A note on the convex infimum convolution inequality

Naomi Feldheim, Arnaud Marsiglietti, Piotr Nayar, Jing Wang

Institute for Mathematics and its Applications
University of Minnesota
207 Church Street SE, 432 Lind Hall,
Minneapolis, MN 55455 U.S.A.

Abstract

We characterize the symmetric real random variables which satisfy the one dimensional convex infimum convolution inequality of Maurey. We deduce Talagrand’s two-level concentration for random vectors of the form \( f(X_1, \ldots, X_n) \), where \( X_1, \ldots, X_n \) are independent real random variables satisfying the above inequality, and \( f \) is convex.

2010 Mathematics Subject Classification. Primary 26D10; Secondary 28A35, 52A20, 60E15.

Key words and phrases. Concentration of measure, Convex sets, Infimum convolution, Poincaré inequality, Product measures.

1 Introduction

In the past few decades a lot of attention has been devoted to study the concentration of measure phenomenon, especially the concentration properties of random vectors with independent coordinates, having values in the Euclidean space \( \mathbb{R}^n \). Through this note by \( |x|_p \) we denote the \( l_p \) norm on \( \mathbb{R}^n \), namely \( |x|_p = (\sum_{i=1}^{n} |x_i|^p)^{1/p} \), and let us take \( B^n_p = \{ x \in \mathbb{R}^n : |x|_p \leq 1 \} \). We say that an \( \mathbb{R}^n \)-valued random vector \( X \) satisfies concentration with a profile \( \alpha_X(t) \) if for any set \( A \subset \mathbb{R}^n \) with \( \mathbb{P}(X \in A) \geq 1/2 \) we have \( \mathbb{P}(X \in A + tB^n_2) \geq 1 - \alpha_X(t), t \geq 0 \), where \( B^n_2 \) is the Euclidean ball of radius 1, centered at the origin. An equivalent statement is that for any 1-Lipschitz function \( f \) on \( \mathbb{R}^n \) the random vector \( X \) satisfies the inequality \( \mathbb{P}(|f(X) - \text{Med } f(X)| > t) \leq \alpha_X(t), t > 0 \), where \( \text{Med } f(X) \) is a median of \( f(X) \). Moreover, with a slight modification of \( \alpha_X \), the median can be replaced with the mean, see [19, Proposition 1.8]. The above framework includes classical theory of large deviations for sums of independent random variables. The concentration of measure has applications in functional analysis, [20], theory of empirical processes (see [19, Chapter 7]), random matrix theory and combinatorics (see [19, Chapter 8]), and statistical mechanics, [26]. It can be also investigated in the context of infinite dimensional diffusion generators, see [5]. For the study of concentration and isoperimetry under curvature bounds on Riemannian manifolds see [23].
A usual way to reach concentration is via certain functional inequalities. For example, we say that an \( \mathbb{R}^n \)-valued random vector \( X \) satisfies Poincaré inequality (also known as spectral gap inequality) with constant \( C \), if for any \( f \in C^1(\mathbb{R}^n, \mathbb{R}) \) we have

\[
\text{Var}(f(X)) \leq C \mathbb{E} |\nabla f(X)|^2.
\]

(1)

We assume that \( C \) is the best possible constant. This inequality implies the exponential concentration, namely concentration with a profile \( \alpha_X(t) = 2 \exp(-t/2\sqrt{C}) \). As an example, the symmetric exponential real random variable satisfies (1) with the constant 4 (see Lemma 2.1 in [10] for a one-line proof). In fact, there is a so-called Muckenhoupt condition, see [24] and [22], that fully characterizes real random variables satisfying the one dimensional Poincaré inequality.

Suppose that independent real random variables \( X_1, \ldots, X_n \) satisfy Poincaré inequality with constant \( C \). Then the same can be said about the random vector \( (X_1, \ldots, X_n) \) (see e.g. Corollary 5.7 in [19]). Thus, one can say that Poincaré inequality is fully understood in the case of \( \mathbb{R}^n \)-valued random vectors with independent entries. Similar characterization for real random variables as well as tensorization property are valid for the so-called log-Sobolev inequality, implying the Gaussian concentration phenomenon, i.e., concentration with a profile \( \alpha_X(t) = \exp(-t^2/2C) \), see [9] and [6]. See also the celebrated work [17] by Gross for the proof of Gaussian log-Sobolev inequality and related hypercontractive estimates. For the formulation of Poincaré and log-Sobolev inequalities in the context of Markov processes via the notion of Dirichlet forms see [4, 19, 3]. For applications to mixing time bounds see [12].

Another way to concentration leads through the so-called property \((\tau)\) that was first introduce by Maurey in 1991 (see [21]) and studied in more details by Latała and Wojtaszczyk (see [18]). An \( \mathbb{R}^n \)-valued random vector \( X \) is said to satisfy property \((\tau)\) with a nonnegative cost function \( \varphi \) if the inequality

\[
(\mathbb{E} e^{f \Box \varphi(X)}) (\mathbb{E} e^{-f(X)}) \leq 1
\]

holds for every bounded measurable function \( f \) on \( \mathbb{R}^n \). Here \( (f \Box \varphi)(x) = \inf_y \{ f(y) + \varphi(x-y) \} \) is the so-called infimum convolution. Property \((\tau)\) implies concentration. Namely for every measurable set \( A \) we have (see Lemma 4 in [21])

\[
\mathbb{P}(X \notin A + \{ \varphi < t \}) \leq \mathbb{P}(X \in A)^{-1} e^{-t}.
\]

Let \( Y_1, \ldots, Y_n \) be independent symmetric exponential random variables. In the seminal paper [21] Maurey showed that \( Y_1 \) satisfies the infimum convolution inequality with the cost function \( \varphi(t) = \min\{ \frac{1}{36} t^2, \frac{2}{9} (|t| - 2) \} \). As a consequence of tensorization (see Lemma 1 in [21]) we get that the random vector \( Y = (Y_1, \ldots, Y_n) \) satisfies (2) with the cost function \( \varphi(x) = \sum_{i=1}^n \varphi(x_i) \). This leads to the so-called Talagrand’s two level concentration (see Corollary 1 in [21]),

\[
\mathbb{P} \left( Y \in A + 6\sqrt{t} B_2^n + 9t B_1^n \right) \geq 1 - \mathbb{P}(Y \in A)^{-1} e^{-t}.
\]

This gives a stronger conclusion than Poincaré inequality. In fact, it is well known that the property \((\tau)\) with a cost function which is quadratic around 0, say \( \varphi(x) = C|x|^2 \) for
\(|x| \leq 1\), implies Poincaré inequality with the constant \(1/(4C)\) (see Corollary 3 in [21]). We shall sketch the argument in Section 2. Moreover, Bobkov, Gentil and Ledoux showed that the property \((\tau)\) with a cost function \(\varphi(x) = \min\{|x|_2^2/a, |x|^2/a^2\}\) is equivalent to Poincaré inequality for smooth \(f : \mathbb{R}^n \to \mathbb{R}\) and provided quantitative relation between the constant \(a\) and the Poincaré constant (see [7]).

The goal of this article is to investigate concentration properties of a wider class of random vectors, i.e., vectors that may not even satisfy Poincaré inequality. For example, in the case of random vector whose law is purely atomic, one can easily construct a non-constant function \(f\) with \(\mathbb{E} |\nabla f(X)|^2 = 0\). However, one can still hope to get concentration if one restricts set \(A\) to the class of convex sets. It turns out that to reach exponential concentration for convex sets, it suffices to prove that \(X\) satisfies the convex Poincaré inequality. Below we state the definitions for the convex Poincaré inequality, the class of real random variables with exponential tails, and the convex property \((\tau)\).

**Definition 1.** We say that a real random variable \(X\) satisfies the convex Poincaré inequality with a constant \(C_p\) if for every convex function \(f : \mathbb{R} \to \mathbb{R}\) with \(f'\) bounded we have

\[
\text{Var}(f(X)) \leq C_p \mathbb{E} f'(X)^2. \tag{3}
\]

Here we adopt the standard convention that for a locally Lipschitz function \(f : \mathbb{R} \to \mathbb{R}\) the gradient \(f'\) is defined by

\[
f'(x) = \limsup_{h \to 0} \frac{f(x + h) - f(x)}{h}. \tag{4}
\]

This definition applies in particular to convex \(f\). If \(f\) is differentiable, (4) agrees with the usual derivative.

We also need the following definition.

**Definition 2.** Let \(h > 0\) and \(\lambda \in [0, 1)\). Let \(\mathcal{M}(h, \lambda)\) be the class of symmetric real random variables, satisfying the condition \(\mathbb{P}(X \geq x + h) \leq \lambda \mathbb{P}(X \geq x)\) for \(x \geq 0\). Moreover, let \(\mathcal{M}^+(h, \lambda)\) be the class of \(\mathbb{R}_+\)-valued real random variables, satisfying the same condition.

The convex Poincaré inequality has been investigated by Bobkov and Götze, see [8, Theorem 4.2]. In particular, the authors proved (3) in the class \(\mathcal{M}(h, \lambda)\) with a constant \(C_p\) depending only on \(h\) and \(\lambda\). This leads to the exponential concentration for 1-Lipschitz convex functions \(f\) (as well as the exponential concentration for convex sets) via the standard Herbst argument (see, e.g., Theorem 3.3 in [19]).

It is worth mentioning that a much stronger condition \(\mathbb{P}(X \geq x + C/x) \leq \lambda \mathbb{P}(X \geq x), x \geq m\), where \(m\) is a fixed positive number, has been considered. It implies log-Sobolev inequalities for log-convex functions and the Gaussian concentration for convex sets. We refer to the nice study [1] for the details.

In [21] the author showed that every real random variable having values in the set of diameter 1 satisfies the convex property \((\tau)\), i.e. the inequality (2) for convex functions \(f\), with the cost function \(\frac{1}{4}|x|^2\) (see Theorem 3 therein). The aim of this note is to extend this result. We introduce the following definition.

**Definition 3.** Define

\[
\varphi_0(x) = \begin{cases} 
\frac{1}{2}x^2 & |x| \leq 1 \\
|x| - \frac{1}{2} & |x| > 1
\end{cases}.
\]
We say that a real random variable $X$ satisfies convex exponential property ($\tau$) with constant $C_\tau$ if for any convex function $f : \mathbb{R} \to \mathbb{R}$ with $\inf f > -\infty$ we have
\[
(\mathbb{E}e^{f(x)} - \mathbb{E}e^{-f(x)}) \leq 1
\] (5)
with $\varphi(x) = \varphi_0(x/C_\tau)$.

We are ready to state our main result.

**Theorem 1.** The following conditions are equivalent

(a) $X \in \mathcal{M}(h, \lambda)$,

(b) There exists $C_p > 0$ such that $X$ satisfies the convex Poincaré inequality with constant $C_p$,

(c) There exists $C_\tau > 0$ such that $X$ satisfies the convex exponential property ($\tau$) with constant $C_\tau$.

Moreover, (a) implies (c) with the constant $C_\tau = 17h/(1-\lambda)^2$, (c) implies (b) with the constant $C_p = \frac{1}{2}C_\tau^2$ and (b) implies (a) with $h = \sqrt{8C_p}$ and $\lambda = 1/2$.

This generalizes Maurey’s theorem due to the fact that any symmetric $[-1,1]$-values real random variable belongs to $\mathcal{M}(1,0)$.

It is well known that the convex property ($\tau$) tensorizes, namely, if some independent real random variables $X_1, \ldots, X_n$ have convex property ($\tau$) with cost functions $\varphi_1, \ldots, \varphi_n$ then the vector $X = (X_1, \ldots, X_n)$ has convex property ($\tau$) with $\varphi(x) = \sum_{i=1}^n \varphi_i(x_i)$, see [21, Lemma 5]. Therefore Theorem 1 implies the following Corollary.

**Corollary 1.** Let $X_1, \ldots, X_n \in \mathcal{M}(h, \lambda)$ be independent and let us take $X = (X_1, \ldots, X_n)$. Define the cost function $\varphi(x) = \sum_{i=1}^n \varphi_0(x_i/C_\tau)$, where $C_\tau = 17h/(1-\lambda)^2$. Then for any convex function $f$ we have
\[
(\mathbb{E}e^{f(\varphi(x))} - \mathbb{E}e^{-f(\varphi(x))}) \leq 1.
\] (6)

As a consequence, one can deduce the two-level concentration for convex sets and convex functions in $\mathbb{R}^n$.

**Corollary 2.** Let $X_1, \ldots, X_n \in \mathcal{M}(h, \lambda)$ be independent. Let $C_\tau = 17h/(1-\lambda)^2$. Take $X = (X_1, \ldots, X_n)$. Then for any convex set $A$ with $\mathbb{P}(X \in A) > 0$ we have
\[
\mathbb{P}\left( X \in A + \sqrt{2t}C_\tau B_2^n + 2tC_\tau B_1^n \right) \geq 1 - \mathbb{P}(X \in A)^{-1} e^{-t}.
\]

**Corollary 3.** Let $X_1, \ldots, X_n \in \mathcal{M}(h, \lambda)$ be independent. Let $C_\tau = 17h/(1-\lambda)^2$. Take $X = (X_1, \ldots, X_n)$. Then for any convex function $f : \mathbb{R}^n \to \mathbb{R}$ with
\[
|f(x) - f(y)|_2 \leq a|x - y|_2, \quad |f(x) - f(y)|_1 \leq b|x - y|_1, \quad x, y \in \mathbb{R}^n,
\] (7)
we have
\[
\mathbb{P}\left( f(X) > \operatorname{Med}(f(X)) + C_\tau t \right) \leq 2 \exp\left( -\frac{1}{8} \min\left\{ \frac{t}{b}, \frac{t^2}{a^2} \right\} \right), \quad t \geq 0,
\] (8)
and
\[
\mathbb{P}\left( f(X) < \operatorname{Med}(f(X)) - C_\tau t \right) \leq 2 \exp\left( -\frac{1}{8} \min\left\{ \frac{t}{b}, \frac{t^2}{a^2} \right\} \right), \quad t \geq 0.
\] (9)
Moreover, again using (10) for $g$ Lemma 1. Let convenience we provide a straightforward proof of this fact. We need the following lemma, which is essentially included in Theorem 4.2 of [8]. For reader’s convenience we provide a straightforward proof of this fact.

**2 Proof of Theorem 1**

We need the following lemma, which is essentially included in Theorem 4.2 of [8]. For reader’s convenience we provide a straightforward proof of this fact.

**Lemma 1.** Let $X \in \mathcal{M}^+(h, \lambda)$ and let $g : \mathbb{R} \to [0, \infty)$ be non-decreasing with $g(0) = 0$. Then

$$\mathbb{E}g(X)^2 \leq \frac{2(1+\lambda)}{(1-\lambda)^2} \cdot \mathbb{E}(g(X) - g(X-h))^2.$$  

**Proof.** We first prove that $\lambda \mathbb{E}g(X) \geq \mathbb{E}(g(X-h))$ for any non-decreasing $g : \mathbb{R} \to [0, \infty)$ such that $g(0) = 0$. Both sides of this inequality are linear in $g$. Therefore, it is enough to consider only functions of the form $g(x) = 1_{[a,\infty)}(x)$ for $a \geq 0$, since $g$ can be expressed as a mixture of these functions. For $g(x) = 1_{[a,\infty)}(x)$ the above inequality reduces to $\lambda \mathbb{P}(X \geq a) \geq \mathbb{P}(X \geq a+h)$, which is clearly true due to our assumption on $X$.

The above inequality is equivalent to

$$(1-\lambda)\mathbb{E}g(X) \leq \mathbb{E}(g(X) - g(X-h)).$$  

Now, let us use (10) with $g^2$ instead of $g$. Then,

$$\mathbb{E}g(X)^2 \leq \frac{1}{1-\lambda} \mathbb{E}(g(X)^2 - g(X-h)^2)$$

$$= \frac{1}{1-\lambda} \mathbb{E}(g(X) - g(X-h))(g(X) + g(X-h))$$

$$\leq \frac{1}{1-\lambda} (\mathbb{E}(g(X) - g(X-h))^2)^{1/2} (\mathbb{E}(g(X) + g(X-h))^2)^{1/2}.$$

Moreover, again using (10) for $g^2$, we get

$$\mathbb{E}(g(X) + g(X-h))^2 \leq 2\mathbb{E}(g(X)^2 + g(X-h)^2) \leq 2(1+\lambda)\mathbb{E}g(X)^2.$$  

We arrive at

$$(\mathbb{E}g(X)^2)^{1/2} \leq \frac{\sqrt{2(1+\lambda)}}{1-\lambda} (\mathbb{E}(g(X) - g(X-h))^2)^{1/2}.$$

Our assertion follows.

In the rest of this note, we take $f : \mathbb{R} \to \mathbb{R}$ to be convex. Let $x_0$ be a point where $f$ attains its minimal value. Note that this point may not be unique. However, one can check that what follows does not depend on the choice of $x_0$. Moreover, if $f$ is increasing (decreasing) we adopt the notation $x_0 = -\infty$ ($x_0 = \infty$). Let us define a discrete version of gradient of $f$,

$$(Df)(x) = \begin{cases} 
  f(x) - f(x-h) & x > x_0 + h \\
  f(x) - f(x_0) & x_0 - h \leq x \leq x_0 + h \\
  f(x) - f(x+h) & x < x_0 - h 
\end{cases}.$$
Lemma 2. Let $f : \mathbb{R} \to \mathbb{R}$ be a convex function with $f(0) = 0$ and let $X \in \mathcal{M}(h, \lambda)$. Then

$$
\mathbb{E} \left( e^{f(x)/2} - e^{-f(x)/2} \right)^2 \leq \frac{8}{(1 - \lambda)^2} \mathbb{E} \left( e^{f(x)}(Df(X))^2 \right).
$$

Proof. Step 1. We first assume that $f$ is non-negative and non-decreasing. It follows that $f(x) = 0$ for $x \leq 0$. Correspondingly, the function $g = e^{f/2} - e^{-f/2}$ is non-negative, non-decreasing and $g(0) = 0$. Note that $|X| \in \mathcal{M}^+(h, \lambda)$. From Lemma 1 we get

$$
\mathbb{E} \left( e^{f(x)/2} - e^{-f(x)/2} \right)^2 = 2 \mathbb{E} g(|X|)^2 \leq \frac{2(1 + \lambda)}{(1 - \lambda)^2} \mathbb{E} (g(|X|) - g(|X| - h))^2.
$$

Observe that

$$
g(x) - g(x - h) = e^{f(x)/2} - e^{-f(x)/2} - e^{f(x-h)/2} + e^{-f(x-h)/2} = \left( e^{f(x)/2} - e^{f(x-h)/2} \right) \left( 1 + e^{-f(x-h)/2} - e^{-f(x-h)/2} \right) \leq 2 \left( e^{f(x)/2} - e^{f(x-h)/2} \right) \leq e^{f(x)/2} (f(x) - f(x - h)),
$$

where the last inequality follows from the mean value theorem. Since $\lambda \leq 1$, we arrive at

$$
\mathbb{E} \left( e^{f(x)/2} - e^{-f(x)/2} \right)^2 \leq \frac{4}{(1 - \lambda)^2} \mathbb{E} e^{f(x)}(Df(X))^2.
$$

Step 2. Now let $f$ be non-decreasing but not necessarily non-negative. From convexity of $f$ and the fact that $f(0) = 0$ we get $|f(-x)| \leq f(x)$ for $x \geq 0$. This implies the inequality $|e^{f(-x)} - e^{-f(x)}| \leq |e^{f(x)} - e^{-f(x)}|$, $x \geq 0$. From the symmetry of $X$ one gets

$$
\mathbb{E} \left( e^{f(x)/2} - e^{-f(x)/2} \right)^2 \leq \mathbb{E} \left( e^{f(|X|)/2} - e^{-f(|X|)/2} \right)^2.
$$

Let $\tilde{f} = f1_{[0,\infty)}$. From Step 1 one gets

$$
\mathbb{E} \left( e^{f(|X|)/2} - e^{-f(|X|)/2} \right)^2 = 2 \mathbb{E} \left( e^{\tilde{f}(X)/2} - e^{-\tilde{f}(X)/2} \right)^2 \leq \frac{8}{(1 - \lambda)^2} \mathbb{E} e^{\tilde{f}(X)}(D\tilde{f}(X))^2
$$

$$
\leq \frac{8}{(1 - \lambda)^2} \mathbb{E} e^{f(x)}(Df(X))^2.
$$

Step 3. The conclusion of Step 2 is also true in the case of non-increasing functions with $f(0) = 0$. This is due to the invariance of our assertion under the symmetry $x \to -x$, which is an easy consequence of the symmetry of $X$ and the fact that for $F(x) = f(-x)$ we have $(DF)(x) = (Df)(-x)$.

Step 4. Let us now eliminate of the assumption of monotonicity of $f$. Suppose that $f$ is not monotone. Then $f$ has a (not necessarily unique) minimum attained at some point $x_0 \in \mathbb{R}$. Due to the remark of Step 3 we can assume that $x_0 \leq 0$. Since $f(0) = 0$, we have $f(x_0) \leq 0$. Take $y_0 = \inf\{y \in \mathbb{R} : f(y) = 0\}$. Clearly $y_0 \leq x_0$. We define

$$
f_1(x) = \begin{cases} f(x) & x \geq x_0, \\ f(x_0) & x < x_0 \end{cases}, \quad f_2(x) = \begin{cases} 0 & x \geq y_0, \\ f(x) & x < y_0 \end{cases}.
$$
Note that $f_1$ is non-decreasing and $f_2$ is non-increasing. Moreover, $f_1(0) = f_2(0) = 0$. Therefore, from the previous steps applied for $f_1$ and $f_2$ we get

\[
(e^{f(x_0)/2} - e^{-f(x_0)/2})^2 \mathbb{P}(X \leq x_0) + \mathbb{E} \left( e^{f(X)/2} - e^{-f(X)/2} \right)^2 1_{\{X \geq x_0\}} \leq \frac{8}{(1 - \lambda)^2} \mathbb{E} \left( e^{f(X)}(Df(X))^2 \right) 1_{\{X \geq x_0\}} \tag{11}
\]

and

\[
\mathbb{E} \left( e^{f(X)/2} - e^{-f(X)/2} \right)^2 1_{\{X \leq x_0\}} \leq \frac{8}{(1 - \lambda)^2} \mathbb{E} \left( e^{f(X)}(Df(X))^2 \right) 1_{\{X \leq x_0\}}. \tag{12}
\]

Moreover, since $|f(x)| \leq |f(x_0)|$ on $[y_0, x_0]$, we have

\[
\mathbb{E} \left( e^{f(X)/2} - e^{-f(X)/2} \right)^2 1_{\{y_0 \leq X \leq x_0\}} \leq \frac{8}{(1 - \lambda)^2} \mathbb{E} \left( e^{f(X)}(Df(X))^2 \right) 1_{\{X \leq x_0\}}. \tag{13}
\]

Combining (11), (12) and (13), we arrive at

\[
\mathbb{E} \left( e^{f(X)/2} - e^{-f(X)/2} \right)^2 \leq \frac{8}{(1 - \lambda)^2} \mathbb{E} \left( e^{f(X)}(Df(X))^2 \right).
\]

The following lemma provides an estimate on the infimum convolution.

**Lemma 3.** Let $C_1, h > 0$. Define $\varphi_1(x) = \frac{1}{C_1} \varphi_0(x/h)$. Assume that a convex function $f$ satisfies $|f'| \leq 1/(C_1h)$. Then

\[
(f \square \varphi_1)(x) \leq f(x) - \frac{C_1}{2} |(Df)(x)|^2.
\]

**Proof.** Let us consider the case when $x \geq x_0 + h$. We take $\theta \in [0, 1]$ and write $y = \theta(x - h) + (1 - \theta)x$. Note that $x - y = h\theta$. By the convexity of $f$ we have

\[
(f \square \varphi_1)(x) \leq f(y) + \varphi_1(x - y) \leq \theta f(x - h) + (1 - \theta)f(x) + \varphi_1(h\theta)
\]

\[= \theta f(x - h) + (1 - \theta)f(x) + \frac{1}{2C_1} \theta^2.
\]

Let us now take $\theta = C_1(f(x) - f(x - h))$. Note that $0 \leq f' \leq 1/C_1h$ yields $\theta \in [0, 1]$. We get

\[
(f \square \varphi_1)(x) \leq f(x) - \theta(f(x) - f(x - h)) + \frac{1}{2C_1} \theta^2 = f(x) - \frac{C_1}{2} (f(x) - f(x - h))^2.
\]

The case $x \leq x_0 - h$ follows by similar computation (one has to take $y = \theta(x+h) + (1-\theta)x$). Also, in the case $x \in [x_0 - h, x_0 + h]$ it is enough to take $y = \theta x_0 + (1 - \theta)x$ and use the fact that $|x - y| = |\theta(x - x_0)| \leq h\theta$. 

\[\square\]
Proof of Theorem 1. We begin by showing that (a) implies (c). We do this in three steps.

**Step 1.** We first show that it is enough to consider only the case when $f$ satisfies $|f'| \leq 1/C_r$. Let us show that (5) is actually satisfied for all convex $f : \mathbb{R} \to \mathbb{R}$ bounded from below. To this end let us fix $x$ and consider $g(x) = \sup_{y \in \mathbb{R}} \{ (f \varphi) (y) - \varphi (x - y) \}$, thus $g(x) = \sup_{y \in \mathbb{R}} \inf_{z \in \mathbb{R}} \{ f(z) + \varphi(y - z) - \varphi(x - y) \}$, and by taking $z = x$ we get $g(x) \leq f(x)$ for all $x \in \mathbb{R}$. Moreover, since $f$ is bounded from below, it is easy to see that $g$ is also bounded from below. Since $f$ is convex, one can check that the function $f \varphi$ is also convex (classical property of infimum convolution). Therefore writing $g(x) = \sup_{u \in \mathbb{R}} \{ (f \varphi)(x - u) - \varphi(u) \}$, the function $g$ turns out to be convex as a supremum of convex functions. Moreover, since $x \mapsto \varphi(x - y)$ is $(1/C_r)$-Lipschitz for every $y$, the function $g$ is also $(1/C_r)$-Lipschitz. Finally we check that $g \varphi = f \varphi$. Indeed, the inequality $g \varphi \leq f \varphi$ follows from $g \leq f$. The other direction is obtained by writing that

$$(g \varphi)(x) = \inf_{y \in \mathbb{R}} \sup_{z \in \mathbb{R}} \inf_{w \in \mathbb{R}} \{ f(w) + \varphi(z - w) - \varphi(y - z) + \varphi(x - y) \}$$

and by taking $z = x$. Using $g \varphi = f \varphi$, $g \leq f$ and the fact that $g$ is $(1/C_r)$-Lipschitz, we arrive at

$$(\mathbb{E} e^{f \varphi(X)}) (\mathbb{E} e^{-f(X)}) \leq (\mathbb{E} e^{g \varphi(X)}) (\mathbb{E} e^{-g(X)}) \leq 1.$$ 

**Step 2.** The inequality (5) stays invariant when we add a constant to the function $f$. Thus, we may assume that $f(0) = 0$. Note that from the elementary inequality $4ab \leq (a + b)^2$ we have

$$4 \left( \mathbb{E} e^{f \varphi(X)} \right) \left( \mathbb{E} e^{-f(X)} \right) \leq \left( \mathbb{E} (e^{f \varphi(X)} + e^{-f(X)}) \right)^2.$$ 

Thus, it is enough to show that

$$\mathbb{E} \left( e^{f \varphi(X)} + e^{-f(X)} \right) \leq 2.$$ 

**Step 3.** Take $C_1 = 17/(1 - \lambda)^2$, $C_r = C_1 h$ and $\varphi(x) = \varphi_0(x/C_r)$. Assume that $|f'| \leq 1/C_r$.

By the convexity of $\varphi_0$ we get $\varphi_0(x) \leq \frac{1}{C_1} \varphi_0(x/h)$, since $C_1 > 1$. Thus, by Lemma 3 we get $f \varphi \leq f(x) - \frac{1}{C_1} |(Df)(x)|^2$. By the mean value theorem $|(Df)(x)|/h \leq 1/C_r$. Therefore, $\frac{1}{2} C_1 |(Df)(x)|^2 \leq \frac{1}{2} C_1 (\frac{h}{C_r})^2 = 1/2 C_1 h$. Let $\alpha(C_1) = 2C_1 (1 - \exp(-\frac{1}{2C_r}))$. The convexity of the exponential function yields $e^{-s} \leq 1 - \alpha(C_1) s$, $s \in [0, 1/2C_1]$. Therefore,

$$\mathbb{E} \left( e^{f \varphi(X)} + e^{-f(X)} \right) \leq \mathbb{E} \left( e^{f(X)} - \frac{1}{2} C_1 |Df(X)|^2 + e^{-f(X)} \right) \leq \mathbb{E} \left( e^{f(X)} \left( 1 - \frac{1}{2} C_1 \alpha(C_1) |Df(X)|^2 \right) + e^{-f(X)} \right).$$

Therefore, since $e^f + e^{-f} - 2 = (e^{f/2} - e^{-f/2})^2$, we are to prove that

$$\mathbb{E} \left( e^{f(X)/2} - e^{-f(X)/2} \right)^2 \leq \frac{C_1}{2} \alpha(C_1) \mathbb{E} \left( e^{f(X)} |Df(X)|^2 \right).$$

From Lemma 2 this inequality is true whenever $\frac{1}{2} C_1 \alpha(C_1) \geq \frac{8}{(1 - \lambda)^2}$. It suffices to observe that

$$\frac{1}{2} C_1 \alpha(C_1) = C_1^2 \left( 1 - e^{-\frac{1}{2C_1}} \right) \geq C_1^2 \left( 1 - \frac{1}{1 + \frac{1}{2C_1}} \right) = \frac{C_1}{2 + \frac{1}{C_1}} \geq \frac{C_1}{2 + \frac{1}{8}} = \frac{8}{(1 - \lambda)^2}.$$
We now sketch the proof of the fact that (c) implies (b). Due to the standard approximation argument one can assume that \( f \) is a convex \( C^2 \) smooth function with bounded first and second derivative (note that in the definition of the convex Poincaré inequality we assumed that \( f' \) is bounded). Consider the function \( f_\varepsilon = \varepsilon f \). The infimum of \( \psi_\varepsilon(y) = \varphi(y) + \varepsilon f(x - y) \) is attained at the point \( y \) satisfying the equation \( \psi'_\varepsilon(y) = \varphi'(y) - \varepsilon f'(x - y) = 0 \). Note that \( \varphi' \) is strictly increasing on the interval \([ -C_\tau, C_\tau] \). If \( \varepsilon \) is sufficiently small, it follows that the above equation has a unique solution \( y_\varepsilon \) and that \( y_\varepsilon \in [ -C_\tau, C_\tau] \). Thus, \( y_\varepsilon = C_\tau \varepsilon f'(x - y_\varepsilon) \). This implies \( y_\varepsilon = \varepsilon C_\tau^2 f'(x) + o(\varepsilon) \), where the \( o(\varepsilon) \) dependence is uniform in \( x \). We get

\[
 f \Box \varphi(x) = \varphi(y_\varepsilon) + \varepsilon f(x - y_\varepsilon) = \frac{1}{2C_\tau^2} y_\varepsilon^2 + \varepsilon f(x - \varepsilon C_\tau^2 f'(x)) + o(\varepsilon^2)
\]

\[
= \frac{1}{2} \varepsilon^2 C_\tau^2 f'(x)^2 + \varepsilon f(x) - \varepsilon^2 C_\tau^2 f'(x)^2 + o(\varepsilon^2)
\]

\[
= \varepsilon f(x) - \frac{1}{2} \varepsilon^2 C_\tau^2 f'(x)^2 + o(\varepsilon^2).
\]

Therefore, from the infimum convolution inequality we get

\[
 \left( E e^{\varepsilon f(X) - \frac{1}{2} \varepsilon^2 C_\tau^2 f'(X)^2 + o(\varepsilon^2)} \right) \left( E e^{-\varepsilon f(X)} \right) \leq 1.
\]

Testing (5) with \( f(x) = |x|/C_\tau \) one gets that \( E e^{\varepsilon f(X)} < \infty \) and therefore \( E e^{f(X)/C_\tau} < \infty \). Also, there exists a constant \( c > 0 \) such that \( |f(x)| \leq c(1 + |x|), x \in \mathbb{R} \). As a consequence, after some additional technical steps, one can consider the Taylor expansion of the above quantities in \( \varepsilon = 0 \). This gives

\[
 E \left( 1 + \varepsilon f(X) - \frac{1}{2} \varepsilon^2 C_\tau^2 f'(X)^2 + \frac{1}{2} \varepsilon^2 f(X)^2 + o(\varepsilon^2) \right) E \left( 1 - \varepsilon f(X) + \frac{1}{2} \varepsilon^2 f(X)^2 + o(\varepsilon^2) \right) \leq 1.
\]

Comparing the terms in front of \( \varepsilon^2 \) leads to

\[
 Ef(X)^2 - (Ef(X))^2 \leq \frac{1}{2} C_\tau^2 Ef'(X)^2.
\]

This is exactly the Poincaré inequality with constant \( \frac{1}{2} C_\tau^2 \).

We show that (b) implies (a). Suppose that a symmetric real random variable \( X \) satisfies the convex Poincaré inequality with a constant \( C_p \). Consider the function \( f_u(x) = \max \{ x - u, 0 \}, \ u \geq 0 \). We have \( E[f'_u(X)]^2 = \mathbb{P}(X \geq u) \). Let \( Y \) be an independent copy of \( X \). Since \( f_u(y) = 0 \) for \( y \leq 0 \) and \( \mathbb{P}(Y \leq 0) \geq 1/2 \), one gets

\[
 \text{Var}(f_u(X)) = \frac{1}{2} E (f_u(X) - f_u(Y))^2 \geq \frac{1}{2} E (f_u(X) - f_u(Y))^2 1_{\{Y \leq 0\}}
\]

\[
\geq \frac{1}{4} E (f_u(X))^2 \geq \frac{1}{4} E (f_u(X))^2 \mathbf{1}_{\{X \geq u + \sqrt{8C_p}\}} \geq 2 C_p \mathbb{P}(X \geq u + \sqrt{8C_p}).
\]

These two observations, together with Poincaré inequality, yield that \( X \in \mathcal{M}(\sqrt{8C_p}, 1/2) \).
3 Concentration properties

We show that the convex property ($\tau$) implies concentration for convex sets.

**Proposition 1.** Suppose that an $\mathbb{R}^n$-valued random vector $X$ satisfies the property ($\tau$) with a non-negative cost function $\varphi$, restricted to the family of convex functions. Let $B_\varphi(t) = \{x \in \mathbb{R}^n : \varphi(x) \leq t\}$. Then for any convex set $A$ we have

$$
\mathbb{P}(X \in A + B_\varphi(t)) \geq 1 - \mathbb{P}(X \in A)^{-1} e^{-t}.
$$

The proof of this proposition is similar to the proof of Proposition 2.4 in [18]. We recall the argument.

**Proof.** Let $f = 0$ on $A$ and $f = \infty$ outside of $A$. Note that $f$ is convex (to avoid working with functions having values $+\infty$ one can consider a family of convex functions $f_n = n \text{ dist}(A, x)$ and take $n \to \infty$). Suppose that $(f \square \varphi)(x) \leq t$. Then there exists $y \in \mathbb{R}^n$ such that $f(y) + \varphi(x-y) \leq t$. Thus, $y \in A$ and $x-y \in B_\varphi(t)$. Therefore $x \in A + B_\varphi(t)$. It follows that $x \not\in A + B_\varphi(t)$ implies $(f \square \varphi)(x) > t$. Applying the infimum convolution inequality we get

$$
e^t(1 - \mathbb{P}(X \in A + B_\varphi(t))) \cdot \mathbb{P}(X \in A) \leq (\mathbb{E}e^{f \square \varphi(X)}) (\mathbb{E}e^{-f(X)}) \leq 1.
$$

Our assertion follows. \hfill $\Box$

We are ready to derive the two-level concentration for convex sets.

**Proof of Corollary 2.** The argument is similar to [21, Corollary 1]. Due to Corollary 1, $X$ satisfies property ($\tau$) with the cost function $\varphi(x) = \sum_{i=1}^n \varphi_0(x_i/C_\tau)$. Suppose that $\varphi(x) \leq t$. Define $y, z \in \mathbb{R}^n$ in the following way. Take $y_i = x_i$ if $|x_i| \leq C_{\tau}$ and $y_i = 0$ otherwise. Take $z_i = x_i$ if $|x_i| > C_{\tau}$ and $z_i = 0$ otherwise. Then $x = y + z$. Moreover,

$$
\sum_{i=1}^n \varphi(y_i/C_\tau) + \sum_{i=1}^n \varphi(z_i/C_\tau) = \sum_{i=1}^n \varphi(x_i/C_\tau) \leq t.
$$

In particular $|y|^2 \leq 2C_\tau^2 t$ and $t \geq \sum_{i=1}^n \varphi_0(z_i/C_\tau) \geq \frac{1}{2}|z|^1/C_{\tau}$, since $|z_i|/C_\tau - \frac{1}{2} \geq \frac{1}{2}|z_i|/C_{\tau}$ for $|z_i| \geq 1/C_\tau$. This gives $x \in \sqrt{2t}C_\tau B_2^n + 2tC_\tau B_1^n$. Our assertion follows from Proposition 1. \hfill $\Box$

Finally, we prove concentration for convex Lipschitz functions.

**Proof of Corollary 3.** The proof of (8) is similar to the proof of Proposition 4.18 in [19]. Let us define a convex set $A = \{f \leq \text{Med } f(X)\}$ and observe that $\mathbb{P}(X \in A) \geq 1/2$. Moreover,

$$
A + C_\tau(\sqrt{2t}B_2^n + 2tB_1^n) \subset \{f \leq \text{Med } f(X) + C_\tau(a\sqrt{2t} + 2bt)\}.
$$

Applying Corollary 2 we get

$$
\mathbb{P}\left(f(X) > \text{Med } f(X) + C_\tau(a\sqrt{2t} + 2bt)\right) \leq 2e^{-t}, \text{ for all } t \geq 0,
$$


where $a, b$ are Lipschitz constants given in (7). Take $s = C_r(a\sqrt{2t} + 2bt)$ and $r = s/C_r$. Suppose that $\frac{r}{b} \leq \frac{r^2}{a^2}$. Then

$$a\sqrt{2t} + 2tb = r \geq \frac{1}{2} \sqrt{a^2 r^2 + \frac{1}{2} r} = a\sqrt{2 \frac{r^2}{8b} + 2b^r \frac{r}{4b}} \geq a\sqrt{2 \frac{r^2}{8b} + 2b^r \frac{r}{8b}}.$$ 

By the monotonicity of $x \mapsto a\sqrt{2x} + 2xb$, $x \geq 0$ it follows that $\frac{1}{8} \min \{\frac{r}{b}, \frac{r^2}{a^2}\} = \frac{r}{8b} \leq t$. On the other hand, if $\frac{r}{b} \geq \frac{r^2}{a^2}$, then

$$a\sqrt{2t} + 2tb = r \geq \frac{1}{2} r + \frac{br^2}{2a^2} = a\sqrt{2 \frac{r^2}{8a^2} + 2b^r \frac{r^2}{4a^2}} \geq a\sqrt{2 \frac{r^2}{8a^2} + 2b^r \frac{r^2}{8a^2}}.$$ 

Therefore, $\frac{1}{8} \min \{\frac{r}{b}, \frac{r^2}{a^2}\} = \frac{r^2}{8a^2} \leq t$. Thus,

$$\P(f(X) > \text{Med } f(X) + rC_r) \leq 2e^{-t} \leq 2 \exp \left(-\frac{1}{8} \min \left\{\frac{r}{b}, \frac{r^2}{a^2}\right\}\right), \quad t \geq 0.$$ 

For the proof of (9) we follow [25]. Define a convex set $B = \{f < \text{Med } f(X) - C_r(a\sqrt{2t} + 2bt)\}$ with $t \geq 0$. It follows that

$$B + C_r(\sqrt{2t}B_2^n + 2tB_1^n) \subset \{f < \text{Med } f(X)\}$$

and thus Corollary 2 yields

$$\frac{1}{2} \geq \P\left(X \in B + C_r(\sqrt{2t}B_2^n + 2tB_1^n)\right) \geq 1 - \P(X \in B)^{-1} e^{-t}.$$ 

Therefore $\P(X \in B) \leq 2e^{-t}$. To finish the proof we proceed as above.

### 4 Discussions

Very recently Adamczak and Strzelecki established related results in the context of modified log-Sobolev inequalities, see [2]. For simplicity we state their result in the case of symmetric real random variables. For $\lambda \in [0, 1]$, $\beta \in [0, 1]$ and $h, m > 0$ the authors defined the class of random variables $\mathcal{M}_A^{\beta}(h, \lambda, m)$ satisfying the condition $\P(X \geq x + h/x^\beta) \leq \lambda \P(X \geq x)$ for $x \geq m$. Note that $\mathcal{M}_A^{0}(h, \lambda, 0) = M(h, \lambda)$. They proved that any vector $X = (X_1, \ldots, X_n)$, where $X_1, \ldots, X_n \in \mathcal{M}_A^{\beta}(h, \lambda, m)$ are independent, satisfy the inequality

$$\text{Ent}(e^{f(X)}) \leq C_{A} \E \left(e^{f(X)} \|\nabla f(X)\|^2 + \|\nabla f\|^2 \frac{2 + 1}{\beta + 1}\right)$$

(14)

for any smooth convex function $f : \mathbb{R}^n \to \mathbb{R}$. Here $\text{Ent}(f) = \E(f \ln f) - (\E f) \ln(\E f)$. As a consequence, for any convex set $A$ in $\mathbb{R}^n$ with $\P(X \in A) \geq 1/2$ we have

$$\P\left(X \in A + t^{\frac{1}{\lambda}}B_2^n + t^{\frac{1}{\beta+\gamma}}C_rB_1^n\right) \geq 1 - e^{-C_A st}, \quad t \geq 0.$$
A note on the convex infimum convolution inequality

Here the constants $C_{AS}, C'_{AS}$ depend only on the parameters $\beta, m, h$ and $\lambda$. They also established inequality similar to (8), namely for a convex function $f$ with

$$|f(x) - f(y)|_2 \leq a|x - y|_2, \quad |f(x) - f(y)|_{1+\beta} \leq b|x - y|_{1+\beta}, \quad x, y \in \mathbb{R}^n,$$

one gets

$$\mathbb{P}(f(X) > \text{Med}(f(X)) + 2t) \leq 2 \exp \left( -\frac{3}{16} \min \left\{ \frac{t^{1+\beta}}{b^{1+\beta}C_{AS}^{\beta}}, \frac{t^2}{a^2C_{AS}} \right\} \right), \quad t \geq 0.$$

However, the authors in [2] were not able to get (9). In fact one can show that for $\beta = 0$ our Theorem 1 is stronger than (14). In particular, the inequality (14) is equivalent to $\mathbb{E}e^{\Box f(X)} \leq e^{\mathbb{E}f(X)}$, see [2], which easily follows from (6).

Acknowledgements

We would like to thank Radosław Adamczak for his useful comments regarding concentration estimates for Lipschitz functions.

This research was supported in part by the Institute for Mathematics and its Applications with funds provided by the National Science Foundation. The research of the third named author was supported in part by NCN grant DEC-2012/05/B/ST1/00412.

References


A note on the convex infimum convolution inequality


[22] L. Miclo, Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite ? [When can Hardy bounds be used to calculate an exact Poincaré constant on the line?]. *Ann. Fac. Sci. Toulouse Math.* (6) 17 (2008), no. 1, 121–192.


A note on the convex infimum convolution inequality


Naomi Feldheim
Institute for Mathematics and its Applications
University of Minnesota
207 Church Street, 436 Lind Hall,
Minneapolis, MN U.S.A. 55455
E-mail address: trinomi@gmail.com

Arnaud Marsiglietti
Institute for Mathematics and its Applications
University of Minnesota
207 Church Street, 434 Lind Hall,
Minneapolis, MN U.S.A. 55455
E-mail address: arnaud.marsiglietti@ima.umn.edu

Piotr Nayar
Institute for Mathematics and its Applications
University of Minnesota
207 Church Street, 432 Lind Hall,
Minneapolis, MN U.S.A. 55455
E-mail address: nayar@impan.pl

Jing Wang
Institute for Mathematics and its Applications
University of Minnesota
207 Church Street, 423 Lind Hall,
Minneapolis, MN U.S.A. 55455
E-mail address: wangjing@illinois.edu