Homework \#2 - Independence

Exercise 1. Consider the experiment which consists in throwing a fair die. Define X the random variable which is the number obtained. Define the random variable Y which equals 1 if X is even, and equals 0 if X is odd.

1. Find the distribution of the couple (X, Y).
2. Are X and Y independent?

Exercise 2. Consider the experiment which consists in throwing two fair dice. Consider the events

$$
\begin{gathered}
A=\text { the first die brings an even number. } \\
B=\text { the second die brings an odd number. } \\
C=\text { both die brings a number of same parity. }
\end{gathered}
$$

1. Prove that the events A, B, C are pairwise independent.
2. Are A, B, C independent?

Exercise 3. Let X and Y be continuous random variables with density f_{X} and f_{Y} respectively, and joint density $f_{X, Y}$. Assume that f_{X}, f_{Y} and $f_{X, Y}$ are continuous functions.

1. Prove that $F_{X}^{\prime}(x)=f_{X}(x)$ for all $x \in \mathbb{R}$.
2. Prove that X and Y are independent if and only if for all $x, y \in \mathbb{R}, f_{(X, Y)}(x, y)=$ $f_{X}(x) f_{Y}(y)$.

Exercise 4. Denote $\Omega=\{A, B, C, D, E\}$, and consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, where \mathbb{P} is the uniform distribution on Ω. Define the random variables

$$
\begin{aligned}
& X(A)=10, X(B)=5, X(C)=10, X(D)=5, X(E)=10 \\
& Y(A)=10, Y(B)=10, Y(C)=10, Y(D)=5, Y(E)=5
\end{aligned}
$$

1. Compute $\mathbb{P}(X=5)$ and $\mathbb{P}(X=10)$.
2. Same question for Y.
3. Are X and Y independent?

Exercise 5.

1. Let A be an event independent of itself. What is the probability of A ?
2. Let A be an event of probability 0 or 1 . Show that A is independent of any events.
