Solution - Homework \#3

Exercise 1.

1. - S_{n} is \mathcal{F}_{n}-measurable, hence M_{n} is \mathcal{F}_{n}-measurable.

- $\mathbb{E}\left[\left|M_{n}\right|\right]=\mathbb{E}\left[\left|\left(S_{n}-\mathbb{E}\left[S_{n}\right]\right)^{2}-\operatorname{Var}\left(S_{n}\right)\right|\right] \leq \mathbb{E}\left[\mid S_{n}-\mathbb{E}\left[S_{n}\right]^{2}\right]+\operatorname{Var}\left(S_{n}\right)=2 \operatorname{Var}\left(S_{n}\right)<+\infty$.
- We have

$$
\begin{aligned}
M_{n+1} & =\left(S_{n+1}-\mathbb{E}\left[S_{n+1}\right]\right)^{2}-\operatorname{Var}\left(S_{n+1}\right) \\
& =\left(S_{n}-n \mathbb{E}\left[X_{1}\right]+X_{n+1}-\mathbb{E}\left[X_{1}\right]\right)^{2}-n \operatorname{Var}\left(X_{1}\right)-\operatorname{Var}\left(X_{1}\right) \\
& =M_{n}+\left(X_{n+1}-\mathbb{E}\left[X_{1}\right]\right)^{2}+2\left(S_{n}-n \mathbb{E}\left[X_{1}\right]\right)\left(X_{n+1}-\mathbb{E}\left[X_{1}\right]\right)-\operatorname{Var}\left(X_{1}\right) .
\end{aligned}
$$

Hence,

$$
\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=M_{n}+\mathbb{E}\left[\left(X_{n+1}-\mathbb{E}\left[X_{1}\right]\right)^{2} \mid \mathcal{F}_{n}\right]+2 \mathbb{E}\left[\left(S_{n}-n \mathbb{E}\left[X_{1}\right]\right)\left(X_{n+1}-\mathbb{E}\left[X_{1}\right]\right) \mid \mathcal{F}_{n}\right]-\operatorname{Var}\left(X_{1}\right) .
$$

Note that

$$
\mathbb{E}\left[\left(X_{n+1}-\mathbb{E}\left[X_{1}\right]\right)^{2} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[\left(X_{n+1}-\mathbb{E}\left[X_{1}\right]\right)^{2}\right]=\operatorname{Var}\left(X_{n+1}\right) .
$$

Also,

$$
\mathbb{E}\left[\left(S_{n}-n \mathbb{E}\left[X_{1}\right]\right)\left(X_{n+1}-\mathbb{E}\left[X_{1}\right]\right) \mid \mathcal{F}_{n}\right]=\left(S_{n}-n \mathbb{E}\left[X_{1}\right]\right) \mathbb{E}\left[X_{n+1}-\mathbb{E}\left[X_{1}\right] \mid \mathcal{F}_{n}\right]=0 .
$$

This concludes that $\mathbb{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right]=M_{n}$. And thus $\left\{M_{n}\right\}$ is a martingale.
2. Recall that

$$
\cosh (u)=\frac{e^{u}+e^{-u}}{2} .
$$

- M_{n}^{u} is \mathcal{F}_{n}-measurable.
- We have

$$
\mathbb{E}\left[\left|M_{n}^{u}\right|\right]=\frac{\mathbb{E}\left[e^{u S_{n}}\right]}{\cosh (u)^{n}}=\frac{\mathbb{E}\left[\Pi_{i=1}^{n} e^{u X_{i}}\right]}{\cosh (u)^{n}}=1<+\infty .
$$

- We have

$$
M_{n+1}^{u}=M_{n} \frac{e^{u X_{n+1}}}{\cosh (u)},
$$

and thus

$$
\mathbb{E}\left[M_{n+1}^{u} \mid \mathcal{F}_{n}\right]=M_{n} \mathbb{E}\left[\frac{e^{u X_{n+1}}}{\cosh (u)}\right]=M_{n} .
$$

Exercise 2.

1. By assumption, for all $n \geq 1, \mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] \geq X_{n}$ and $\mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[X_{1}\right]$. Hence,

$$
0=\mathbb{E}\left[X_{n+1}-X_{n}\right]=\mathbb{E}\left[\mathbb{E}\left[X_{n+1}-X_{n} \mid \mathcal{F}_{n}\right]\right]=\mathbb{E}\left[\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]-X_{n}\right] .
$$

Recall that if Y is such that $Y \geq 0$ and $\mathbb{E}[Y]=0$, then $Y=0$. We deduce that $\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]-X_{n}=$ 0.
2. We easily check that

$$
\mathbb{E}\left[X_{n+1} \vee a \mid \mathcal{F}_{n}\right] \geq X_{n} \vee a .
$$

Hence, $\left\{X_{n} \vee a\right\}$ is a sub-martingale. From 1., it is also a martingale since the X_{i} 's are i.i.d.

Exercise 3. (Wald's identity)

1. We have

$$
\begin{array}{r}
\mathbb{E}\left[S_{\tau}\right]=\mathbb{E}\left[S_{\tau} \sum_{n \geq 1} 1_{\{\tau=n\}}\right]=\mathbb{E}\left[\sum_{n \geq 1} S_{n} 1_{\{\tau=n\}}\right] \\
=\mathbb{E}\left[\sum_{n \geq 1} \sum_{k=1}^{n} X_{k} 1_{\{\tau=n\}}\right]=\mathbb{E}\left[\sum_{k \geq 1} \sum_{n \geq k} X_{k} 1_{\{\tau=n\}}\right]=\mathbb{E}\left[\sum_{k \geq 1} X_{k} 1_{\{\tau \geq k\}}\right] .
\end{array}
$$

By Fubini,

$$
\begin{aligned}
\mathbb{E}\left[\sum_{k \geq 1} X_{k} 1_{\{\tau \geq k\}}\right]=\sum_{k \geq 1} \mathbb{E}\left[X_{k} 1_{\{\tau \geq k\}}\right] & =\sum_{k \geq 1} \mathbb{E}\left[\mathbb{E}\left[X_{k} 1_{\{\tau \geq k\}} \mid \mathcal{F}_{k-1}\right]\right]=\sum_{k \geq 1} \mathbb{E}\left[1_{\{\tau \geq k\}} \mathbb{E}\left[X_{k} \mid \mathcal{F}_{k-1}\right]\right] \\
& =\sum_{k \geq 1} \mathbb{E}\left[1_{\{\tau \geq k\}} \mathbb{E}\left[X_{k}\right]\right]=\mathbb{E}\left[X_{1}\right] \sum_{k \geq 1} \mathbb{P}(\tau \geq k)=\mathbb{E}\left[X_{1}\right] \mathbb{E}[\tau],
\end{aligned}
$$

where the last identity comes from the fact that for all random variable X with values in \mathbb{N},

$$
\sum_{k \geq 1} \mathbb{P}(X \geq k)=\mathbb{E}[X] \quad \text { (Exercise) }
$$

2. Consider $\tau \wedge n$, for all $n \geq 1$. Note that $\tau \wedge n$ is increasing in n and is non-negative, and $\tau \wedge n \rightarrow \tau$ a.s. Thus, by monotone convergence,

$$
\lim _{n} \mathbb{E}[\tau \wedge n]=\mathbb{E}[\tau] .
$$

Since $\tau \wedge n$ is integrable (bounded by n), by Wald's identity (question 1.),

$$
\mathbb{E}\left[S_{\tau \wedge n}\right]=\mathbb{E}\left[X_{1}\right] \mathbb{E}[\tau \wedge n] .
$$

By assumption, $\mathbb{E}\left[X_{1}\right] \neq 0$ and $\sup _{n} \mathbb{E}\left[S_{\tau \wedge n}\right]<+\infty$, hence

$$
\mathbb{E}[\tau \wedge n]=\frac{\mathbb{E}\left[S_{\tau \wedge n}\right]}{\mathbb{E}\left[X_{1}\right]} \leq \frac{\sup _{n} \mathbb{E}\left[S_{\tau \wedge n}\right]}{\mathbb{E}\left[X_{1}\right]}<+\infty .
$$

By letting n goes to $+\infty$, we conclude that $\mathbb{E}[\tau] \leq \frac{\sup _{n} \mathbb{E}\left[S_{\tau \wedge n]}\right]}{\mathbb{E}\left[X_{1}\right]}<+\infty$.

Exercise 4.

By contradiction, assume that τ is integrable. Then, by Wald's identity,

$$
\mathbb{E}\left[S_{\tau}\right]=\mathbb{E}\left[X_{1}\right] \mathbb{E}[\tau] .
$$

But $\mathbb{E}\left[X_{1}\right]=0$ and $S_{\tau}=1$ implies $\mathbb{E}\left[S_{\tau}\right]=1$. Contradiction.

Exercise 5. (Doob's inequality)

Done in class.

