Exercise 1.
Let \(\{B_t\} \) be a standard Brownian motion. Prove that
\[
\text{Cov}(B_t, B_s) = \min(t, s).
\]

Exercise 2.
Prove that a Brownian motion \(\{B_t\} \) is a continuous-time martingale (with respect to the same filtration).

Exercise 3.
Let \(Z \) be a standard Gaussian. Define, for \(t \geq 0 \),
\[
X_t = \sqrt{t}Z.
\]
1. Prove that \(\{X_t\} \) has almost surely continuous paths, and that \(X_t \sim \mathcal{N}(0, t) \).
2. Is \(\{X_t\} \) a Brownian motion?

Exercise 4.
Let \(\{B_t\} \) and \(\{\tilde{B}_t\} \) be two independent standard Brownian motion. Let \(\rho \in (0, 1) \). Define, for \(t \geq 0 \),
\[
X_t = \rho B_t + \sqrt{1 - \rho^2} \tilde{B}_t.
\]
Is \(\{X_t\} \) a Brownian motion?

Exercise 5. (Brownian Bridge)
A stochastic process \(\{X_t\}_{t \in [0,1]} \) is called Brownian bridge if:

i) \(X_0 = X_1 \).

ii) \(\{X_t\} \) is a centered Gaussian process, that is, for all \(t_1 < \cdots < t_n \) the random vector \((X_{t_1}, \ldots, X_{t_n}) \) is a multivariate Gaussian with mean 0.

iii) \(\text{Cov}(X_t, X_s) = \min(s, t) - st \).

iv) Almost surely, \(\{X_t\} \) has continuous paths.

Let \(\{B_t\} \) be a standard Brownian motion and \(\{X_t\} \) be a Brownian bridge.

1. Define, for \(t \in [0,1] \), \(\tilde{X}_t = B_t - tB_1 \). Show that \(\{\tilde{X}_t\} \) is a Brownian bridge.

2. Let \(Z \) be a standard Gaussian. Show that \(\{\tilde{B}_t\} = X_t + tZ, \) is a Brownian motion for \(t \in [0,1] \).

3. Prove that \(W_t = (t + 1)X_{t+1} \) is a Brownian motion for \(t \in [0, +\infty) \).
Exercise 6.
Let \(\{B_t\} \) be a Brownian motion. Compute:

1. \(\mathbb{P}(B_1 \geq 0) \).
2. \(\mathbb{P}(B_2 \geq 0, B_1 \geq 0) \).
3. \(\mathbb{P}(B_3 \geq 0, B_2 \leq 0, B_1 \leq 0) \).

Exercise 7.
Let \(\{B_t\} \) be a Brownian motion. Define
\[
T = \min\{t \geq 0 : |B_t| = 1\}.
\]

1. Define, for \(n \geq 0 \),
\[
A_n = \{B_{n+1} - B_n > 2\}.
\]
 Prove that \(\{A_n\} \) is a sequence of independent events such that \(\sum \mathbb{P}(A_n) = +\infty \).

2. Deduce that \(T \) is finite almost surely (that is, \(\mathbb{P}(T < +\infty) = 1 \)).