)− fu(Y ))2 1{Y≤0}

≥ 1

4
E (fu(X))2 ≥ 1

4
E (fu(X))2 1{X≥u+

√
8Cp} ≥ 2CpP

(
X ≥ u+

√
8Cp

)
.

These two observations, together with Poincaré inequality, yield that X ∈ M(
√

8Cp, 1/2).

9
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3 Concentration properties

We show that the convex property (τ) implies concentration for convex sets.

Proposition 1. Suppose that an Rn-valued random vector X satisfies the property (τ) with a
non-negative cost function ϕ, restricted to the family of convex functions. Let Bϕ(t) = {x ∈
Rn : ϕ(x) ≤ t}. Then for any convex set A we have

P (X ∈ A+Bϕ(t)) ≥ 1− P (X ∈ A)−1 e−t.

The proof of this proposition is similar to the proof of Proposition 2.4 in [18]. We recall
the argument.

Proof. Let f = 0 on A and f =∞ outside of A. Note that f is convex (to avoid working with
functions having values +∞ one can consider a family of convex functions fn = n dist(A, x)
and take n → ∞). Suppose that (f�ϕ)(x) ≤ t. Then there exists y ∈ Rn such that
f(y) + ϕ(x − y) ≤ t. Thus, y ∈ A and x − y ∈ Bϕ(t). Therefore x ∈ A + Bϕ(t). It follows
that x /∈ A + Bϕ(t) implies (f�ϕ)(x) > t. Applying the infimum convolution inequality we
get

et(1− P (X ∈ A+Bϕ(t))) · P (X ∈ A) ≤
(
Eef�ϕ(X)

) (
Ee−f(X)

)
≤ 1.

Our assertion follows.

We are ready to derive the two-level concentration for convex sets.

Proof of Corollary 2. The argument is similar to [21, Corollary 1]. Due to Corollary 1, X
satisfies property (τ) with the cost function ϕ(x) =

∑n
i=1 ϕ0(xi/Cτ ). Suppose that ϕ(x) ≤ t.

Define y, z ∈ Rn in the following way. Take yi = xi if |xi| ≤ Cτ and yi = 0 otherwise. Take
zi = xi if |xi| > Cτ and zi = 0 otherwise. Then x = y + z. Moreover,

n∑
i=1

ϕ(yi/Cτ ) +
n∑
i=1

ϕ(zi/Cτ ) =
n∑
i=1

ϕ(xi/Cτ ) ≤ t.

In particular |y|22 ≤ 2C2
τ t and t ≥

∑n
i=1 ϕ0(zi/Cτ ) ≥ 1

2
|z|1/Cτ , since |zi|/Cτ − 1

2
≥ 1

2
|zi|/Cτ

for |zi| ≥ 1/Cτ . This gives x ∈
√

2tCτB
n
2 + 2tCτB

n
1 . Our assertion follows from Proposition

1.

Finally, we prove concentration for convex Lipschitz functions.

Proof of Corollary 3. The proof of (8) is similar to the proof of Proposition 4.18 in [19]. Let
us define a convex set A = {f ≤ Med f(X)} and observe that P (X ∈ A) ≥ 1/2. Moreover,

A+ Cτ (
√

2tBn
2 + 2tBn

1 ) ⊂ {f ≤ Med f(X) + Cτ (a
√

2t+ 2bt)}.

Applying Corollary 2 we get

P
(
f(X) > Med f(X) + Cτ (a

√
2t+ 2bt)

)
≤ 2e−t, for all t ≥ 0,

10
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where a, b are Lipschitz constants given in (7). Take s = Cτ (a
√

2t + 2bt) and r = s/Cτ .
Suppose that r

b
≤ r2

a2
. Then

a
√

2t+ 2tb = r ≥ 1

2

√
a2r/b+

1

2
r = a

√
2
r

8b
+ 2b

r

4b
≥ a

√
2
r

8b
+ 2b

r

8b
.

By the monotonicity of x 7→ a
√

2x + 2xb, x ≥ 0 it follows that 1
8

min{ r
b
, r

2

a2
} = r

8b
≤ t. On

the other hand, if r
b
≥ r2

a2
, then

a
√

2t+ 2tb = r ≥ 1

2
r +

br2

2a2
= a

√
2
r2

8a2
+ 2b

r2

4a2
≥ a

√
2
r2

8a2
+ 2b

r2

8a2
.

Therefore, 1
8

min{ r
b
, r

2

a2
} = r2

8a2
≤ t. Thus,

P (f(X) > Med f(X) + rCτ ) ≤ 2e−t ≤ 2 exp

(
−1

8
min

{
r

b
,
r2

a2

})
, t ≥ 0.

For the proof of (9) we follow [25]. Define a convex set B = {f < Med f(X)−Cτ (a
√

2t+
2bt)} with t ≥ 0. It follows that

B + Cτ (
√

2tBn
2 + 2tBn

1 ) ⊂ {f < Med f(X)}

and thus Corollary 2 yields

1

2
≥ P

(
X ∈ B + Cτ (

√
2tBn

2 + 2tBn
1 )
)
≥ 1− P (X ∈ B)−1 e−t.

Therefore P (X ∈ B) ≤ 2e−t. To finish the proof we proceed as above.

4 Discussions

Very recently Adamczak and Strzelecki established related results in the context of modified
log-Sobolev inequalities, see [2]. For simplicity we state their result in the case of symmetric
real random variables. For λ ∈ [0, 1), β ∈ [0, 1] and h,m > 0 the authors defined the class of
random variablesMβ

AS(h, λ,m) satisfying the condition P
(
X ≥ x+ h/xβ

)
≤ λP (X ≥ x) for

x ≥ m. Note thatM0
AS(h, λ, 0) = M(h, λ). They proved that any vector X = (X1, . . . , Xn),

where X1, . . . , Xn ∈Mβ
AS(h, λ,m) are independent, satisfy the inequality

Ent(ef(X)) ≤ CASE
(
ef(X)|∇f(X)|22 ∨ |∇f |

β+1
β
β+1
β

)
(14)

for any smooth convex function f : Rn → R. Here Ent(f) = E(f ln f) − (Ef) ln(Ef). As a
consequence, for any convex set A in Rn with P (X ∈ A) ≥ 1/2 we have

P
(
X ∈ A+ t

1
2Bn

2 + t
1

1+βCτB
n
1+β

)
≥ 1− e−C′ASt, t ≥ 0.

11
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Here the constants CAS, C
′
AS depend only on the parameters β,m, h and λ. They also estab-

lished inequality similar to (8), namely for a convex function f with

|f(x)− f(y)|2 ≤ a|x− y|2, |f(x)− f(y)|1+β ≤ b|x− y|1+β, x, y ∈ Rn,

one gets

P (f(X) > Med(f(X)) + 2t) ≤ 2 exp

(
− 3

16
min

{
t1+β

b1+βCβ
AS

,
t2

a2CAS

})
, t ≥ 0.

However, the authors in [2] were not able to get (9). In fact one can show that for β = 0
our Theorem 1 is stronger than (14). In particular, the inequality (14) is equivalent to
Eef�ϕ(X) ≤ eEf(X), see [2], which easily follows from (6).
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