Homework #1 — Stochastic Differential Equations (SDE) and Girsanov's theorem

Exercise 1.

Show that the <u>exponential SDE</u>

$$dX_t = A_t X_t dB_t, \quad X_0 = x_0$$

has the following solution

$$X_t = x_0 e^{-\frac{1}{2} \int_0^t A_s^2 ds + \int_0^t A_s dB_s}$$

Hint: Apply Ito's formula to $f(Y_t)$ where $f(x) = x_0 e^x$ and $Y_t = -\frac{1}{2} \int_0^t A_s^2 ds + \int_0^t A_s dB_s$.

Exercise 2. Among the following random variables, state for each pair whether they are absolutely continuous to each other or not:

 X_1 Gausian with mean m = 1 and variance $\sigma^2 = 2$;

 X_2 Binomial with parameter $n = 3, p = \frac{1}{2}$;

 X_3 Poisson distribution with parameter $\lambda = 1$;

 X_4 uniform on [0, 1].

Exercise 3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $\{B_t\}$ be a standard Brownian motion with $B_0 = 1$ under the measure \mathbb{P} . Define $\tau = \inf\{t > 0 : B_t = 0\}$, and $M_t = B_{t \wedge \tau}$.

1. Show that $\{M_t\}$ is a nonnegative martingale, solution of the SDE

$$dM_t = A_t M_t dB_t \qquad t < \tau,$$

where $A_t = \frac{1}{M_t}$.

2. Consider \mathbb{Q} the change of measure of \mathbb{P} with respect to M_t . Show that $\{B_t\}$ is a Bessel process, that is, it is solution of the Bessel SDE

$$dX_t = \frac{1}{X_t}dt + dW_t$$

where $\{W_t\}$ is a standard Brownian motion under the new measure \mathbb{Q} .

Exercise 4. Suppose $\{B_t\}$ is a standard Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$. For each of the following choices of X_t , find an equivalent probability measure \mathbb{Q} such that the X_t is a standard Brownian motion in the new measure. Assume $X_0 = B_0 = 0$.

$$dX_t = 2dt + dB_t,$$
$$dX_t = 2dt + 6dB_t.$$

Exercise 5. Let $f: [0, +\infty) \times \mathbb{R} \to \mathbb{R}$ be a function of class $C^{1,2}([0, +\infty) \times \mathbb{R})$. Assume that f is solution of the heat equation

$$\frac{\partial}{\partial t}f(t,x) = -\frac{1}{2}\frac{\partial^2}{\partial x^2}f(t,x).$$

Let $\{B_t\}$ be a standard Brownian motion.

- 1. Find the SDE solved by $f(t, B_t)$.
- 2. Deduce that $f(t, B_t)$ is a local martingale if and only if f is solution of the heat equation.
- 3. Show that if $\frac{\partial}{\partial x} f(t, x)$ is bounded, then $f(t, B_t)$ is a martingale.