Examples of random variables: Recall that a random variable X

1. has a <u>Bernoulli</u> distribution with parameter $p \in [0, 1]$ if X takes values in $\{0, 1\}$ and

$$\mathbb{P}(X=1) = p, \quad \mathbb{P}(X=0) = 1 - p$$

2. has a binomial distribution with parameters $n \ge 1$ and $p \in [0,1]$ if X takes values in $\{0, 1, \ldots, n\}$ and

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k \in \{0, \dots, n\}$$

3. has a geometric distribution with parameter p > 0 if X takes values in $\mathbb{N} \setminus \{0\}$ and

$$\mathbb{P}(X=k) = p(1-p)^{k-1}, \quad k \in \mathbb{N} \setminus \{0\}.$$

4. has a <u>Poisson</u> distribution with parameter $\lambda > 0$ if X takes values in N and

$$\mathbb{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}, \quad k \in \mathbb{N}.$$

5. has an <u>exponential</u> distribution with parameter $\lambda > 0$ if X has the probability density function

$$f(x) = \lambda e^{-\lambda x} \mathbf{1}_{[0,+\infty)}(x).$$

6. has a <u>uniform</u> distribution on a segment [a, b] if X has the probability density function

$$f(x) = \frac{1}{b-a} \mathbf{1}_{[a,b]}(x).$$

7. has a <u>Gaussian</u> distribution with parameters $m \in \mathbb{R}$ and $\sigma > 0$ if X has the probability density function

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

8. has a <u>Cauchy</u> distribution with parameters $\alpha \in \mathbb{R}$ and $\beta > 0$ if X has the probability density function

$$f(x) = \frac{1}{\pi\beta} \frac{1}{1 + (\frac{x-\alpha}{\beta})^2}$$

Exercise 1. Compute the expectation and variance of the following <u>discrete</u> distributions: Bernoulli, binomial, geometric, Poisson.

Exercise 2. Compute the expectation and variance of the following <u>continuous</u> distributions: exponential, uniform on a segment [a, b], Gaussian, Cauchy.

Exercise 3. A store owner possesses a stock of s items at time t_0 . The demand during the period of time $[t_0, t_1]$ is expressed as a discrete random variable X with values in \mathbb{N} having the following distribution

$$\mathbb{P}(X=k) = Cp(1-p)^k, \quad k \ge k_0.$$

where $p \in (0, 1)$ and k_0 is a natural number in $\{0, \ldots, s\}$.

- 1. Compute C and $\mathbb{E}[X]$.
- 2. If X is less than the stock s, then the remaining items are sold at a loss, and at a cost of c_1 dollars to the owner. If X is greater than s, then the owner has to order more items, at a cost of c_2 dollars to the owner.

Compute the expectation of extra expenses that will occur to the owner during the period of time $[t_0, t_1]$.

Exercise 4. Consider a sequence $\{X_n\}$ of random variables on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Denote, for all $\varepsilon > 0$ and $k \ge 1$,

$$B_{\varepsilon,k} = \{ \omega \in \Omega : |X_k(\omega)| < \varepsilon \}.$$

1. Fix $\varepsilon > 0$. Write with sets operations (intersection, union) on $B_{\varepsilon,k}$ the following sets:

$$A_{\varepsilon,n} = \{ \omega \in \Omega : \forall k \ge n, |X_k(\omega)| < \varepsilon \}.$$
$$A_{\varepsilon} = \{ \omega \in \Omega : \exists n \in \mathbb{N}, \forall k \ge n, |X_k(\omega)| < \varepsilon \}.$$

2. Show that the set

$$A = \{ \omega \in \Omega : \lim_{k \to +\infty} X_k(w) = 0 \}$$

can be written with sets operations on $B_{\varepsilon,k}$.

Exercise 5. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let A_n be a sequence such that for all $n \geq 1$, $\mathbb{P}(A_n) = \frac{1}{n^2}$. Find the probability that A_n occurs infinitely many often, that is find $\mathbb{P}(\bigcap_{n\geq 1} \bigcup_{k\geq n} A_k)$.

Exercise 6. Prove that for all random variable X, one has

$$\mathbb{E}[|X|] = \int_0^{+\infty} \mathbb{P}(|X| \ge t) \, dt.$$