Homework \#1

Exercise 1. Consider a sequence $\left\{X_{n}\right\}$ of random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Denote, for all $\varepsilon>0$ and $k \geq 1$,

$$
B_{\varepsilon, k}=\left\{\omega \in \Omega:\left|X_{k}(\omega)\right|<\varepsilon\right\} .
$$

1. Fix $\varepsilon>0$. Write with sets operations (intersection, union) on $B_{\varepsilon, k}$ the following sets:

$$
\begin{gathered}
A_{\varepsilon, k}=\left\{\omega \in \Omega: \forall k \geq n,\left|X_{k}(\omega)\right|<\varepsilon\right\} . \\
A_{\varepsilon}=\left\{\omega \in \Omega: \exists n \in \mathbb{N}, \forall k \geq n,\left|X_{k}(\omega)\right|<\varepsilon\right\} .
\end{gathered}
$$

2. Show that the set

$$
A=\left\{\omega \in \Omega: \lim _{k \rightarrow+\infty} X_{k}(w)=0\right\}
$$

can be written with sets operations on $B_{\varepsilon, k}$.

Exercise 2. Let $\left\{A_{n}\right\}$ be a sequence of subsets of Ω. Find $\limsup A_{n}$ and $\lim \inf A_{n}$ in the following cases:

1. for all $p \in \mathbb{N}, A_{2 p}=F$ and $A_{2 p+1}=G$, where $F, G \subset \Omega$.
2. for all $p \geq 1, A_{2 p}=\left(-\infty, 1+\frac{1}{2 p}\right)$ and $A_{2 p+1}=\left(-\infty,-1-\frac{1}{2 p+1}\right)$.

Exercise 3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let A_{n} be a sequence such that for all $n \geq 1, \mathbb{P}\left(A_{n}\right)=\frac{1}{n^{2}}$. Find the probability that A_{n} occurs infinitely many often.

Exercise 4. Let $\left\{A_{n}\right\}$ be a sequence of events, all of probability 1. Show that $\cap_{n} A_{n}$ has probability 1 .

Exercise 5. Let X be a non-negative random variable. Define, for $n \geq 1$ and $\omega \in \Omega$,

$$
X_{n}(\omega)=\sum_{k=1}^{n 2^{n}} \frac{k-1}{2^{n}} 1_{\left[\frac{k-1}{2^{n}}, \frac{k}{\left.2^{n}\right)}\right.}(X(\omega))+n 1_{[n,+\infty)}(X(\omega)) .
$$

Show that $\left\{X_{n}\right\}$ is an increasing sequence of non-negative random variables, such that $\left\{X_{n}\right\}$ converges to X pointwise.

Exercise 6. Prove the Jensen inequality:

For all convex function ϕ and random variable X,

$$
\mathbb{E}[\phi(X)] \geq \phi(\mathbb{E}[X]),
$$

provided $\mathbb{E}[\phi(X)]$ and $\phi(\mathbb{E}[X])$ exist.
Exercise 7. A store owner possesses a stock of s items at time t_{0}. The demand during the period of time $\left[t_{0}, t_{1}\right]$ is expressed as a discrete random variable X with values in \mathbb{N} having the following distribution

$$
\mathbb{P}(X=k)=C p(1-p)^{k}, \quad k \geq k_{0},
$$

where $p \in(0,1)$ and k_{0} is a natural number in $\{0, \ldots, s\}$.

1. Compute C and $\mathbb{E}[X]$.
2. If X is less than the stock s, then the remaining items are sold at a loss, and at a cost of c_{1} dollars to the owner. If X is greater than s, then the owner has to order more items, at a cost of c_{2} dollars to the owner.
Compute the expectation of extra expenses that will occur to the owner during the period of time $\left[t_{0}, t_{1}\right]$.
