Exercise 1.
Let $\{B_t\}_{t \geq 0}$ be a standard Brownian motion. Prove that for all $t, s \geq 0$,
$$\text{Cov}(B_t, B_s) = \min(t, s),$$
where $\text{Cov}(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$ denotes the covariance of $X$ and $Y$.

Exercise 2.
Prove that a Brownian motion $\{B_t\}$ is a continuous-time martingale (with respect to the same filtration).

Exercise 3.
Let $Z$ be a standard Gaussian. Define, for $t \geq 0$,
$$X_t = \sqrt{t}Z.$$
1. Prove that $\{X_t\}$ has almost surely continuous paths, and that $X_t \sim \mathcal{N}(0, t)$.
2. Is $\{X_t\}$ a Brownian motion?

Exercise 4.
Let $\{B_t\}$ and $\{\tilde{B}_t\}$ be two independent standard Brownian motion. Let $\rho \in (0, 1)$. Define, for $t \geq 0$,
$$X_t = \rho B_t + \sqrt{1 - \rho^2} \tilde{B}_t.$$
Is $\{X_t\}$ a Brownian motion?

Exercise 5. (Brownian Bridge)
A stochastic process $\{X_t\}_{t \in [0, 1]}$ is called Brownian bridge if:

i) $X_0 = X_1$.

ii) $\{X_t\}$ is a centered Gaussian process, that is, for all $t_1 < \cdots < t_n$ the random vector $(X_{t_1}, \ldots, X_{t_n})$ is a multivariate Gaussian with mean 0.

iii) $\text{Cov}(X_t, X_s) = \min(s, t) - st$.

iv) Almost surely, $\{X_t\}$ has continuous paths.

Let $\{B_t\}$ be a standard Brownian motion and $\{X_t\}$ be a Brownian bridge.

1. Define, for $t \in [0, 1]$, $\tilde{X}_t = B_t - tB_1$. Show that $\{\tilde{X}_t\}$ is a Brownian bridge.

2. Let $Z$ be a standard Gaussian. Show that $\{\tilde{B}_t\} = X_t + tZ$, is a Brownian motion for $t \in [0, 1]$.

3. Prove that $W_t = (t + 1)X_t + t$ is a Brownian motion for $t \in [0, +\infty)$. 


Exercise 6.
Let $\{B_t\}$ be a Brownian motion. Compute:

1. $\mathbb{P}(B_1 \geq 0)$.
2. $\mathbb{P}(B_2 \geq 0, B_1 \geq 0)$.
3. $\mathbb{P}(B_3 \geq 0, B_2 \leq 0, B_1 \leq 0)$. 