Homework #2 — Isotropic log-concave distributions

Exercise 1. log-concave functions and log-concave random vectors

We say that $f: \mathbb{R}^n \to [0, +\infty)$ is **log-concave** if $\log(f): \mathbb{R}^n \to [-\infty, +\infty)$ is a concave function. Recall that a random vector X in \mathbb{R}^n is **log-concave** if it has a density probability function f_X with respect to Lebesgue measure in \mathbb{R}^n such that f_X is log-concave.

- Some equivalent definitions:
 - 1. Show that f is log-concave if and only if for every $x, y \in \mathbb{R}^n$,

$$f((1-\lambda)x + \lambda y) \ge f(x)^{1-\lambda} f(y)^{\lambda}$$

- 2. Show that f is log-concave if and only if $f = e^{-V}$, for some convex function V.
- Properties:
 - 1. Show that the support of a log-concave function is convex.
 - 2. Show that the product of log-concave functions is log-concave.
 - 3. Show that if $f: C \to [0, +\infty)$ is concave on its support, where $C \subset \mathbb{R}^n$ is convex, then f is log-concave. Is a log-concave function concave?
 - 4. Show that if $f : \mathbb{R} \to [0, +\infty)$ is log-concave and even, then f is non-increasing on $[0, +\infty)$ and non-decreasing on $(-\infty, 0]$. Deduce that f attains its maximum at 0.
 - 5. Show that if $f: [0, +\infty) \to [0, +\infty)$ is log-concave and attains its maximum at 0, then f is non-increasing on $[0, +\infty)$.
- Examples:
 - 1. Show that the Gaussian distribution is log-concave (the density is $\frac{1}{(2\pi)^{\frac{n}{2}}}e^{-\frac{\|x\|_2^2}{2}}$).
 - 2. Show that the Laplace distribution is log-concave (the density is $\frac{1}{2}e^{-|x|}$).
 - 3. Show that 1_K is log-concave if and only if $K \subset \mathbb{R}^n$ is convex. Deduce that if X is uniformly distributed on a convex set, then X is log-concave.
 - 4. Show that the $\chi^2(k)$ distribution, with $k \ge 2$, is log-concave (the density is $\frac{1}{2^{k/2}\Gamma(k/2)}x^{\frac{k}{2}-1}e^{-\frac{x}{2}}\mathbf{1}_{\mathbb{R}_+}(x)$).
 - 5. Show that the function $e^{-\frac{|x|^p}{p}}$, $p \ge 1$, is log-concave. Is the function $e^{-\frac{|x|^p}{p}}$, $p \in (0,1)$, log-concave?
 - 6. Is the Cauchy distribution log-concave?

Exercise 2.

Let X be an arbitrary random vector in \mathbb{R}^n with mean μ and covariance matrix K_X . Prove that $Z = K_X^{-\frac{1}{2}}(X - \mu)$ is isotropic.

Exercise 3.

Let X, Y be i.i.d. isotropic log-concave random vectors in \mathbb{R}^n .

- 1. Show that $\mathbb{E}[||X||_2^2] = n$.
- 2. Show that $\mathbb{E}[||X Y||_2^2] = 2n$.
- 3. Show that there exist universal constants $c_1, c_2 > 0$ such that

$$c_1\sqrt{n} \le \mathbb{E}[\|X\|_2] \le c_2\sqrt{n}.$$

In the next exercise, we slightly change the definition of isotropicity for convex body and log-concave functions. The following definition is equivalent:

• We say that a convex body $K \subset \mathbb{R}^n$ is isotropic if K is centered, if K has volume 1, and if there exists a constant $L_K > 0$ such that

$$\int_{K} x_i^2 \,\mathrm{d}x = L_K^2, \quad \forall i \in \{1, \dots, n\}.$$

• We say that a log-concave probability density function $f \colon \mathbb{R}^n \to [0, +\infty)$ is isotropic if f is centered, $||f||_{\infty} = 1$, and if there exists a constant $L_f > 0$ such that

$$\int_{\mathbb{R}^n} x_i^2 f(x) \, \mathrm{d}x = L_f^2, \quad \forall i \in \{1, \dots, n\}.$$

Exercise 4.

• Let $L_C > 0$ be the least number such that for all isotropic convex body $K \subset \mathbb{R}^n$,

$$\int_{K} x_i^2 \, \mathrm{d}x \le L_C, \quad i = 1, \dots, n.$$

• Let $L_g > 0$ be the least number such that for all isotropic log-concave probability density function $f \colon \mathbb{R}^n \to [0, +\infty)$,

$$\int_{\mathbb{R}^n} x_i^2 f(x) \, \mathrm{d}x \le L_g, \quad i = 1, \dots, n.$$

In other words,

 $L_C = \sup\{L_K : K \subset \mathbb{R}^n \text{ isotropic convex body}\},\$

 $L_g = \sup\{L_f: f: \mathbb{R}^n \to [0, +\infty) \text{ isotropic log-concave density function}\}.$

The goal of this exercise is to show that L_C and L_g are equivalent. First, we introduce the following two lemmas:

Lemma A: Let $\lambda \in [0,1]$. Let $g, h, m : [0, +\infty) \to [0, +\infty)$ be such that for every r, s > 0,

$$m\left(((1-\lambda)r^{-1}+\lambda s^{-1})^{-1}\right) \ge g(r)^{\frac{(1-\lambda)s}{(1-\lambda)s+\lambda r}}h(s)^{\frac{\lambda r}{(1-\lambda)s+\lambda r}}.$$

Then,

$$\int_0^{+\infty} m(r) \,\mathrm{d}r \ge \left((1-\lambda) \left(\int_0^{+\infty} g(r) \,\mathrm{d}r \right)^{-1} + \lambda \left(\int_0^{+\infty} h(r) \,\mathrm{d}r \right)^{-1} \right)^{-1}$$

Lemma B: Let $F : [0, +\infty) \to [0, +\infty)$ be a non-increasing log-concave function. Then, for every $0 \le p \le q < +\infty$,

$$F(0)^{q}\Gamma(p+1)^{q+1} \left(\int_{0}^{+\infty} r^{q} F(r) \,\mathrm{d}r\right)^{p+1} \leq F(0)^{p}\Gamma(q+1)^{p+1} \left(\int_{0}^{+\infty} r^{p} F(r) \,\mathrm{d}r\right)^{q+1}.$$

- 1. Show that we always have $L_C \leq L_g$.
- 2. Let $f : \mathbb{R}^n \to [0, +\infty)$ be an isotropic log-concave probability density function. For every $p \ge 1$, we define the following function on \mathbb{R}^n by

$$||x||_p = \begin{cases} \left(\int_0^{+\infty} pf(rx)r^{p-1} \,\mathrm{d}r \right)^{-\frac{1}{p}} & \text{if } x \in \mathbb{R}^n \setminus \{0\} \\ 0 & \text{if } x = 0 \end{cases}$$

a) Show that for every $\lambda \in \mathbb{R}$, for every $x \in \mathbb{R}^n$,

$$\|\lambda x\|_p = |\lambda| \|x\|_p,$$

and that

$$||x||_p = 0 \iff x = 0.$$

b) Show that

$$|x+y||_p \le ||x||_p + ||y||_p$$

Hint: Define the functions $g, h, m : [0, +\infty) \to [0, +\infty)$ by

$$g(r) = f(rx)r^{p-1}, \quad h(r) = f(ry)r^{p-1}, \quad m(r) = f(r\frac{x+y}{2})r^{p-1},$$

and apply Lemma A with $\lambda = \frac{1}{2}$ to the functions g, h, m.

3. Let $f : \mathbb{R}^n \to [0, +\infty)$ be an isotropic log-concave probability density function. Recall that from question 2., the function

$$||x||_{p} = \begin{cases} \left(\int_{0}^{+\infty} pf(rx)r^{p-1} \, \mathrm{d}r \right)^{-\frac{1}{p}} & \text{if } x \in \mathbb{R}^{n} \setminus \{0\} \\ 0 & \text{if } x = 0 \end{cases}$$

defines a norm on \mathbb{R}^n , for every $p \ge 1$. Hence, the unit ball of $\|\cdot\|_{n+2}$ is a symmetric convex body in \mathbb{R}^n , which we denote by K_{n+2} .

a) Show that

$$\int_{\mathbb{R}^n} x_i^2 f(x) \, \mathrm{d}x = \int_{K_{n+2}} x_i^2 \, \mathrm{d}x, \quad \forall i \in \{1, \dots, n\}$$

Hint: Integrate in polar coordinates.

b) Deduce that $\frac{K_{n+2}}{\operatorname{Vol}(K_{n+2})^{\frac{1}{n}}}$ is isotropic.

c) Deduce that

$$L_f^2 \le L_C^2 \operatorname{Vol}(K_{n+2})^{1+\frac{2}{n}}$$

Hint: Note that

$$\int_{\frac{K_{n+2}}{\operatorname{Vol}(K_{n+2})^{\frac{1}{n}}}} x_i^2 \, \mathrm{d}x = \frac{1}{\operatorname{Vol}(K_{n+2})^{1+\frac{2}{n}}} \int_{K_{n+2}} x_i^2 \, \mathrm{d}x.$$

d) Deduce that

$$nL_{f}^{2} \leq \frac{n+2}{n^{\frac{2}{n}}} L_{C}^{2} \left(\int_{S^{n-1}} \left(\int_{0}^{+\infty} f(r\theta) r^{n+1} \, \mathrm{d}r \right)^{\frac{n}{n+2}} \, \mathrm{d}\theta \right)^{\frac{n+2}{n}}.$$

e) Show that

$$\int_{0}^{+\infty} f(r\theta) r^{n+1} \, \mathrm{d}r \le \frac{n(n+1)}{((n-1)!)^{\frac{2}{n}}} \left(\int_{0}^{+\infty} f(r\theta) r^{n-1} \, \mathrm{d}r \right)^{\frac{n+2}{n}}.$$

Hint: Apply Lemma B to $r \to f(r\theta)$ with p = n - 1 and q = n + 1.

f) Deduce that

$$L_g^2 \le \frac{(n+1)(n+2)}{(n!)^{\frac{2}{n}}} L_C^2,$$

and hence

 $L_g \le eL_C.$