Homework \#2 - Isotropic log-concave distributions

Exercise 1. log-concave functions and log-concave random vectors

We say that $f: \mathbb{R}^{n} \rightarrow[0,+\infty)$ is log-concave if $\log (f): \mathbb{R}^{n} \rightarrow[-\infty,+\infty)$ is a concave function. Recall that a random vector X in \mathbb{R}^{n} is log-concave if it has a density probability function f_{X} with respect to Lebesgue measure in \mathbb{R}^{n} such that f_{X} is log-concave.

- Some equivalent definitions:

1. Show that f is log-concave if and only if for every $x, y \in \mathbb{R}^{n}$,

$$
f((1-\lambda) x+\lambda y) \geq f(x)^{1-\lambda} f(y)^{\lambda} .
$$

2. Show that f is log-concave if and only if $f=e^{-V}$, for some convex function V.

- Properties:

1. Show that the support of a log-concave function is convex.
2. Show that the product of log-concave functions is log-concave.
3. Show that if $f: C \rightarrow[0,+\infty)$ is concave on its support, where $C \subset \mathbb{R}^{n}$ is convex, then f is log-concave. Is a log-concave function concave?
4. Show that if $f: \mathbb{R} \rightarrow[0,+\infty)$ is \log-concave and even, then f is non-increasing on $[0,+\infty)$ and non-decreasing on $(-\infty, 0]$. Deduce that f attains its maximum at 0 .
5. Show that if $f:[0,+\infty) \rightarrow[0,+\infty)$ is log-concave and attains its maximum at 0 , then f is non-increasing on $[0,+\infty)$.

- Examples:

1. Show that the Gaussian distribution is log-concave (the density is $\frac{1}{(2 \pi)^{\frac{\pi}{2}}} e^{-\frac{\|x\|_{2}^{2}}{2}}$).
2. Show that the Laplace distribution is log-concave (the density is $\frac{1}{2} e^{-|x|}$).
3. Show that 1_{K} is log-concave if and only if $K \subset \mathbb{R}^{n}$ is convex. Deduce that if X is uniformly distributed on a convex set, then X is \log-concave.
4. Show that the $\chi^{2}(k)$ distribution, with $k \geq 2$, is log-concave (the density is $\left.\frac{1}{2^{k / 2} \Gamma(k / 2)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}} 1_{\mathbb{R}_{+}}(x)\right)$.
5. Show that the function $e^{-\frac{|x|^{p}}{p}}, p \geq 1$, is log-concave. Is the function $e^{-\frac{|x| p}{p}}, p \in(0,1)$, log-concave?
6. Is the Cauchy distribution log-concave?

Exercise 2.

Let X be an arbitrary random vector in \mathbb{R}^{n} with mean μ and covariance matrix K_{X}. Prove that $Z=K_{X}^{-\frac{1}{2}}(X-\mu)$ is isotropic.

Exercise 3.

Let X, Y be i.i.d. isotropic log-concave random vectors in \mathbb{R}^{n}.

1. Show that $\mathbb{E}\left[\|X\|_{2}^{2}\right]=n$.
2. Show that $\mathbb{E}\left[\|X-Y\|_{2}^{2}\right]=2 n$.
3. Show that there exist universal constants $c_{1}, c_{2}>0$ such that

$$
c_{1} \sqrt{n} \leq \mathbb{E}\left[\|X\|_{2}\right] \leq c_{2} \sqrt{n} .
$$

In the next exercise, we slightly change the definition of isotropicity for convex body and log-concave functions. The following definition is equivalent:

- We say that a convex body $K \subset \mathbb{R}^{n}$ is isotropic if K is centered, if K has volume 1, and if there exists a constant $L_{K}>0$ such that

$$
\int_{K} x_{i}^{2} \mathrm{~d} x=L_{K}^{2}, \quad \forall i \in\{1, \ldots, n\} .
$$

- We say that a log-concave probability density function $f: \mathbb{R}^{n} \rightarrow[0,+\infty)$ is isotropic if f is centered, $\|f\|_{\infty}=1$, and if there exists a constant $L_{f}>0$ such that

$$
\int_{\mathbb{R}^{n}} x_{i}^{2} f(x) \mathrm{d} x=L_{f}^{2}, \quad \forall i \in\{1, \ldots, n\}
$$

Exercise 4.

- Let $L_{C}>0$ be the least number such that for all isotropic convex body $K \subset \mathbb{R}^{n}$,

$$
\int_{K} x_{i}^{2} \mathrm{~d} x \leq L_{C}, \quad i=1, \ldots, n .
$$

- Let $L_{g}>0$ be the least number such that for all isotropic log-concave probability density function $f: \mathbb{R}^{n} \rightarrow[0,+\infty)$,

$$
\int_{\mathbb{R}^{n}} x_{i}^{2} f(x) \mathrm{d} x \leq L_{g}, \quad i=1, \ldots, n .
$$

In other words,

$$
\begin{gathered}
L_{C}=\sup \left\{L_{K}: K \subset \mathbb{R}^{n} \text { isotropic convex body }\right\} \\
L_{g}=\sup \left\{L_{f}: f: \mathbb{R}^{n} \rightarrow[0,+\infty) \text { isotropic log-concave density function }\right\}
\end{gathered}
$$

The goal of this exercise is to show that L_{C} and L_{g} are equivalent. First, we introduce the following two lemmas:

Lemma A: Let $\lambda \in[0,1]$. Let $g, h, m:[0,+\infty) \rightarrow[0,+\infty)$ be such that for every $r, s>0$,

$$
m\left(\left((1-\lambda) r^{-1}+\lambda s^{-1}\right)^{-1}\right) \geq g(r)^{\frac{(1-\lambda) s}{(1-\lambda) s+\lambda r}} h(s)^{\frac{\lambda r}{(1-\lambda) s+\lambda r}} .
$$

Then,

$$
\int_{0}^{+\infty} m(r) \mathrm{d} r \geq\left((1-\lambda)\left(\int_{0}^{+\infty} g(r) \mathrm{d} r\right)^{-1}+\lambda\left(\int_{0}^{+\infty} h(r) \mathrm{d} r\right)^{-1}\right)^{-1}
$$

Lemma B: Let $F:[0,+\infty) \rightarrow[0,+\infty)$ be a non-increasing log-concave function. Then, for every $0 \leq p \leq q<+\infty$,

$$
F(0)^{q} \Gamma(p+1)^{q+1}\left(\int_{0}^{+\infty} r^{q} F(r) \mathrm{d} r\right)^{p+1} \leq F(0)^{p} \Gamma(q+1)^{p+1}\left(\int_{0}^{+\infty} r^{p} F(r) \mathrm{d} r\right)^{q+1}
$$

1. Show that we always have $L_{C} \leq L_{g}$.

2 . Let $f: \mathbb{R}^{n} \rightarrow[0,+\infty)$ be an isotropic log-concave probability density function.
For every $p \geq 1$, we define the following function on \mathbb{R}^{n} by

$$
\|x\|_{p}= \begin{cases}\left(\int_{0}^{+\infty} p f(r x) r^{p-1} \mathrm{~d} r\right)^{-\frac{1}{p}} & \text { if } x \in \mathbb{R}^{n} \backslash\{0\} \\ 0 & \text { if } x=0\end{cases}
$$

a) Show that for every $\lambda \in \mathbb{R}$, for every $x \in \mathbb{R}^{n}$,

$$
\|\lambda x\|_{p}=|\lambda|\|x\|_{p},
$$

and that

$$
\|x\|_{p}=0 \Longleftrightarrow x=0 .
$$

b) Show that

$$
\|x+y\|_{p} \leq\|x\|_{p}+\|y\|_{p}
$$

Hint: Define the functions $g, h, m:[0,+\infty) \rightarrow[0,+\infty)$ by

$$
g(r)=f(r x) r^{p-1}, \quad h(r)=f(r y) r^{p-1}, \quad m(r)=f\left(r \frac{x+y}{2}\right) r^{p-1},
$$

and apply Lemma A with $\lambda=\frac{1}{2}$ to the functions g, h, m.
3. Let $f: \mathbb{R}^{n} \rightarrow[0,+\infty)$ be an isotropic log-concave probability density function.

Recall that from question 2., the function

$$
\|x\|_{p}=\left\{\begin{array}{ll}
\left(\int_{0}^{+\infty} p f(r x) r^{p-1} \mathrm{~d} r\right)^{-\frac{1}{p}} & \text { if } x \in \mathbb{R}^{n} \backslash\{0\} \\
0 & \text { if } x=0
\end{array} .\right.
$$

defines a norm on \mathbb{R}^{n}, for every $p \geq 1$. Hence, the unit ball of $\|\cdot\|_{n+2}$ is a symmetric convex body in \mathbb{R}^{n}, which we denote by K_{n+2}.
a) Show that

$$
\int_{\mathbb{R}^{n}} x_{i}^{2} f(x) \mathrm{d} x=\int_{K_{n+2}} x_{i}^{2} \mathrm{~d} x, \quad \forall i \in\{1, \ldots, n\} .
$$

Hint: Integrate in polar coordinates.
b) Deduce that $\frac{K_{n+2}}{\operatorname{Vol}\left(K_{n+2}\right)^{\frac{1}{n}}}$ is isotropic.
c) Deduce that

$$
L_{f}^{2} \leq L_{C}^{2} \operatorname{Vol}\left(K_{n+2}\right)^{1+\frac{2}{n}}
$$

Hint: Note that

$$
\int_{\frac{K_{n+2}}{\operatorname{Vol}\left(K_{n+2}\right)^{\frac{1}{n}}}} x_{i}^{2} \mathrm{~d} x=\frac{1}{\operatorname{Vol}\left(K_{n+2}\right)^{1+\frac{2}{n}}} \int_{K_{n+2}} x_{i}^{2} \mathrm{~d} x .
$$

d) Deduce that

$$
n L_{f}^{2} \leq \frac{n+2}{n^{\frac{2}{n}}} L_{C}^{2}\left(\int_{S^{n-1}}\left(\int_{0}^{+\infty} f(r \theta) r^{n+1} \mathrm{~d} r\right)^{\frac{n}{n+2}} \mathrm{~d} \theta\right)^{\frac{n+2}{n}}
$$

e) Show that

$$
\int_{0}^{+\infty} f(r \theta) r^{n+1} \mathrm{~d} r \leq \frac{n(n+1)}{((n-1)!)^{\frac{2}{n}}}\left(\int_{0}^{+\infty} f(r \theta) r^{n-1} \mathrm{~d} r\right)^{\frac{n+2}{n}}
$$

Hint: Apply Lemma B to $r \rightarrow f(r \theta)$ with $p=n-1$ and $q=n+1$.
f) Deduce that

$$
L_{g}^{2} \leq \frac{(n+1)(n+2)}{(n!)^{\frac{2}{n}}} L_{C}^{2}
$$

and hence

$$
L_{g} \leq e L_{C}
$$

