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Abstract—We establish a central limit theorem for Rényi
entropies when the Rényi parameters belong to (0, 1) for a large
class of random vectors. This complements a celebrated result of
Barron (1986). As an application, we show that a general Rényi
entropy power inequality fails when the Rényi parameter is in
(0, 1).

Index Terms—Rényi entropy; entropy power inequality; en-
tropic central limit theorem

I. INTRODUCTION

The Central Limit Theorem (henceforth, CLT) is a funda-
mental result in probability theory and statistics. It also has a
plethora of applications in applied sciences. The CLT has close
connections with information theory via the Entropy Power
Inequality (henceforth, EPI) of Shannon [25] and Stam [26].

Let X be a random vector in Rd with density f . The
Shannon differential entropy h(X) is defined as

h(X) = −
∫
Rd
f(x) log f(x)dx. (1)

The entropy power N(X) is defined as

N(X) = e2h(X)/d. (2)

Shannon-Stam’s EPI states that

N(X + Y ) ≥ N(X) +N(Y ) (3)

holds for arbitrary independent random vectors X and Y in
Rd. Let {Xn}n≥1 be a sequence of independent and identi-
cally distributed (henceforth, i.i.d.) centered random vectors
in Rd with finite covariance matrix. We denote by Zn the
normalized sum

Zn =
X1 + · · ·+Xn√

n
. (4)

By induction and the homogeneity of N(·), the EPI (3) implies
that the dyadic sequence {h(Z2n)}n≥1 is non-decreasing. It
is well known that Gaussian maximizes the Shannon entropy
when the covariance matrix is fixed (see, e.g., [10]). Hence,
we have h(Z2n) ≤ h(Z), where Z is a centered Gaussian
vector with the same covariance matrix as X1. This implies
the convergence of the dyadic sequence {h(Z2n)}n≥1. A
celebrated result of Barron [2] states that

h(Zn)→ h(Z), (5)

as n → +∞, which strengthens the classical CLT that
the sequence {Zn}n≥1 converges to Z in distribution. The

entropic CLT (5) along with the monotonicity of {h(Z2n)}n≥1

and maximization of entropy by Gaussians can be seen as
an analogue of the second law of thermodynamics (see, e.g.,
[13]). Furthermore, it was proven in [1] that the sequence
{h(Zn)}n≥1 is actually monotone at each step, and not only
along dyadic steps, see also [17].

There has been recent success in extending the Shannon
EPI (3) to the Rényi setting (see [4], [5], [7], [14], [18], [19],
[21], [23], [24]) but few results are known about CLT for r-
Rényi entropy (see [8] for r > 1 in dimension 1; see also [6]
for convergence in Rényi divergence, which is not equivalent
to convergence in Rényi entropy unless r = 1). The aim of
this paper is to extend the above Shannon entropic CLT to the
Rényi entropic setting, with particular interest in application
to Rényi EPI. For r ≥ 0, the r-Rényi entropy of a random
vector X in Rd with density f is defined as

hr(X) =
1

1− r
log

∫
Rd
f(x)rdx. (6)

For r ∈ {0, 1,∞}, the definition is understood in the limiting
sense, and h1(X) is the Shannon differential entropy. The r-
Rényi entropy power Nr(X) is defined as

Nr(X) = e2hr(X)/d. (7)

This paper is organized as follows. The next section is
dedicated to the convergence of hr(Zn). For r > 1 conver-
gence is fully characterized for random vectors in Rd, while
for r ∈ (0, 1) sufficient conditions with application to Rényi
EPI are explored. Explicitly, convergence is proven for log-
concave random vectors and random vectors with radially
symmetric unimodal densities and compact support. The last
section presents applications of the Rényi entropic CLT. Most
significantly, we show that a general r-Rényi EPI fails when
r ∈ (0, 1). The reader is directed to the full paper expanding
on this work [15].

II. CENTRAL LIMIT THEOREM FOR RÉNYI ENTROPY

A fundamental tool in establishing various central limit
theorems is the characteristic function. Recall that the char-
acteristic function of a random vector X in Rd is defined by

ϕX(t) = E[ei〈t,X〉], t ∈ Rd. (8)

Before providing sufficient conditions for convergence in r-
Rényi entropy, with r ∈ (0, 1), we first extend [8, Theorem
1.1] to the higher dimensional setting.



Theorem 2.1: Let r > 1. Let X1, . . . , Xn be i.i.d. centered
random vectors in Rd. Let us define Zn as in (4) and denote
by ρn the density of Zn. Then, the following statements are
equivalent.

1) hr (Zn)→ hr(Z), where Z is a Gaussian random vector
with mean 0 and same covariance matrix as X1.

2) hr(Zn0
) is finite for some integer n0.

3)
∫
Rd |ϕX1(t)|ν dt < +∞ for some ν ≥ 1.

4) Zn0 has a bounded density ρn0 for some integer n0.
Proof: 1 =⇒ 2: Assume that hr (Zn) → hr(Z) as n →

+∞. Then, there exists an integer n0 such that

hr(Z)− 1 < hr(Zn0) < hr(Z) + 1. (9)

Since hr(Z) is finite, we deduce that hr(Zn0
) is finite as well.

2 =⇒ 3: Assume that hr(Zn0) is finite for some integer
n0. Then, Zn0 has a density ρn0 which is in Lr(Rd), and thus
Zn has a density ρn ∈ Lr for any n ≥ n0 by the convolution
structure of Zn.

Case 1: If r ≥ 2, then ρn ∈ L2(Rd). Hence by Plancherel
identity, ϕZn ∈ L2(Rd). It follows that∫

Rd
|ϕZn(t)|2 dt =

∫
Rd
|ϕX1

(
t/
√
n
)
|2n dt < +∞. (10)

We deduce that for ν = 2n0,∫
Rd
|ϕX1

(t)|ν dt < +∞. (11)

Case 2: If r ∈ (1, 2), then by the Hausdorff-Young inequal-
ity,

‖ϕZn‖Lr′ ≤
1

(2π)d/r′
‖ρn‖Lr , (12)

where r′ is the conjugate of r. Hence, for ν = r′n0,∫
Rd
|ϕX1(t)|ν dt < +∞. (13)

3 =⇒ 4: Since
∫
Rd |ϕX1(t)|ν dt < +∞ for some ν ≥ 1,

one may apply Gnedenko’s local limit theorems (see [11]),
which is valid in arbitrary dimension (see [3]). In particular,

lim
n→+∞

sup
x∈Rd

|ρn(x)− φΣ(x)| = 0, (14)

where φΣ denotes the density of a Gaussian random vector
with mean 0 and same covariance matrix as X1. We deduce
that there exists an integer n0 and a constant M > 0 such that
ρn ≤M for all n ≥ n0.

4 =⇒ 1: Since ρn0 is bounded, then ρn0 ∈ L2, and we
deduce by Plancherel identity that

∫
Rd |ϕX1

(t)|ν dt < +∞
for ν = 2n0. Hence (14) holds and there exists M > 0 such
that ρn ≤ M for all n ≥ n0. Let us show that

∫
ρrn →

∫
φrΣ

as n → +∞, where φΣ denotes the density of a Gaussian
random vector with mean 0 and same covariance matrix as
X1. From the central limit theorem, there exists T > 0 such
that for all n large enough,∫

|x|>T
ρn(x)dx < ε,

∫
|x|>T

φΣ(x)dx < ε. (15)

Hence,∫
|x|>T

ρrn(x)dx ≤Mr−1

∫
|x|>T

ρn(x)dx < Mr−1ε, (16)

and similarly for
∫
|x|>T φ

r
Σ. Hence, for any δ > 0, there exists

T > 0 such that for all n large enough,∣∣∣∣∣
∫
|x|>T

ρrn(x)dx−
∫
|x|>T

φrΣ(x)dx

∣∣∣∣∣ < δ. (17)

On the other hand, by (14), for all T > 0, the function
ρrn(x)1{|x|≤T} converges everywhere to φrΣ(x)1{|x|≤T} as
n→ +∞. Since ρrn(x)1{|x|≤T} is dominated by the integrable
function Mr1{|x|≤T}, one may use the Lebesgue dominated
theorem to conclude that

lim
n→+∞

∣∣∣∣∣
∫
|x|≤T

ρrn(x)dx−
∫
|x|≤T

φrΣ(x)dx

∣∣∣∣∣ = 0. (18)

Remark 2.1: When r ∈ (0, 1), the statement of Theorem
2.1 fails since it is possible to find a bounded density ρ
such that

∫
ρ(x)r dx = +∞ (e.g., Cauchy-type distributions).

In particular, for random variable X1 with such density, the
implication 4 =⇒ 2 (and thus 4 =⇒ 1) in Theorem 2.1 does
not necessarily hold when r ∈ (0, 1) since by Jensen inequality
hr(Zn) ≥ hr(X1/

√
n) = ∞, for all n ≥ 1. It was noted

by Barron [2] that in the Shannon entropy case r = 1, the
implication 1 =⇒ 4 does not necessarily hold.

In the next results, we provide sufficient conditions for a
CLT to hold for r-Rényi entropy, with r ∈ (0, 1), for different
classes of random vectors in Rd. Recall the definition of Zn
in (4).

Theorem 2.2: Let r ∈ (0, 1). Let {Xn}n≥1 be a sequence
of i.i.d. centered log-concave random vectors in Rd. Then,
hr(Zn) < +∞ for all n ≥ 1, and

hr (Zn)→ hr(Z),

where Z is a Gaussian random vector with mean 0 and same
covariance matrix as X1.

Proof: Since log-concavity is preserved under indepen-
dent sum [22], Zn is log-concave for all n ≥ 1. Hence, for
all n ≥ 1, Zn has a bounded log-concave density ρn, which
satisfies

ρn(x) ≤ e−an|x|+bn , (19)

for all x ∈ Rd, for some constants an > 0, bn ∈ R possibly
depending on the dimension (see, e.g., [9]). Hence, for all
n ≥ 1,∫

Rd
ρn(x)r dx ≤

∫
Rd
e−r(an|x|+bn) dx < +∞. (20)

We deduce that hr(Zn) < +∞ for all n ≥ 1.
The boundedness of ρn implies that (14) holds, and thus

there exists an integer n0 such that for all n ≥ n0,

ρn(0) >
1

2
φΣ(0), (21)



where Σ is the covariance matrix of X1 (and thus does not
depend on n). Moreover, since ρn is log-concave, one has for
all x ∈ Rd,

ρn(rx) = ρn((1− r)0 + rx)

≥ ρn(0)1−rρn(x)r

≥ 1

21−r φΣ(0)1−rρn(x)r.

(22)

Hence, for all T > 0,∫
|x|>T

ρn(x)r dx ≤ 21−r

φΣ(0)1−r

∫
|x|>T

ρn(rx) dx (23)

=
21−r

rdφΣ(0)1−r P(|Zn| > rT ) (24)

≤ 1

T 2

21−rE[|X1|2]

rd+2φΣ(0)1−r , (25)

where the last inequality follows from Markov’s inequality and
the fact that

E[|Zn|2] =
E[|X1|2] + · · ·+ E[|Xn|2]

n
= E[|X1|2]. (26)

Hence, for every ε > 0, one may choose a positive number T
such that for all n large enough,∫

|x|>T
ρrn(x)dx < ε,

∫
|x|>T

φrΣ(x)dx < ε, (27)

and hence∣∣∣∣∣
∫
|x|>T

ρrn(x)dx−
∫
|x|>T

φrΣ(x)dx

∣∣∣∣∣ < ε. (28)

On the other hand, from (14), we conclude as in the proof of
Theorem 2.1 that for all T > 0,

lim
n→+∞

∣∣∣∣∣
∫
|x|≤T

ρrn(x)dx−
∫
|x|≤T

φrΣ(x)dx

∣∣∣∣∣ = 0. (29)

Next, we provide a convergence result for the more general
class of unimodal distributions under additional symmetry
assumptions. First, we need the following stability result.

Proposition 2.1: The class of unimodal spherically symmet-
ric random variables is stable under convolution.

Proof: Suppose that fi are densities such that fi(Tx) =
fi(x) for an orthogonal map T and |x| ≤ |y| implies fi(x) ≥
fi(y). By the layer cake decomposition, we write

fi(x) =

∫ ∞
0

1{(u,v):fi(u)>v}(x, λ)dλ. (30)

After applying Fubini-Tonelli,

f1 ? f2(x) (31)

=

∫
Rd
f1(x− y)f2(y)dy

=

∫ ∞
0

∫ ∞
0

(∫
Rd
1{(u,v):f1(u)>v}(x− y, λ1) (32)

× 1{(u,v):f2(u)>v}(y, λ2)dy

)
dλ1dλ2. (33)

Notice that by the spherical symmetry and decreasingness of
fi, the super-level set

Lλi = {u : fi(u) > λi} (34)

is an origin symmetric ball. Thus we can write the integrand
in (33) as∫

Rd
1Lλ1

(x− y)1Lλ2 (y)dy = 1Lλ1
? 1Lλ2 (x). (35)

This quantity is clearly dependent only on |x|, giving spherical
symmetry. Additionally as the convolution of two log-concave
functions, 1Lλ1 ? 1Lλ2 is log-concave as well. It follows that
for every λ1, λ2, and |x| ≤ |y| we have

1Lλ1
? 1Lλ2 (x) ≥ 1Lλ1

? 1Lλ2 (y). (36)

Then we can finish the proof by integrating both sides of the
above inequality.

Let us establish large deviation and pointwise inequalities
for radially symmetric unimodal densities with compact sup-
port.

Theorem 2.3 (Hoeffding [12]): For independent random
variables Xi with zero mean, bounded in (ai, bi), i = 1, . . . , n,
one has for all T > 0,

P

(
n∑
i=1

Xi > T

)
≤ exp

{
− 2T 2∑n

i=1(bi − ai)2

}
. (37)

Lemma 2.1: For centered independent random vectors Xi

in Rd satisfying P(|Xi| > R) = 0, i = 1, . . . , n, for some
R > 0, one has for all T > 0,

P
(∣∣∣∣X1 + · · ·+Xn√

n

∣∣∣∣ > T

)
≤ 2d exp

{
− T 2

2d2R2

}
. (38)

Proof: Let Xi,j be the j-th coordinate of the random
vector Xi. Then we have

P
(∣∣∣∣X1 + · · ·+Xn√

n

∣∣∣∣ > T

)
(39)

≤ P

 d⋃
j=1

{
|X1,j + · · ·+Xn,j | >

T
√
n

d

} (40)

≤
d∑
j=1

P
(
|X1,j + · · ·+Xn,j | >

T
√
n

d

)
(41)

≤ 2d exp

(
− T 2

2d2R2

)
, (42)

where inequality (40) follows from the pigeon-hole principle,
(41) from a union bound, and (42) follows from applying
Hoeffding’s inequality (Theorem 2.3) to X1,j + · · · + Xn,j

and (−X1,j) + · · ·+ (−Xn,j).
We deduce the following pointwise estimate for unimodal

radially symmetric and bounded random variables.
Corollary 2.1: If Xi are i.i.d. with radially symmetric

unimodal density function supported on the Euclidean ball
BR = {x : |x| ≤ R} for some R > 0, then letting ρn denote



density of the normalized sum (X1 + · · · + Xn)/
√
n, there

exists cd > 0 such that for |x| > 2,

ρn(x) ≤ cd exp

{
− (|x| − 1)2

2d2R2

}
. (43)

Proof: Stating Lemma 2.1 in terms of ρn, we have

∫
|y|>T

ρn(w)dw ≤ 2d exp

{
− T 2

2d2R2

}
. (44)

Since the class of radially symmetric unimodal random vari-
ables is stable under independent summation by Proposi-
tion 2.1, ρn is radially symmetric and unimodal, so that

ρn(x) ≤

∫
B|x|\B|x|−1

ρn(w)dw

Vol(B|x|\B|x|−1)
(45)

≤

∫
|y|≥|x|−1

ρn(w)dw

(2d − 1)ωd
(46)

where ωd is the volume of the unit ball. Note that

Vol(B|x|\B|x|−1) = (|x|d−(|x|−1)d)ωd ≥ (2d−1)ωd, (47)

since t 7→ td − (t − 1)d is increasing, so that (46) follows.
Now applying (44) we have

ρn(x) ≤

∫
|y|≥|x|−1

ρn(w)dw

(2d − 1)ωd
(48)

≤ 2d

(2d − 1)ωd
exp

{
− (|x| − 1)2

2d2R2

}
(49)

and our result holds with

cd =
2d

(2d − 1)ωd
. (50)

We are now ready to establish a convergence result for
unimodal radially symmetric bounded random vectors.

Theorem 2.4: Let r ∈ (0, 1). Let {Xn}n≥1 be a sequence of
i.i.d. random vectors in Rd with a radially symmetric unimodal
density with compact support. Then,

lim
n→∞

Nr

(
X1 + · · ·+Xn√

n

)
= Nr(Z) (51)

where Z is a Gaussian random vector with mean 0 and same
covariance matrix as X1.

Proof: Let us denote by ρn the density of the normalized
sum (X1 + · · · + Xn)/

√
n. Since ρ1 ∈ L1, it follows that

ρn, n ≥ 2, are continuous, and since ρn are, in addition,
radially symmetric unimodal densities by Proposition 2.1, then
ρn, n ≥ 2, are bounded. Hence, the point 3) of Theorem
2.1 holds with ν = 2, and one may thus apply (14) together
with Lebesgue dominated convergence to conclude that for all
T > 0,

lim
n→+∞

∣∣∣∣∣
∫
|x|≤T

ρrn(x)dx−
∫
|x|≤T

φrΣ(x)dx

∣∣∣∣∣ = 0. (52)

On the other hand, by Corollary 2.1, for all ε > 0, one may
choose T > 0 such that for all n ≥ 1,∫

|x|>T
ρrn(x)dx < ε,

∫
|x|>T

φrΣ(x)dx < ε, (53)

and hence∣∣∣∣∣
∫
|x|>T

ρrn(x)dx−
∫
|x|>T

φrΣ(x)dx

∣∣∣∣∣ < ε. (54)

III. NO RÉNYI EPI OF ORDER r ∈ (0, 1)

Definition 3.1: For r ∈ [0,∞], define cr as the largest
number such that for any finite sequence of independent
random vectors Xi in Rd, the inequality

Nr(X1 + · · ·+Xn) ≥ cr
n∑
i=1

Nr(Xi) (55)

holds.
Theorem 3.1: For r ∈ (0, 1), the constant cr defined in (55)

satisfies
cr = 0. (56)

Theorem 3.1 affirms a striking difference between Rényi
EPI of parameter r ≥ 1 and r ∈ (0, 1). Indeed, it was shown
in [5] that for r ≥ 1, one has

cr ≥
1

e
r

1
r−1 . (57)

Theorem 3.1 can be reformulated as follows.
Theorem 3.2: For any r ∈ (0, 1) and ε > 0, there exist

independent random vectors X1, . . . , Xn in Rd, for some d ≥
1 and n ≥ 2, such that

Nr(X1 + · · ·+Xn) < ε

n∑
i=1

Nr(Xi). (58)

The motivating observation for this line of argument is
the fact that for r ∈ (0, 1), there exist variables with finite
variance and infinite r-Rényi entropy. One might anticipate
that this could contradict the existence of an r-Rényi EPI,
as the central limit theorem forces i.i.d. sums to become
“more Gaussian”. Heuristically, one anticipates for large n,
and Xi drawn from such a distribution, that Nr(X1 + · · · +
Xn)/n = Nr((X1 + · · ·+Xn)/

√
n) should approach Nr(Z),

where Z is a Gaussian with variance equal to Xi’s, while∑
Nr(Xi)/n = Nr(X1) is infinite.

Proof of Theorem 3.1: Let us consider the following
density

f(x) = fR,p,d(x) = CR(1 + |x|)−p1BR(x), x ∈ Rd, (59)

with p,R > 0 and CR implicitly determined to make f
a density. Note that f is bounded, unimodal, and radially
symmetric. Thus its covariance matrix is a multiple of the
identity, i.e., σ2

RI for some σR > 0. Computing in spherical
coordinates one can easily see that limR→∞ CR is finite for
p > d, and we can thus define a density f∞,p,d. What is



more, when p > d+ 2, the limiting density f∞,p,d has a finite
covariance matrix, and has finite Rényi entropy if and only if
p > d/r.

Now fix r ∈ (0, 1) and take the dimension to be d∗ =
min{d ∈ N : d > 2r/(1 − r)}, and p ∈ (d∗ + 2, d∗/r). In
this case, the limit density f∞,p,d∗ is well defined and it has
finite covariance matrix σ2

∞I , but the corresponding r-Rényi
entropy is infinite. Now we select independent random vectors
X1, · · · , Xn from the distribution fR,p,d∗ . Since fR,p,d∗ is a
radially symmetric unimodal density with compact support,
one may apply Theorem 2.4 to conclude that

lim
n→∞

Nr

(
X1 + · · ·+Xn√

n

)
= σ2

RNr(ZId), (60)

where ZId is the standard d-dimensional Gaussian. Notice that

lim
R→∞

Nr(X1) =∞, (61)

while
lim
R→∞

σR = σ∞ <∞. (62)

Given M > 0, we can take R large enough such that
Nr(X1) ≥ M , and |σ2

R − σ2
∞| ≤ 1. Then we can take n

large enough such that

Nr

(
X1 + · · ·+Xn√

n

)
≤ (σ2

∞ + 2)Nr(ZId). (63)

We conclude that for the inequality (55) to hold. We must
have

cr ≤
(σ2
∞ + 2)Nr(ZId)

M
(64)

for all M > 0. Taking M →∞ this can only hold if cr = 0.

Remark 3.1: The counterexample we have built in the
proof of Theorem 3.1 is a random vector in Rd with an s-
concave density with s < 0 and |s| > r

d . In [16], where the
terminology of s-concave density is recalled, we prove that
for |s| < r

d , a Rényi EPI does hold for fixed r ∈ (0, 1), hence
complementing the above negative result and extending the
following first announced in [20].

Theorem 3.3 ([21]): For r ∈ (0, 1), there exists C(r) > 0
such that for all X1, . . . , Xn independent log-concave random
vectors in Rd,

Nr(X1 + · · ·+Xn) ≥ C(r)

n∑
i=1

Nr(Xi). (65)

In particular one can take C(r) = e r
1

1−r .
By applying Theorem 2.2 to Xi distributed according to a

Laplace distribution, which is log-concave, it follows that the
optimal value C(r) satisfying (65) for all log-concave random
vectors verifies C(r) ≤ πr

1
1−r .
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