Homework #3

Exercise 1. Consider the probability space $([0, \frac{\pi}{2}], \mathcal{B}([0, \frac{\pi}{2}]), \text{Uniform}([0, \frac{\pi}{2}]))$.

- 1. Explain in a few lines why $X: ([0, \frac{\pi}{2}], \mathcal{B}([0, \frac{\pi}{2}])) \to ([0, 1], \mathcal{B}([0, 1])), \omega \mapsto \cos(\omega)$ and $Y: ([0, \frac{\pi}{2}], \mathcal{B}([0, \frac{\pi}{2}])) \to ([0, 1], \mathcal{B}([0, 1])), \omega \mapsto \sin(\omega)$ are random variables.
- 2. Find the CDF (Cumulative Distribution Function) of X and Y.
- 3. Find the PDF (Probability Density Function) of X and Y. What can you conclude?
- 4. Compute $\mathbb{E}[X]$ and $\mathbb{E}[Y]$ with 2 different methods.

Exercise 2. Let (X, Y) be a couple of random variables with values in $\{1, 2, 3\} \times \{1, 2, 3, 4\}$ having the following distribution

X Y	1	2	3	4
1	0.08	0.04	0.16	0.12
2	0.04	0.02	0.08	0.06
3	0.08	0.04	0.16	0.12

- 1. Find the distribution of X and Y.
- 2. Are X and Y independent?

Exercise 3. Consider the experiment of throwing a dice with 6 sides, and let X be the number obtained. Let Y be the random variable with value 1 if X is even, and with value 0 if X is odd.

- 1. Find the distribution of the random vector (X, Y).
- 2. Are X and Y independent?
- 3. Compute the variance of X, Y, and X + Y.

Exercise 4. Let $X \sim \mathcal{N}(0, 1)$ (standard Gaussian). Find the distribution of $Y = \exp(X)$.

Exercise 5. Let $X \sim \text{Unif}([0, 1])$ (uniform on [0, 1]). Fix 0 < a < 1. Prove that the distribution of $Y = \min(X, a)$ is a mixture of a continuous random variable and a Dirac measure.

Exercise 6. Let X be a random variable. Prove that for all $p \ge 1$,

$$\mathbb{E}[|X|^p] = \int_0^{+\infty} pt^{p-1} \mathbb{P}(|X| > t) \, dt.$$

Exercise 7.

1. Let X be a random variable with finite second moment (that is $\mathbb{E}[X^2] < +\infty$). Prove that for all $\varepsilon > 0$,

$$\mathbb{P}(|X - \mathbb{E}[X]| > \varepsilon) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}.$$

2. Let $\{X_n\}$ be a sequence of independent Bernoulli distribution all with same parameter p. Define $S_n = \sum_{i=1}^k X_k$. Deduce from question 1) that

$$\lim_{n \to +\infty} \mathbb{P}\left(\left| \frac{S_n}{n} - p \right| > \varepsilon \right) = 0.$$