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Homework #2 — Isotropic log-concave distributions

Exercise 1. log-concave functions and log-concave random vectors

We say that f : Rn → [0,+∞) is log-concave if log(f) : Rn → [−∞,+∞) is a concave function.
Recall that a random vector X in Rn is log-concave if it has a density probability function fX
with respect to Lebesgue measure in Rn such that fX is log-concave.

• Some equivalent definitions:

1. Show that f is log-concave if and only if for every x, y ∈ Rn,

f((1− λ)x+ λy) ≥ f(x)1−λf(y)λ.

2. Show that f is log-concave if and only if f = e−V , for some convex function V .

• Properties:

1. Show that the support of a log-concave function is convex.

2. Show that the product of log-concave functions is log-concave.

3. Show that if f : C → [0,+∞) is concave on its support, where C ⊂ Rn is convex, then
f is log-concave. Is a log-concave function concave?

4. Show that if f : R → [0,+∞) is log-concave and even, then f is non-increasing on
[0,+∞) and non-decreasing on (−∞, 0]. Deduce that f attains its maximum at 0.

5. Show that if f : [0,+∞)→ [0,+∞) is log-concave and attains its maximum at 0, then
f is non-increasing on [0,+∞).

• Examples:

1. Show that the Gaussian distribution is log-concave (the density is 1

(2π)
n
2
e−
‖x‖22

2 ).

2. Show that the Laplace distribution is log-concave (the density is 1
2e
−|x|).

3. Show that 1K is log-concave if and only if K ⊂ Rn is convex. Deduce that if X is
uniformly distributed on a convex set, then X is log-concave.

4. Show that the χ2(k) distribution, with k ≥ 2, is log-concave (the density is
1

2k/2Γ(k/2)
x
k
2
−1e−

x
2 1R+(x)).

5. Show that the function e−
|x|p
p , p ≥ 1, is log-concave. Is the function e−

|x|p
p , p ∈ (0, 1),

log-concave?

6. Is the Cauchy distribution log-concave?
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Exercise 2.
Let X be an arbitrary random vector in Rn with mean µ and covariance matrix KX . Prove

that Z = K
− 1

2
X (X − µ) is isotropic.

Exercise 3.
Let X,Y be i.i.d. isotropic log-concave random vectors in Rn.

1. Show that E[‖X‖22] = n.

2. Show that E[‖X − Y ‖22] = 2n.

3. Show that there exist universal constants c1, c2 > 0 such that

c1

√
n ≤ E[‖X‖2] ≤ c2

√
n.

In the next exercise, we slightly change the definition of isotropicity for convex body and
log-concave functions. The following definition is equivalent:

• We say that a convex body K ⊂ Rn is isotropic if K is centered, if K has volume 1, and
if there exists a constant LK > 0 such that∫

K
x2
i dx = L2

K , ∀i ∈ {1, . . . , n}.

• We say that a log-concave probability density function f : Rn → [0,+∞) is isotropic if f
is centered, ‖f‖∞ = 1, and if there exists a constant Lf > 0 such that∫

Rn
x2
i f(x) dx = L2

f , ∀i ∈ {1, . . . , n}.

Exercise 4.

• Let LC > 0 be the least number such that for all isotropic convex body K ⊂ Rn,∫
K
x2
i dx ≤ LC , i = 1, . . . , n.

• Let Lg > 0 be the least number such that for all isotropic log-concave probability density
function f : Rn → [0,+∞), ∫

Rn
x2
i f(x) dx ≤ Lg, i = 1, . . . , n.

In other words,
LC = sup{LK : K ⊂ Rn isotropic convex body},

Lg = sup{Lf : f : Rn → [0,+∞) isotropic log-concave density function}.

The goal of this exercise is to show that LC and Lg are equivalent. First, we introduce the
following two lemmas:

Lemma A: Let λ ∈ [0, 1]. Let g, h,m : [0,+∞)→ [0,+∞) be such that for every r, s > 0,

m
(
((1− λ)r−1 + λs−1)−1

)
≥ g(r)

(1−λ)s
(1−λ)s+λr h(s)

λr
(1−λ)s+λr .
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Then, ∫ +∞

0
m(r) dr ≥

(
(1− λ)

(∫ +∞

0
g(r) dr

)−1

+ λ

(∫ +∞

0
h(r) dr

)−1
)−1

.

Lemma B: Let F : [0,+∞) → [0,+∞) be a non-increasing log-concave function. Then, for
every 0 ≤ p ≤ q < +∞,

F (0)qΓ(p+ 1)q+1

(∫ +∞

0
rqF (r) dr

)p+1

≤ F (0)pΓ(q + 1)p+1

(∫ +∞

0
rpF (r) dr

)q+1

.

1. Show that we always have LC ≤ Lg.

2. Let f : Rn → [0,+∞) be an isotropic log-concave probability density function.

For every p ≥ 1, we define the following function on Rn by

‖x‖p =


(∫ +∞

0 pf(rx)rp−1 dr
)− 1

p if x ∈ Rn \ {0}
0 if x = 0

.

a) Show that for every λ ∈ R, for every x ∈ Rn,

‖λx‖p = |λ|‖x‖p,

and that
‖x‖p = 0⇐⇒ x = 0.

b) Show that
‖x+ y‖p ≤ ‖x‖p + ‖y‖p.

Hint: Define the functions g, h,m : [0,+∞)→ [0,+∞) by

g(r) = f(rx)rp−1, h(r) = f(ry)rp−1, m(r) = f(r
x+ y

2
)rp−1,

and apply Lemma A with λ = 1
2 to the functions g, h,m.

3. Let f : Rn → [0,+∞) be an isotropic log-concave probability density function.

Recall that from question 2., the function

‖x‖p =


(∫ +∞

0 pf(rx)rp−1 dr
)− 1

p if x ∈ Rn \ {0}
0 if x = 0

.

defines a norm on Rn, for every p ≥ 1. Hence, the unit ball of ‖·‖n+2 is a symmetric convex
body in Rn, which we denote by Kn+2.

a) Show that ∫
Rn
x2
i f(x) dx =

∫
Kn+2

x2
i dx, ∀i ∈ {1, . . . , n}.

Hint: Integrate in polar coordinates.

b) Deduce that Kn+2

Vol(Kn+2)
1
n

is isotropic.
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c) Deduce that
L2
f ≤ L2

CVol(Kn+2)1+ 2
n .

Hint: Note that ∫
Kn+2

Vol(Kn+2)
1
n

x2
i dx =

1

Vol(Kn+2)1+ 2
n

∫
Kn+2

x2
i dx.

d) Deduce that

nL2
f ≤

n+ 2

n
2
n

L2
C

(∫
Sn−1

(∫ +∞

0
f(rθ)rn+1 dr

) n
n+2

dθ

)n+2
n

.

e) Show that

∫ +∞

0
f(rθ)rn+1 dr ≤ n(n+ 1)

((n− 1)!)
2
n

(∫ +∞

0
f(rθ)rn−1 dr

)n+2
n

.

Hint: Apply Lemma B to r → f(rθ) with p = n− 1 and q = n+ 1.

f) Deduce that

L2
g ≤

(n+ 1)(n+ 2)

(n!)
2
n

L2
C ,

and hence
Lg ≤ eLC .
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