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Abstract—In this paper, we investigate the role of convexity in
entropy power inequalities. We establish Rényi entropy power
inequalities of order r ∈ (0, 1) for a large class of densities, the
so-called s-concave densities. This extends recent works on Rényi
entropy power inequalities.

Index Terms—Rényi entropy; entropy power inequality; s-
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I. INTRODUCTION

Let X be a random vector in Rd. Suppose that X has
density f with respect to the Lebesgue measure in Rd. For
r ∈ (0, 1) ∪ (1,∞), the Rényi entropy of order r (or simply,
r-Rényi entropy) is defined as

hr(X) =
1

1− r
log

∫
Rd

f(x)rdx. (1)

For r ∈ {0, 1,∞}, the Rényi entropy can be extended
continuously such that the RHS of (1) is log |supp(f)| for
r = 0; −

∫
Rd f(x) log f(x)dx for r = 1; and − log ‖f‖∞ for

r = ∞. The case r = 1 corresponds to the classical Shan-
non differential entropy. Here, we denote by |supp(f)| the
Lebesgue measure of the support of f , and ‖f‖∞ represents
the essential supremum of f . The r-Rényi entropy power is
defined by

Nr(X) = e2hr(X)/d. (2)

In the following, we drop the subscript r when r = 1.
The classical entropy power inequality (henceforth, EPI) of

Shannon [23] and Stam [24], states that the entropy power
N(X) is super-additive on the sum of independent random
vectors. There has been recent success on extensions of the
EPI from the Shannon differential entropy to r-Rényi entropy.
In [2], [3], Bobkov and Chistyakov showed that, at the expense
of an absolute constant c > 0, the following Rényi EPI of order
r ∈ [1,∞] holds

Nr(X1 + · · ·+Xn) ≥ c
n∑
i=1

Nr(Xi). (3)

Ram and Sason soon after gave a sharpened summation
dependent constant for r ∈ (1,∞) in [20]. For r = ∞ see
[16], [17]. Savaré and Toscani [22] showed that a modified
Rényi entropy power was concave along solutions of some
nonlinear heat equation, which generalizes Costa’s concavity

of entropy power [8]. Bobkov and Marsiglietti [4] proved the
following variant of Rényi EPI

Nr(X + Y )α ≥ Nr(X)α +Nr(Y )α (4)

for r > 1 and some exponent α only depending on r. It is clear
that (4) holds for more than two summands. A refinement of
the exponent α was given by Li [11].

Both (3) and (4) follow from Young’s convolution inequality
and the entropy comparison inequality hr1(X) ≥ hr2(X)
for any r1 ≤ r2. The latter is an immediate consequence
of Jensen’s inequality. Analogues of (3) and (4) for Rényi
entropies of order r ∈ (0, 1) require a reverse entropy
comparison inequality aforementioned. This technical issue
prevents Rényi EPIs of order r ∈ (0, 1) for all random vectors.
In [12], the authors show that a general Rényi EPI of the form
(3) indeed fails for all r ∈ (0, 1).

Theorem 1.1 ([12]): For any r ∈ (0, 1) and ε > 0, there
exist independent random vectors X1, . . . , Xn in Rd, for some
d ≥ 1 and n ≥ 2, such that

Nr(X1 + · · ·+Xn) < ε

n∑
i=1

Nr(Xi). (5)

However, there exists a large class of densities, the so-
called s-concave densities, which satisfy a reverse entropy
comparison. In this paper, we will establish Rényi EPIs of
order r ∈ (0, 1) for such densities. This extends the results
for log-concave densities in [18], [19].

Let s ∈ [−∞,∞]. A function f : Rd → [0,∞] is called
s-concave if the inequality

f((1− λ)x+ λy) ≥ ((1− λ)f(x)s + λf(y)s)1/s (6)

holds for all x, y ∈ Rd such that f(x)f(y) > 0 and λ ∈ (0, 1).
For s ∈ {−∞, 0,∞}, the RHS of (6) is understood in
the limiting sense; that is, min{f(x), f(y)} for s = −∞,
f(x)1−λf(y)λ for s = 0, and max{f(x), f(y)} for s = ∞.
The case s = 0 corresponds to log-concave functions. The
study of measures with an s-concave density was initiated by
Borell in the seminal work [5], [6]. One can think of s-concave
densities, in particular log-concave densities, as functional
versions of convex sets. There has been a recent stream
of research on a formal parallel relation between functional



inequalities of s-concave densities and geometric inequalities
of convex sets, see [15] for more background.

Theorem 1.2: Given s ∈ (−1/d, 0] and r ∈ (−sd, 1), there
exists a constant c = c(s, r, d, n) such that for all independent
random vectors X1, . . . , Xn in Rd with s-concave densities,

Nr(X1 + · · ·+Xn) ≥ c
n∑
i=1

Nr(Xi).

In particular, one can take

c = r
1

1−r

(
1 +

1

n|r′|

)1+n|r′|

B1(s),

where r′ = r/(r − 1) is the Hölder conjugate of r and

B1(s) =

(
d∏
k=1

(1 + ks)|r
′|(n−1)(1 + ks

r )
1+|r′|

(1 + ks(1 + 1
n|r′| ))

1+n|r′|

) 2
d

.

Theorem 1.3: Let s ∈ (−1/d, 0]. There exist 0 < r0 < 1 and
α = α(s, r, d, n) such that for r0 ≤ r < 1 and independent
random vectors X and Y in Rd with s-concave densities

Nr(X + Y )α ≥ Nr(X)α +Nr(Y )α.

In particular, one can take

r0 =

(
1− 2

1 +
√
3

(
1 +

1

sd

))−1
,

and

α =

(
1 +

log r + (r + 1) log r+1
2r +B2(s)

(1− r) log 2

)−1
,

where

B2(s) =
2

d

d∑
k=1

(
log

(
1 +

ks

r

)
+ r log(1 + ks)

−(r + 1) log

(
1 +

ks(r + 1)

2r

))
.

Set s = 0 in Theorem 1.2 and Theorem 1.3. Then one can
recover the log-concave case in [18]. The reader is directed to
the full paper expanding on this work [13].

II. PROOF INGREDIENTS

It was first observed by Lieb [14] that the classical EPI can
be proved via establishing an equivalent linearization form.
Our proofs of Theorem 1.2 and Theorem 1.3 follow this
approach. The following linearization of (3) and (4) is due
to Rioul [21]. The case c = 1 has been used in [11].

Theorem 2.1 ([21]): Let X1, . . . , Xn be independent random
vectors in Rd. The following statements are equivalent.
• There exist a constant c > 0 and an exponent α > 0 such

that

Nα
r

(
n∑
i=1

Xi

)
≥ c

n∑
i=1

Nα
r (Xi).

• For any λ1, . . . , λn ≥ 0 such that
∑n
i=1 λi = 1, one has

hr

(
n∑
i=1

√
λiXi

)
−

n∑
i=1

λihr(Xi)

≥ d

2

(
log c

α
+

(
1

α
− 1

)
H(λ)

)
, (7)

where H(λ) , H(λ1, . . . , λn) is the discrete entropy
defined as

H(λ) = −
n∑
i=1

λi log λi.

One of the ingredients used to establish (7) is Young’s
sharp convolution inequality [1], [7]. Its information-theoretic
formulation was given in [9], which we recall below. We
denote by r′ the Hölder conjugate of r, i.e.,

1

r
+

1

r′
= 1.

Theorem 2.2 ([1], [7], [9]): Let r > 0. Let λ1, . . . , λn ≥ 0
such that

∑n
i=1 λi = 1, and let r1, . . . , rn be positive re-

als such that λi = r′/r′i. For independent random vectors
X1, . . . , Xn in Rd, we have

hr

(
n∑
i=1

√
λiXi

)
−

n∑
i=1

λihri(Xi)

≥ d

2
r′

(
log r

r
−

n∑
i=1

log ri
ri

)
. (8)

The second ingredient is a comparison between Rényi
entropies hr and hri . When r > 1, we have 1 < ri < r, and
Jensen’s inequality implies that hr ≤ hri . In this case, one
can deduce (7) from (8) with hri replaced by hr. However,
when r ∈ (0, 1), the order of r and ri are reversed, i.e.,
0 < r < ri < 1, and we need a reverse entropy comparison
inequality. The so-called s-concave densities do satisfy such
a reverse entropy comparison inequality. The following result
of Fradelizi, Li, and Madiman [10] serves this purpose.

Theorem 2.3 ([10]): Let s ∈ R. Let f : Rd → [0,+∞) be
an integrable s-concave function. Then, the function

G(r) = C(r)

∫
Rd

f(x)r dx

is log-concave for r > max{0,−sd}, where

C(r) = (r + s) · · · (r + sd).

We deduce the following Rényi comparison for s-concave
random variables.

Corollary 2.1: Let X be a random vector in Rd with s-
concave density. For −sd < r < q < 1, we have

hq(X) ≥ hr(X) + log
C(r)

1
1−rC(1)

q−r
(1−q)(1−r)

C(q)
1

1−q

.

Proof: Write q = (1−λ) · r+λ · 1. By Theorem 2.3, we
have

G(q) ≥ G(r)1−λG(1)λ = G(r)
1−q
1−rG(1)

q−r
1−r .



Rewrite the above inequality in terms of entropy power

C(q)
2
d ·

1
1−qNq(X) ≥ C(r)

2
d ·

1−q
1−r ·

1
1−qNr(X)C(1)

2
d ·

q−r
1−r ·

1
1−q .

The desired result follows from taking the logarithm of both
sides.

Note that the condition −sd < r < 1 in Corollary 2.1
implies s > −1/d.

By combining Theorem 2.2 and Corollary 2.1, we can
establish the following Rényi entropy power inequality valid
for a single Rényi parameter r ∈ (0, 1) in the class of s-
concave random variables.

Theorem 2.4: Let s ∈ (−1/d, 0] and r ∈ (−sd, 1). Let
X1, . . . , Xn be independent random vectors in Rd with s-
concave densities. Then, for all λ = (λ1, . . . , λn) ∈ [0, 1]n

such that
∑n
i=1 λi = 1, one has

hr

(
n∑
i=1

√
λiXi

)
−

n∑
i=1

λihr(Xi) ≥
d

2
A(λ) +

d∑
k=1

gk(λ),

where

A(λ) = r′
(
1− 1

r′

)
log

(
1− 1

r′

)
− r′

n∑
i=1

(
1− λi

r′

)
log

(
1− λi

r′

)
, (9)

and

gk(λ) = (1− n)r′ log(1 + ks) + (1− r′) log
(
1 +

ks

r

)
+ r′

n∑
i=1

(
1− λi

r′

)
log

(
1 + ks

(
1− λi

r′

))
. (10)

Proof: Let ri be defined by λi = r′/r′i, where r′ and
r′i are Hölder conjugates of r and ri, respectively. Combining
Theorem 2.2 with Corollary 2.1, we have

hr

(
n∑
i=1

√
λiXi

)
−

n∑
i=1

λihr(Xi) ≥

dr′

2

(
log r

r
−

n∑
i=1

log ri
ri

)
+

n∑
i=1

λi log
C(r)

1
1−rC(1)

ri−r

(1−ri)(1−r)

C(ri)
1

1−ri

.

(11)

Notice that C(r) = rdD(r), where D(r) = (1+ s/r) · · · (1+
sd/r). Thus,

n∑
i=1

λi log
C(r)

1
1−rC(1)

ri−r

(1−ri)(1−r)

C(ri)
1

1−ri

=

n∑
i=1

λi

(
logD(r)

1− r
+

(
1

1− ri
− 1

1− r

)
logD(1)− logD(ri)

1− ri

)

+d

(
log r

1− r
−

n∑
i=1

λi
log ri
1− ri

)
.

Using the identities 1/(1−r) = 1−r′ and λi/(1−ri) = λi−r′,
we have
n∑
i=1

λi

(
logD(r)

1− r
+

(
1

1− ri
− 1

1− r

)
logD(1)− logD(ri)

1− ri

)
= (1− r′) logD(r) + (1− n)r′ logD(1)

+

d∑
k=1

n∑
i=1

(r′ − λi) log
(
1 +

ks

ri

)

=

d∑
k=1

[
(1− r′) log

(
1 +

ks

r

)
+ (1− n)r′ log(1 + ks)

+

n∑
i=1

(r′ − λi) log
(
1 +

ks

ri

)]

=

d∑
k=1

gk(λ),

the last identity follows from 1/ri = 1 − λi/r′. Hence, the
RHS of (11) can be written as

d∑
k=1

gk(λ) +
dr′

2

(
log r

r
−

n∑
i=1

log ri
ri

)

+ d

(
log r

1− r
−

n∑
i=1

λi
log ri
1− ri

)

=
d

2
A(λ) +

d∑
k=1

gk(λ).

III. PROOFS

Having Theorem 2.1 and Theorem 2.4 at hand, we are ready
to prove the main results.

A. Proof of Theorem 1.2

Combine Theorem 2.1 with Theorem 2.4. Then it suffices
to determine c such that for all λ = (λ1, . . . , λn) ∈ [0, 1]n

satisfying
∑n
i=1 λi = 1,

d

2
A(λ) +

d∑
k=1

gk(λ) ≥
d

2
log c.

Hence, we can set

c = inf
λ

exp

(
A(λ) +

2

d

d∑
k=1

gk(λ)

)
,

where the infimum runs over all λ = (λ1, . . . , λn) ∈ [0, 1]n

such that
∑n
i=1 λi = 1. For fixed r, both A(λ) and gk(λ)

are the sum of one-dimensional convex functions of the form
(1 + x) log(1 + x). Furthermore, both A(λ) and gk(λ) are
permutation invariant. Hence, the minimum is achieved at λ =
(1/n, · · · , 1/n). This yields the value of c in Theorem 1.2.



B. Proof of Theorem 1.3
First, we state a lemma in [18], which will be used in the

proof of Theorem 1.3.
Lemma 3.1 ([18]): Let c > 0. Let L,F : [0, c]→ [0,∞) be

twice differentiable on (0, c], continuous on [0, c], such that
L(0) = F (0) = 0 and L′(c) = F ′(c) = 0. Let us also assume
that F (x) > 0 for x > 0, that F is strictly increasing, and that
F ′ is strictly decreasing. Then L′′

F ′′ increasing on (0, c) implies
that L

F is increasing on (0, c) as well. In particular,

max
x∈[0,c]

L(x)

F (x)
=
L(c)

F (c)
.

Proof of Theorem 1.3: Using Theorem 2.1 and theorem
2.4 with n = 2, it suffices to find α such that for all λ ∈ [0, 1],

d

2
A(λ) +

d∑
k=1

gk(λ) ≥
d

2

(
1

α
− 1

)
H(λ),

where,

A(λ) = r′
(
1− 1

r′

)
log

(
1− 1

r′

)
−r′

(
1− λ

r′

)
log

(
1− λ

r′

)
−r′

(
1− 1−λ

r′

)
log

(
1− 1−λ

r′

)
,

and

gk(λ) = (1− r′) log
(
1 +

ks

r

)
− r′ log(1 + ks)

+ r′
(
1− λ

r′

)
log

(
1 + ks

(
1− λ

r′

))
+ r′

(
1− 1− λ

r′

)
log

(
1 + ks

(
1− 1− λ

r′

))
.

We can set

α =

(
1− sup

0≤λ≤1

(
−A(λ)
H(λ)

− 2

d

d∑
k=1

gk(λ)

H(λ)

))−1
. (12)

We will show that the optimal value is achieved at λ = 1/2.
Since the function is symmetric about λ = 1/2, it suffices to
show that

−A(λ)
H(λ)

− 2

d

d∑
k=1

gk(λ)

H(λ)
(13)

is increasing on [0, 1/2]. It has been shown in [11] that
−A(λ)/H(λ) is increasing on [0, 1/2]. We will show that
every −gk(λ)/H(λ) is also increasing on [0, 1/2], by applying
Lemma 3.1. Note that −gk(λ), H(λ) ≥ 0. Also, one can
check that gk(0) = gk(1) = 0 and g′k(1/2) = 0. Elementary
calculations yield

H ′′(λ) = − 1

λ(1− λ)
.

Let us define x = λ
|r′| and y = 1−λ

|r′| . Then one can check that

−g′′k (λ) =
ks

|r′|

(
1

1 + ks(1 + x)
+

1

1 + ks(1 + y)

+
1

(1 + ks(1 + x))2
+

1

(1 + ks(1 + y))2

)
.

Hence, we have

− g′′k (λ)

H ′′(λ)
= ksr′W (x),

where

W (x) = xy

(
1

1 + ks(1 + x)
+

1

1 + ks(1 + y)

+
1

(1 + ks(1 + x))2
+

1

(1 + ks(1 + y))2

)
(14)

with y = 1
|r′|−x. Since s, r′ < 0, it suffices to show that W (x)

is increasing over [0, 1
2|r′| ]. We rewrite W in the following way

W (x) =W1(x) +W2(x), (15)

where

W1(x) = xy

(
1

1 + ks(1 + x)
+

1

1 + ks(1 + y)

)
, (16)

and

W2(x) = xy

(
1

(1 + ks(1 + x))2
+

1

(1 + ks(1 + y))2

)
.

(17)
We will show that both W1(x) and W2(x) are increasing on
[0, 1

2|r′| ]. Now let us focus on W1. Since y = 1
|r′| − x, it is

easy to see that

W ′1(x) =

(
1

|r′|
− 2x

)(
1

1 + ks(1 + x)
+

1

1 + ks(1 + y)

)
− ksxy

(
1

(1 + ks(1 + x))2
− 1

(1 + ks(1 + y))2

)
.

Let us denote

a , a(x) = 1 + ks(1 + x) (18)

b , b(x) = 1 + ks(1 + y) = 1 + ks

(
1

|r′|
− x+ 1

)
. (19)

The condition r > −sd implies that a, b ≥ 0. With these
notations, we have

W ′1(x) =

(
1

a
+

1

b

)(
1

|r′|
− 2x− ksxy

(
1

a
− 1

b

))
=

(
1

a
+

1

b

)(
1

|r′|
− 2x

)(
1− (ks)2

xy

ab

)
,

where the last identity follows from

1

a
− 1

b
=
ks

ab

(
1

|r′|
− 2x

)
.

Since a, b ≥ 0 and x ∈ [0, 1
2|r′| ], it suffices to show that

ab− (ks)2xy ≥ 0.

Using (18) and (19), we have

ab− (ks)2xy = (1 + ks)

(
1 +

ks

r

)
.

Then the desired statement follows from that s > −1/d and
r > −sd. We conclude that W1 is increasing on [0, 1

2|r′| ].



It remains to show that W2(x) is increasing on [0, 1
2|r′| ].

Recall the definition of W2(x) in (17), it is easy to check that

W ′2(x) =

(
1

|r′|
− 2x

)(
1

a2
+

1

b2

)
− 2ksxy

(
1

a3
− 1

b3

)
=
b− a
ks

(
1

a2
+

1

b2

)
− 2ksxy

(
1

a3
− 1

b3

)
=

b− a
ksa3b3

T (x),

where

T (x) = ab(a2 + b2)− 2k2s2xy(a2 + ab+ b2).

Since
b− a
ks

=
1

|r′|
− 2x ≥ 0, x ∈ [0, 1/(2|r′|)],

it suffices to show that T (x) ≥ 0 for x ∈ [0, 1/(2|r′|)]. Using
the identities

a′(x)b(x)+a(x)b′(x) = ks(b−a) = −a(x)a′(x)−b(x)b′(x),

one can check that

T ′(x) = ks(a− b)U(x),

where
U(x) = a2 + b2 + 4ab− 2k2s2xy.

Notice that U ′(x) ≡ 0, which implies that U(x) is a constant.
Since a, b ≥ 0, we have

U(0) = a2 + b2 + 4ab > 0.

Hence, T ′(x) ≤ 0, i.e., T (x) is decreasing. Therefore, since
a = b when x = 1

2|r′| , we have

T (x) ≥ T
(

1

2|r′|

)
= 2a2(a2 − 3k2s2x2) at x =

1

2|r′|
.

It suffices to have

a2 ≥ 3k2s2x2, at x =
1

2|r′|
,

which is equivalent to

1

|r′|
≤ 2

1 +
√
3

(
1

k|s|
− 1

)
.

This finishes the proof that every −gk(λ)/H(λ) is also in-
creasing on [0, 1/2]. Then the numerical value of α in Theorem
1.3 follows from setting λ = 1/2 in (12).

Remark 3.1: The key insight of the optimization argu-
ment in the proof is the monotonicity of −A(λ)/H(λ)
and −gk(λ)/H(λ) over λ ∈ [0, 1/2]. The monotonicity of
−A(λ)/H(λ) is independent of r. Numerical examples show
that −gk(λ)/H(λ), even the optimization quantity in (13), is
not monotone when r is small. This is one of the reasons for
the restriction r > r0.

Remark 3.2: Note that the condition r > −sd of Theorem
2.3 can be rewritten as

1

|r′|
≤
(

1

d|s|
− 1

)
.

We do not know whether Theorem 1.3 holds when
2

1 +
√
3

(
1

d|s|
− 1

)
<

1

|r′|
≤
(

1

d|s|
− 1

)
.
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