Homework \#4

Exercise 1. Let $\left\{X_{n}\right\}$ be a sequence of independent random variables such that

$$
\mathbb{P}\left(X_{n}=-n\right)=\mathbb{P}\left(X_{n}=n\right)=\frac{1}{2 n \log (n)}, \quad \mathbb{P}\left(X_{n}=0\right)=1-\frac{1}{n \log (n)}
$$

1. Determine the modes of convergence of $\left\{X_{n}\right\}$.
2. Compute $\mathbb{E}\left[X_{n}\right]$ and $\operatorname{Var}\left(X_{n}\right)$. Deduce that $\frac{X_{1}+\cdots+X_{n}}{n}$ converges to 0 in L^{2}.
3. Prove that $\frac{X_{1}+\cdots+X_{n}}{n}$ does not converge almost surely.

Exercise 2. Let $X_{1} \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right), \ldots, X_{n} \sim \mathcal{N}\left(\mu_{n}, \sigma_{n}^{2}\right)$ be Gaussians.
Find the distribution of $X_{1}+\cdots+X_{n}$.
Exercise 3. Let X be a standard Gaussian $\mathcal{N}(0,1)$, and let ε be a symmetric Bernoulli distribution, that is

$$
\mathbb{P}(\varepsilon=-1)=\mathbb{P}(\varepsilon=1)=\frac{1}{2}
$$

1. Prove that εX is a Gaussian random variable.
2. Is $(X, \varepsilon X)$ a Gaussian random vector?
3. Prove that X and εX are uncorrelated.
4. Are X and εX independent?

Exercise 4. Let $p \in(0,1)$. Let $\left\{X_{n}\right\}$ be a sequence of i.i.d. random variables with distribution

$$
\mathbb{P}\left(X_{n}=1\right)=p, \quad \mathbb{P}\left(X_{n}=-1\right)=1-p .
$$

Let us define, for $n \geq 1, Y_{n}=\prod_{i=1}^{n} X_{i}$.

1. Compute $\mathbb{E}\left[Y_{n}\right]$. Deduce the distribution of Y_{n}.
2. Does $\left\{Y_{n}\right\}$ converge in distribution?

Exercise 5. Let $\theta>0$. Let $\left\{X_{n}\right\}$ be a sequence of independent random variables such that for all $n \geq 1, X_{n}$ has a geometric distribution of parameter $\frac{\theta}{n}$.

Prove that $\left\{\frac{X_{n}}{n}\right\}$ converges in distribution to an exponential distribution of parameter θ.
Exercise 6. Let $\lambda>0$. Let $\left\{X_{n}\right\}$ be a sequence of random variables such that for all $n \geq 1$, X_{n} is a Binomial distribution $\mathcal{B}\left(n, \frac{\lambda}{n}\right)$.

Prove that $\left\{X_{n}\right\}$ converges in distribution to a Poisson distribution of parameter λ.

Exercise 7. Let $\left\{X_{n}\right\}$ be a sequence of random variables.

1. Assume that for all $n \geq 1, \mathbb{P}\left(X_{n}=\frac{1}{n}\right)=1$. Prove that $\left\{X_{n}\right\}$ converges in distribution to some random variable X. Does $F_{X_{n}}$ converges to F_{X} pointwise?
2. Assume that for all $n \geq 1, \mathbb{P}\left(X_{n}=n\right)=1$. Does $F_{X_{n}}$ converges pointwise to a CDF?

Exercise 8. Let $\left\{\left(X_{n}, Y_{n}\right)\right\}$ be a sequence of random vectors such that for all n, X_{n} and Y_{n} are independent. Assume that X_{n} converges to X in distribution and Y_{n} converges to Y in distribution, with $X \Perp Y$.

1. Prove that $\left\{\left(X_{n}, Y_{n}\right)\right\}$ converges to (X, Y) in distribution.
2. Deduce that, in this case, $\left\{X_{n}+Y_{n}\right\}$ converges to $X+Y$ in distribution, and that $\left\{X_{n} Y_{n}\right\}$ converges to $X Y$ in distribution.
3. Does the result hold without the assumption of independence?

Exercise 9. Consider an urn containing 2 green balls and 4 red balls. At each turn, we take a ball from the urn at random and put it back. At the i-th turn, we associate a random variable Y_{i} defined as

$$
Y_{i}=1 \text { if the ball is green, and } Y_{i}=0 \text { if the ball is red. }
$$

Define for $n \geq 1$,

$$
X_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

1. Prove that there exists $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$,

$$
\mathbb{P}\left(\left|X_{n}-\frac{1}{3}\right| \geq 0.02\right) \leq 0.01
$$

2. Estimate n_{0}.
