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Abstract

In this paper we present new versions of the classical Brunn-Minkowski inequality for different
classes of measures and sets. We show that the inequality

µ(λA+ (1− λ)B)1/n ≥ λµ(A)1/n + (1− λ)µ(B)1/n

holds true for an unconditional product measure µ with decreasing density and a pair of unconditional
convex bodies A,B ⊂ Rn. We also show that the above inequality is true for any unconditional log-
concave measure µ and unconditional convex bodies A,B ⊂ Rn. Finally, we prove that the inequality
is true for a symmetric log-concave measure µ and a pair of symmetric convex sets A,B ⊂ R2, which,
in particular, settles two-dimensional case of the conjecture for Gaussian measure proposed in [13].

In addition, we deduce the 1/n-concavity of the parallel volume t 7→ µ(A + tB), Brunn’s type
theorem and certain analogues of Minkowski first inequality.
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1 Introduction

The classical Brunn-Minkowski inequality states that for any two non-empty compact sets A,B ⊂ Rn
and any λ ∈ [0, 1] we have

voln(λA+ (1− λ)B)1/n ≥ λ voln(A)1/n + (1− λ) voln(B)1/n, (1)

with equality if and only if B = aA + b, where a > 0 and b ∈ Rn. Here voln stands for the Lebesgue
measure on Rn and

A+B = {a+ b : a ∈ A, b ∈ B}

is the Minkowski sum of A and B. Due to homogeneity of the volume, this inequality is equivalent to
voln(A+B)1/n ≥ voln(A)1/n+voln(B)1/n. The Brunn-Minkowski inequality turns out to be a powerful
tool. In particular, it implies the classical isoperimetric inequality: for any compact set A ⊂ Rn we have
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voln(At) ≥ voln(Bt), t ≥ 0, where B is a Euclidean ball satisfying voln(A) = voln(B) and At stands for
the t-enlargement of A, i.e., At = A+ tBn

2 , where Bn
2 is the unit Euclidean ball, Bn

2 = {x : |x| = 1}. To
see this it is enough to observe that

voln(A+ tBn
2 )1/n ≥ voln(A)1/n + voln(tBn

2 )1/n = voln(B)1/n + voln(tBn
2 )1/n = voln(B + tBn

2 )1/n.

Taking t → 0+ one gets a more familiar form of isoperimetry: among all sets with fixed volume the
surface area

vol+n (∂A) = lim inf
t→0+

voln(A+ tBn
2 )− voln(A)

t

is minimized in the case of the Euclidean ball. We refer to [11] for more information on Brunn-Minkowski-
type inequalities.

Using the inequality between means one gets an a priori weaker dimension free form of (1), namely

voln(λA+ (1− λ)B) ≥ voln(A)λ voln(B)1−λ. (2)

In fact (2) and (1) are equivalent. To see this one has to take Ã = A/ voln(A)1/n, B̃ = B/ voln(B)1/n

and λ̃ = λ voln(A)1/n/(λ voln(A)1/n + (1− λ) voln(B)1/n) in (2). This phenomenon is a consequence of
homogeneity of the Lebesgue measure.

The above notions can be generalized to the case of the so-called s-concave measures. Here we assume
that s > 0, whereas in general the notion of s-concave measures makes sense for any s ∈ [−∞,∞]. We
say that a measure µ on Rn is s-concave if for any non-empty compact sets A,B ⊂ Rn we have

µ(λA+ (1− λ)B)s ≥ λµ(A)s + (1− λ)µ(B)s. (3)

Similarly, a measure µ is called log-concave (or 0-concave) if for any compact sets A,B ⊂ Rn we have

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ. (4)

We say that the support of measure µ is non-degenerate if it is not contained in any affine subspace of
Rn of dimension less than n. It was proved by Borell (see [2]) that a measure µ, with non-degenerate
support, is log-concave if and only if it has a log-concave density, i.e. a density of the form ϕ = e−V ,
where V is convex (and may attain value +∞). Moreover, µ is s-concave with s ∈ (0, 1/n) if and only
if it has a density ϕ such that ϕ

s
1−sn is concave. In the case s = 1/n the density has to satisfy the

strongest condition ϕ(λx + (1 − λ)y) ≥ max(ϕ(x), ϕ(y)). An example of such measure is the uniform
measure on a convex body K ⊂ Rn. Let us also notice that a measure with non-degenerate support
cannot be s-concave with s > 1/n. It can be seen by taking Ã = εA and B̃ = εB in (3), sending ε→ 0+

and comparing the limit with the Lebesgue measure.
Inequality (2) says that the Lebesgue measure is log-concave, whereas (1) means that it is also 1/n-

concave. In general log-concavity does not imply s-concavity for s > 0. Indeed, consider the standard
Gaussian measure γn on Rn, i.e., the measure with density (2π)−n/2 exp(−|x|2/2). This density is clearly
log-concave and therefore γn satisfies (4). To see that γn does not satisfy (3) for s > 0 it suffices to take
B = {x} and send x→∞. Then the left hand side converges to 0 while the right hand side stays equal
to λµ(A)s, which is strictly positive for λ > 0 and µ(A) > 0.

One might therefore ask whether (3) holds true for γn if we restrict ourselves to some special class
of subsets of Rn. In [13] R. Gardner and the fourth named author conjectured (Question 7.1) that

γn(λA+ (1− λ)B)1/n ≥ λγn(A)1/n + (1− λ)γn(B)1/n (5)

holds true for any closed convex sets with 0 ∈ A ∩ B and λ ∈ [0, 1] and verified this conjecture in the
following cases:
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(a) when A and B are products of intervals containing the origin,

(b) when A = [−a1, a2]× Rn−1, where a1, a2 > 0 and B is arbitrary,

(c) when A = aK and B = bK where a, b > 0 and K is a convex set, symmetric with respect to the
origin.

It is interesting to note that the case (c) is related to the B-conjecture for Gaussian measures proposed
by Banaszczyk (see [16]) and solved by Cordero-Erausquin, Fradelizi, and Maurey (see [7]). It states
that for any convex symmetric set K the function t 7→ γn(etK) is log-concave. The B-conjecture is
asking the same question for the general class of the even log-concave measures. It was shown in [7]
that the conjecture is true for the case of unconditional log-concave measures and unconditional sets
(see the definition below). Moreover, the conjecture has an affirmative answer for n = 2 due to the
works of Livne Bar-on [17] and of Saroglou [28]. In [28] the proof is done by linking the problem to the
new log-Brunn-Minkowski inequality of Böröczky, Lutwak, Yang and Zhang, see [5], [6], [27] and [28].
In [22] the second named author proved that the assertion of the B-conjecture for a measure µ with a
radially decreasing density and a symmetric convex body K formally implies the 1/n-concavity of the
measure µ on the set of dilates of K.

In [23] T. Tkocz and the third named author showed that in general (5) is false under the assumption
0 ∈ A ∩B. For sufficiently small ε > 0 and α < π/2 sufficiently close to π/2 the pair of sets

A = {(x, y) ∈ R2 : y ≥ |x| tanα}, B = {(x, y) ∈ R2 : y ≥ |x| tanα− ε}

serves as a counterexample. The authors however conjectured that (5) should be true for (centrally)
symmetric convex bodies A,B.

One of the most important Brunn-Minkowski type inequalities for the Gaussian measure is Ehrhard’s
inequality, which states that for any two non-empty compact sets A,B ⊂ Rn and any λ ∈ [0, 1] we have

Φ−1(γn(λA+ (1− λ)B)) ≥ λΦ−1(γn(A)) + (1− λ)Φ−1(γn(B)), (6)

where Φ(t) = γ1((−∞, t]). This inequality has been considered for the first time by Ehrhard in [9],
where the author proved it assuming that both A and B are convex. Then Latała in [15] generalized
Ehrhard’s result to the case of arbitrary A and convex B. In its full generality, the inequality (6) has
been established by Borell, [4] (see also [1]). Note that (5) is an inequality of the same type, with
Φ(t) replaced with tn, but none of them is a direct consequence of the other. The crucial property of
Ehrhard’s inequality is that it (in fact a more general form where λ and 1 − λ are replaced with α
and β, under the conditions α + β ≥ 1 and |α − β| ≤ 1) gives the Gaussian isoperimetry as a simple
consequence.

In this paper, K denotes a family of sets closed under dilations, i.e., A ∈ K implies tA ∈ K for any
t ≥ 0. In particular, we assume that for any A ∈ K we have 0 ∈ A. Classical families of such sets include
the class of star-shaped bodies, the class of convex bodies containing the origin, the class of symmetric
bodies and the class of unconditional bodies.

A general form of the Brunn-Minkowski inequality can be stated as follows.

Definition 1. We say that a Borel measure µ on Rn satisfies the Brunn-Minkowski inequality in the
class of sets K if for any A,B ∈ K and for any λ ∈ [0, 1] we have

µ(λA+ (1− λ)B)1/n ≥ λµ(A)1/n + (1− λ)µ(B)1/n. (7)

Before we state our results, we introduce some basic notation and definitions.

Definition 2.
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1. We say that a function f : Rn → R is unconditional if for any choice of signs ε1, . . . , εn ∈ {−1, 1}
and any x = (x1, . . . , xn) ∈ Rn we have f(ε1x1, . . . , εnxn) = f(x).

2. We say that an unconditional function is decreasing if for any 1 ≤ i ≤ n and any real numbers
x1, . . . , xi−1, xi+1, . . . , xn the function

t 7→ f(x1, . . . , xi−1, t, xi+1, . . . , xn)

is non-increasing on [0,∞).

3. A set A ⊆ Rn is called an ideal if 1A is unconditional and decreasing. In other words, a set A ⊂ Rn
is an ideal if (x1, . . . , xn) ∈ A implies (δ1x1, . . . , δnxn) ∈ A for any choice of δ1, . . . , δn ∈ [−1, 1].
The class of all ideals (in Rn) will be denoted by KI .

4. A set A ⊆ Rn is called symmetric if A = −A. The class of all symmetric convex sets in Rn will
be denoted by KS .

5. A measure µ on Rn is called unconditional if it has an unconditional density.

We note that the class of ideals contains the class of unconditional convex bodies, but it also contains
some non-convex sets. For example, Bn

p = {x ∈ Rn :
∑
|xi|p ≤ 1} for p ∈ (0, 1) are ideals. We also

note that if an unconditional measure µ on Rn is a product measure, i.e. µ = µ1 ⊗ . . . ⊗ µn, then the
measures µi are even on R.

Our first theorem reads as follows.

Theorem 1. Let µ be an unconditional product measure with decreasing density. Then µ satisfies the
Brunn-Minkowski inequality in the class KI of all ideals in Rn.

In addition, the Examples 1 and 2 at the end of the paper show that neither the assumption that µ
is a product measure, nor the unconditionality of our sets A and B can be dropped.

In the second part of this article we provide a link between the Brunn-Minkowski inequality and the
log-Brunn-Minkowski inequality. To state our observation we need two definitions.

Definition 3. Let K be a class of subsets closed under dilations. We say that a family � = (�λ)λ∈[0,1]
of functions K×K → K is a geometric mean if for any A,B ∈ K the set A�λB is measurable, satisfies
an inclusion A�λ B ⊆ λA+ (1− λ)B, and (sA)�λ (tB) = sλt1−λ(A�λ B), for any s, t > 0.

Definition 4. We say that a Borel measure µ on Rn satisfies the log-Brunn-Minkowski inequality in
the class of sets K with a geometric mean �, if for any sets A,B ∈ K and for any λ ∈ [0, 1] we have

µ(A�λ B) ≥ µ(A)λµ(B)1−λ.

Remark 1. We shall use two different geometric means. The first one is the geometric mean �S :
KS ×KS → KS , defined by the formula

A�Sλ B = {x ∈ Rn : 〈x, u〉 ≤ hλA(u)h1−λB (u), ∀u ∈ Sn−1}.

Here hA is the support function of A, i.e., hA(u) = supx∈A 〈x, u〉 (see, [12], [29]).
The second mean �I : KI ×KI → KI is defined by

A�Iλ B =
⋃

x∈A,y∈B
[−|x1|λ|y1|1−λ, |x1|λ|y1|1−λ]× . . .× [−|xn|λ|yn|1−λ, |xn|λ|yn|1−λ].

It is straightforward to check, with the help of the inequality aλb1−λ ≤ λa+ (1− λ)b, a, b ≥ 0, that
both means are indeed geometric.
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In the Section 3 we prove the following proposition.

Proposition 1. Suppose that a Borel measure µ with a radially decreasing density f , i.e. density
satisfying f(tx) ≥ f(x) for any x ∈ Rn and t ∈ [0, 1], satisfies the log-Brunn-Minkowski inequality, with
a geometric mean �, in a certain class of sets K. Then µ satisfies the Brunn-Minkowski inequality in
the class K.

Böröczky, Lutwak, Yang and Zhang [5], proved the log-Brunn-Minkowski inequality for the Lebesgue
measure and symmetric convex bodies on R2 equipped with geometric mean �S . Saroglou [28], gener-
alized the inequality to the case of measures with even log-concave densities on R2 (see Corollary 3.3
therein). Thus, as a consequence of Proposition 1 and Remark 1, we get the following theorem.

Theorem 2. Let µ be a measure on R2 with an even log-concave density. Then µ satisfies the Brunn-
Minkowski inequality in the class KS of all symmetric convex sets in R2.

Moreover, in [7] (Proposition 8, see also Proposition 4.2 in [27]) the authors proved the following fact.

Theorem 3. The log-Brunn-Minkowski inequality holds true with the geometric mean �I for any
measure with unconditional log-concave density in the class KI of all ideals in Rn.

For the sake of completeness, we recall the argument in Section 3. As a consequence, applying our
Proposition 1 together with Remark 1, we deduce:

Theorem 4. Let µ be an unconditional log-concave measure on Rn. Then µ satisfies the Brunn-
Minkowski inequality in the class KI of all ideals in Rn.

The rest of this article is organized as follows. In the next section we present the proof of Theorem
1. In Section 3 we prove Proposition 1 and recall the proof of Theorem 3. In Section 4 we present
applications of the above results. In the last section we discuss equality cases in Theorem 2 and
Theorem 4. We also give examples showing optimality of Theorem 1 and state some open questions.

2 Proof of Theorem 1

Our strategy is to prove a certain functional version of (7). A functional version of the classical Brunn-
Minkowski inequality is called the Prékopa-Leindler inequality, see [11] for the proof.

Prékopa-Leindler inequality, [26], [20]: Let f, g,m be non-negative measurable functions on Rn and
let λ ∈ [0, 1]. If for all x, y ∈ Rn we have m(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ then∫

m dx ≥
(∫

f dx
)λ(∫

g dx
)1−λ

.

Here we prove a version of the above inequality under the assumption of unconditionality of functions
f, g and m.

Proposition 2. Fix λ, p ∈ (0, 1). Suppose that m, f, g are unconditional decreasing non-negative
functions and let µ be an unconditional product measure with decreasing density on Rn. Assume that
for any x, y ∈ Rn we have

m(λx+ (1− λ)y) ≥ f(x)pg(y)1−p.

Then ∫
m dµ ≥

[(
λ

p

)p(1− λ
1− p

)1−p
]n(∫

f dµ
)p(∫

g dµ
)1−p

.
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The above proposition allows us to prove the following lemma, which is in fact a reformulation of
Theorem 1.

Lemma 1. Let A,B be ideals in Rn and let µ be an unconditional product measure with decreasing
density on Rn. Then for any λ ∈ [0, 1] and p ∈ (0, 1) we have

µ(λA+ (1− λ)B) ≥

[(
λ

p

)p(1− λ
1− p

)1−p
]n
µ(A)pµ(B)1−p.

It is worth noticing that the factor on the right hand side of this inequality replaces in some sense
the lack of homogeneity of our measure µ. The main idea of the proof is to introduce an additional
parameter p 6= λ and do the optimization with respect to p.

We first show how Lemma 1 implies Theorem 1.

Proof of Theorem 1. Without loss of generality we assume that λ ∈ (0, 1). Let us assume for a moment
that µ(A)µ(B) > 0. Then we can use Lemma 1 with

p =
λµ(A)1/n

λµ(A)1/n + (1− λ)µ(B)1/n
∈ (0, 1). (8)

Note that

λ

p
=
λµ(A)1/n + (1− λ)µ(B)1/n

µ(A)1/n
,

1− λ
1− p

=
λµ(A)1/n + (1− λ)µ(B)1/n

µ(B)1/n
.

Then [(
λ

p

)p(1− λ
1− p

)1−p
]n
µ(A)pµ(B)1−p =

(
λµ(A)1/n + (1− λ)µ(B)1/n

)n
.

Thus the inequality in Lemma 1 becomes

µ(λA+ (1− λ)B) ≥
(
λµ(A)1/n + (1− λ)µ(B)1/n

)n
.

Now suppose that, say, µ(B) = 0. Since B is a non-empty ideal, we have 0 ∈ B. Therefore,
λA ⊆ λA+ (1− λ)B. Let ϕ be the unconditional decreasing density of µ. Hence,

µ(λA+ (1− λ)B) ≥ µ(λA) =

∫
λA
ϕ(x) dx = λn

∫
A
ϕ(λy) dy

= λn
∫
A
ϕ(λy1, . . . , λyn) dy = λn

∫
A
ϕ(λ|y1|, . . . , λ|yn|) dy

≥ λn
∫
A
ϕ(|y1|, . . . , |yn|) dy = λnµ(A).

Therefore,
µ(λA+ (1− λ)B)1/n ≥ λµ(A)1/n = λµ(A)1/n + (1− λ)µ(B)1/n.

Next we show that Proposition 2 implies Lemma 1.

Proof of Lemma 1. We can assume that λ ∈ (0, 1). Let us take m(x) = 1λA+(1−λ)B(x), f(x) = 1A(x),
g(x) = 1B(x). Clearly, f, g and m are unconditional and decreasing, and verify m(λx + (1 − λ)y) ≥
f(x)pg(y)1−p for any p ∈ (0, 1). Our assertion follows from Proposition 2.
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For the proof of Proposition 2 we need a one dimensional Brunn-Minkowski inequality for unconditional
measures.

Lemma 2. Let A,B be two symmetric intervals and let µ be an unconditional measure with decreasing
density on R. Then for any λ ∈ [0, 1] we have

µ(λA+ (1− λ)B) ≥ λµ(A) + (1− λ)µ(B).

Proof. We can assume that A = [−a, a] and B = [−b, b] for some a, b > 0. Let ϕ be the density of µ.
Then our assertion is equivalent to∫ λa+(1−λ)b

0
ϕ(x) dx ≥ λ

∫ a

0
ϕ(x) dx+ (1− λ)

∫ b

0
ϕ(x) dx.

In other words, the function t 7→
∫ t
0 ϕ(x) dx should be concave on [0,∞). This is equivalent to t 7→ ϕ(t)

being non-increasing on [0,∞).

Proof of Proposition 2. We proceed by induction on n. Let us begin with the case n = 1. We can
assume that ‖f‖∞, ‖g‖∞ > 0. If we multiply the functions m, f, g by positive numbers cm, cf , cg
satisfying cm = cpfc

1−p
g , the hypothesis and the assertion do not change. Therefore, taking cf = ‖f‖−1∞ ,

cg = ‖g‖−1∞ , cm = ‖f‖−p∞ ‖g‖−(1−p)∞ we can assume that ‖f‖∞ = ‖g‖∞ = 1. Then the sets {f > t}
and {g > t} are non-empty for t ∈ (0, 1). Moreover, λ{f > t} + (1 − λ){g > t} ⊆ {m > t}. Indeed,
if x ∈ {f > t} and y ∈ {g > t} then m(λx + (1 − λ)y) ≥ f(x)pg(y)1−p > tpt1−p = t. Thus,
λx+ (1− λ)y ∈ {m > t}. Therefore, using Lemma 2, we get∫

m dµ =

∫ ∞
0

µ({m > t}) dt ≥
∫ 1

0
µ(λ{f > t}+ (1− λ){g > t}) dt

≥ λ
∫ 1

0
µ({f > t}) dt+ (1− λ)

∫ 1

0
µ({g > t}) dt

= λ

∫
f dµ+ (1− λ)

∫
g dµ.

Now, using the inequality pa+ (1− p)b ≥ apb1−p, a, b ≥ 0, we get

λ

∫
f dµ+ (1− λ)

∫
g dµ = p

λ

p

∫
f dµ+ (1− p)1− λ

1− p

∫
g dµ (9)

≥
(
λ

p

)p(1− λ
1− p

)1−p(∫
f dµ

)p(∫
g dµ

)1−p
. (10)

Next, we do the induction step. Let us assume that the assertion is true in dimension n − 1. Let
m, f, g : Rn → [0,∞) be unconditional decreasing. For x0, y0, z0 ∈ R we define functions mz0 , fx0 , gy0
by

mz0(x) = m(z0, x), fx0(x) = f(x0, x), gy0(x) = g(y0, x).

Clearly, these functions are also unconditional. Moreover, due to our assumptions on m, f, g we have

mλx0+(1−λ)y0(λx+ (1− λ)y) = m(λx0 + (1− λ)y0, λx+ (1− λ)y)

≥ f(x0, x)pg(y0, y)1−p = fx0(x)pgy0(y)1−p.

Let us decompose µ in the form µ = µ1 × µ̄, where µ1 is a measure on R. Note that µ1 and µ̄ are
unconditional and µ̄ is a product measure on Rn−1. Thus, by our induction assumption we have∫

mλx0+(1−λ)y0 dµ̄ ≥

[(
λ

p

)p(1− λ
1− p

)1−p
]n−1(∫

fx0 dµ̄
)p(∫

gy0 dµ̄
)1−p

. (11)
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Now we define the functions

M(z0) =

[(
λ

p

)p(1− λ
1− p

)1−p
]−(n−1) ∫

mz0(ξ) dµ̄(ξ), (12)

F (x0) =

∫
fx0(ξ) dµ̄(ξ), G(y0) =

∫
gy0(ξ) dµ̄(ξ). (13)

Using inequality (11) we immediately get that

M(λx0 + (1− λ)y0) ≥ F (x0)
pG(y0)

1−p.

Moreover, it is easy to see that M,F,G are unconditional decreasing on R. Thus, using Lemma 2 (the
one-dimensional case), we get∫

M(z0) dµ1(z0) ≥
(
λ

p

)p(1− λ
1− p

)1−p(∫
F (x0) dµ1(x0)

)p(∫
G(y0) dµ1(y0)

)1−p
. (14)

Observe that∫
M(z0) dµ1(z0) =

[(
λ

p

)p(1− λ
1− p

)1−p
]−(n−1) ∫ ∫

mz0(ξ) dµn−1(ξ) dµ1(z0)

=

[(
λ

p

)p(1− λ
1− p

)1−p
]−(n−1) ∫

m dµ.

Similarly, ∫
F (x0) dµ1(x0) =

∫
f dµ,

∫
G(y0) dµ1(y0) =

∫
g dµ.

Our assertion follows.

3 Proof of Proposition 1

In this section we first prove Proposition 1. The argument has a flavour of our previous proof.

Proof of Proposition 1. Let us first assume that µ(A)µ(B) > 0. From the definition of geometric mean
we have A�p B ⊆ pA+ (1− p)B, for any p ∈ (0, 1). Thus,

µ(λA+ (1− λ)B) = µ

(
p · λ

p
A+ (1− p) · 1− λ

1− p
B

)
≥ µ

((
λ

p
A

)
�p
(

1− λ
1− p

B

))
= µ

((
λ

p

)p(1− λ
1− p

)1−p
A�p B

)
.

Let t =
(
λ
p

)p (
1−λ
1−p

)1−p
and C = A�pB. From the concavity of the logarithm it follows that 0 ≤ t ≤ 1.

We have
µ(tC) =

∫
tC
f(x) dx = tn

∫
C
f(tx) dx ≥ tn

∫
C
f(x) dx = tnµ(C). (15)
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Therefore,

µ(λA+ (1− λ)B) ≥ tnµ(A�p B) ≥ tnµ(A)pµ(B)1−p =

[(
λ

p

)p(1− λ
1− p

)1−p
]n
µ(A)pµ(B)1−p.

Taking

p =
λµ(A)1/n

λµ(A)1/n + (1− λ)µ(B)1/n
(16)

gives
µ(λA+ (1− λ)B)1/n ≥ λµ(A)1/n + (1− λ)µ(B)1/n.

If, say, µ(B) = 0 then by (15), applied for C replaced with A, and the fact that 0 ∈ B we get

µ(λA+ (1− λ)B)1/n ≥ µ(λA)1/n ≥ λµ(A)1/n = λµ(A)1/n + (1− λ)µ(B)1/n.

We now sketch the proof of Theorem 3.

Proof. Let A,B ∈ KI and let us take f, g,m : [0,+∞)n → [0,+∞) given by f = 1A∩[0,+∞)n , g =
1B∩[0,+∞)n and m = 1(A�IλB)∩[0,+∞)n . Let ϕ be the unconditional log-concave density of µ. We define

F (x) = f(ex1 , . . . , exn)ϕ(ex1 , . . . , exn)ex1+···+xn , G(x) = g(ex1 , . . . , exn)ϕ(ex1 , . . . , exn)ex1+···+xn ,

M(x) = m(ex1 , . . . , exn)ϕ(ex1 , . . . , exn)ex1+···+xn .

One can easily check, using the definition of KI and the definition of the geometric mean �Iλ, as well as
the inequalities

ϕ(eλx1+(1−λ)y1 , . . . , eλxn+(1−λ)yn)

≥ ϕ(λex1 + (1− λ)ey1 , . . . , λexn + (1− λ)eyn) ≥ ϕ(ex1 , . . . , exn)λϕ(ey1 , . . . , eyn)1−λ,

that the functions F,G,M satisfy the assumptions of the Prékopa-Leindler inequality. As a consequence,
we get µ((A �Iλ B) ∩ [0,+∞)n) ≥ µ(A ∩ [0,+∞)n)λµ(B ∩ [0,+∞)n)1−λ. The assertion follows from
unconditionality of our measure µ and the fact that A,B and A�Iλ B are ideals.

4 Applications

Let us describe some corollaries of the Brunn-Minkowski type inequality we established, which are
analogues to well-known offsprings of the Brunn-Minkowski inequality for the volume. In what follows
a pair (K, µ) is called nice if one of the following three cases holds.

(a) K = KI and µ is an unconditional, product measure with decreasing density on Rn,

(b) K = KI and µ is an unconditional log-concave measure on Rn,

(c) K = KS and µ is an even log-concave measure on R2.

Corollary 1. Suppose that a pair (K, µ) is nice. Let A,B ⊂ K be convex. Then the function t 7→
µ(A+ tB)1/n is concave on [0,∞).

9



Indeed, for any λ ∈ [0, 1] and t1, t2 ≥ 0 we have

µ(A+ (λt1 + (1− λ)t2)B)1/n = µ(λ(A+ t1B) + (1− λ)(A+ t2B))1/n

≥ λµ(A+ t1B)1/n + (1− λ)µ(A+ t2B)1/n.

Note that in the first line we have used the convexity of A and B. If B = Bn
2 is the unit Euclidean ball,

the expression µ(A+ tB) is called the parallel volume and has been studied in the case of the Lebesgue
measure by Costa and Cover in [8] as an analogue of concavity of entropy power in Information theory.
The authors conjectured that for any measurable set A the parallel volume is 1/n-concave. In [10], M.
Fradelizi and the second named author proved that this conjecture is true for any measurable set in
dimension 1 and for any connected set in dimension 2. However, the authors proved that this conjecture
fails for arbitrary sets in dimension n ≥ 2. In a recent paper [21] the second named author investigated
the parallel volume µ(A+ tBn

2 ) in the context of s-concave measures as well as functional versions. Our
Corollary 1 gives the Costa-Cover conjecture for any convex set A ∈ K, where (K, µ) is a nice pair.
Moreover, Bn

2 can be replaced with any convex set B ∈ K.
Second, we state the following analogue of Brunn’s theorem on volumes of sections of convex bodies

(see [11], [12] and [29] for the volume case).

Corollary 2. Suppose that a pair (K, µ) is nice. Let A ∈ K be a convex set and let ϕ be the density
of µ. Then the function t 7→ µn−1(A ∩ {x1 = t}) is 1

n−1 -concave on its support, where

µn−1(A ∩ {x1 = t}) =

∫
(t,x2,...,xn)∈A

ϕ(t, x2, . . . , xn) dx2 . . . dxn.

Indeed, let us denote A{x1=t} = A ∩ {x1 = t}. By convexity of A we get

λA{x1=t1} + (1− λ)A{x1=t2} ⊆ A{x1=λt1+(1−λ)t2}.

Thus, using (7), for any λ ∈ [0, 1] and t1, t2 ∈ R such that A{x1=t1} and A{x1=t2} are both non-empty,
we get

µn−1(A{x1=λt1+(1−λ)t2})
1

n−1 ≥ µn−1(λA{x1=t1} + (1− λ)A{x1=t2})
1

n−1

≥ λµn−1(A{x1=t1})
1

n−1 + (1− λ)µn−1(A{x1=t2})
1

n−1 .

Third, let us mention the relation of our result to the Gaussian isoperimetric inequality and the
S-inequality. The Gaussian isoperimetric inequality (established by Sudakov and Tsirelson, [30], and
independently by Borell, [3]), states that for any measurable set A ⊂ Rn and any t > 0, the quantity
γn(At) is minimized, among all sets with prescribed measure, for the half spaces Ha,θ = {x ∈ Rn :
〈x, θ〉 ≤ a}, with a ∈ R and θ ∈ Sn−1. Infinitesimally, it says that among all sets with prescribed
measure the half spaces are those with the smallest Gaussian surface area, i.e., the quantity

γ+n (∂A) = lim inf
t→0+

γn(A+ tBn
2 )− γn(A)

t
.

The S-inequality of Latała and Oleszkiewicz, see [18], states that for any t > 1 and any symmetric
convex body A the quantity γn(tA) is minimized, among all subsets with prescribed measure, for the
strip of the form SL = {x ∈ Rn : |x1| ≤ L}. This result admits an equivalent infinitesimal version,
namely, among all symmetric convex bodies A with prescribed Gaussian measure the strip SL minimizes
the quantity d

dtγn(tA)
∣∣
t=1

, which is equivalent to maximizing

Mγn(A) =

∫
A
|x|2 dγn(x),

10



see [14] or [25]. For a general measure µ with a density e−ψ, one can show that the infinitesimal version
of S-inequality is an issue of maximizing the quantity

Mµ(A) =

∫
A
〈x,∇ψ(x)〉 dµ(x), (17)

see equation (22) below. Not much is known about an analogue of S-inequality in the case of general
measure. In the unconditional case it has been solved for some particular product measures like products
of Gamma and Weibull distributions, see [24]. It turns out that inequality (5) implies a certain mixture
of Gaussian isoperimetry and reverse S-inequality. Namely, we have the following corollary.

Corollary 3. Let A be an ideal in Rn (or a general symmetric convex set in R2) and let r > 0. Then
we have

rγ+n (∂A) +Mγn(A) ≥ nγn(rBn
2 )

1
nγn(A)1−

1
n

with equality for A = rBn
2 .

Let us note that

γn(rBn
2 + εBn

2 ) = (2π)−n/2(r + ε)n
∫
Bn2

e−
|(r+ε)x|2

2 dx

= (2π)−n/2(rn + nrn−1ε+ o(ε))

∫
Bn2

e−
|rx|2

2 (1− εr|x|2 + o(ε)) dx

= γn(rBn
2 ) +

ε

r
(nγn(rBn

2 )−Mγn(rBn
2 )) + o(ε).

Thus,
rγ+n (∂(rBn

2 )) = nγn(rBn
2 )−Mγn(rBn

2 ).

Hence, if γn(A) = γn(rBn
2 ) in Corollary 3, then we get

rγ+n (∂A) +Mγn(A) ≥ rγ+n (∂(rBn
2 )) +Mγn(rBn

2 ). (18)

In other words, Euclidean balls minimize the quantity rγ+n (∂A) + Mγn(A) among ideals in Rn (or
symmetric convex sets in R2) with prescribed measure.

It is known that among all symmetric convex sets (in fact among all measurable sets) with prescribed
Gaussian measure, the quantity Mγn(A) is minimized by Euclidean balls rBn

2 (this fact can be seen as
a reverse S-inequality). Indeed, suppose that γn(A) = γn(rBn

2 ). Then

Mγn(A)−Mγn(rBn
2 ) =

∫
A\(rBn2 )

|x|2 dγn(x)−
∫
(rBn2 )\A

|x|2 dγn(x)

≥ r2(γn(A \ (rBn
2 ))− γn((rBn

2 ) \A)) = 0.

However, in general the quantity γ+n (∂A) is not minimized by Euclidean balls, e.g., one can check that
for large values of γ2(A) the symmetric strip has smaller Gaussian surface area than the Euclidean ball,
see [19, Lemma 3]. Hence, inequality (18) is a new isoperimetric-type inequality that links the Gaussian
isoperimetry and reverse S-inequality.

Let us state and prove a more general version of Corollary 3. Let µ+(∂A) be the µ surface area of
A, i.e.,

µ+(∂A) = lim inf
t→0+

µ(A+ tBn
2 )− µ(A)

t
.

Let
V µ
1 (A,B) =

1

n
lim inf
t→0+

µ(A+ tB)− µ(A)

t

be the first mixed volume of arbitrary sets A and B, with respect to measure µ. Clearly, µ+(∂A) =
nV µ

1 (A,Bn
2 ).
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Corollary 4. Let A,B ∈ K and suppose that (K, µ) is a nice pair. Then we have

V µ
1 (A,B) +

1

n
Mµ(A) ≥ µ(B)1/nµ(A)1−1/n. (19)

In particular,
rµ+(∂A) +Mµ(A) ≥ nµ(rBn

2 )1/nµ(A)1−1/n. (20)

To prove this we note that for any sets A,B ∈ K and any ε ∈ [0, 1) we have

µ(A+ εB)1/n ≥ (1− ε)µ
(

A

1− ε

)1/n

+ εµ(B)1/n. (21)

Indeed, it suffices to use Theorem 1 with λ = 1− ε and Ã = A/(1− ε), B̃ = B. Note that for ε = 0 we
have equality. Thus, differentiating (21) at ε = 0 we get

1

n
µ(A)

1
n
−1 · nV µ

1 (A,B) ≥ µ(B)
1
n − µ(A)

1
n +

1

n
µ(A)

1
n
−1 d

dt
µ(tA)

∣∣∣
t=1

.

By changing variables we obtain

d
dt
µ(tA)

∣∣∣
t=1

=
d
dt

∫
A
e−ψ(tx)tn dx

∣∣∣
t=1

= nµ(A)−
∫
A
〈x,∇ψ(x)〉 dµ(x) = nµ(A)−Mµ(A). (22)

Thus,

µ(A)
1
n
−1V µ

1 (A,B) ≥ µ(B)
1
n − 1

n
µ(A)

1
n
−1Mµ(A),

which is exactly (19). To get (20) one has to take B = rBn
2 in (19).

The above inequalities can be seen as an analogue of the so-called Minkowski first inequality for the
Lebesgue measure (see [11], [12] and [29]), which says that for any two convex bodies A,B in Rn we
have

V voln
1 (A,B) ≥ voln(A)1−

1
n voln(B)

1
n .

5 Examples and open problems

We first discuss equality cases in Theorem 2 and Theorem 4.

Remark 2. The equality in Theorem 2 and Theorem 4 is achieved only if A is a dilation of B. Indeed,
in the proof of Proposition 1 we use the inclusion Ã �p B̃ ⊆ pÃ + (1 − p)B̃, where Ã = λ

pA and
B̃ = 1−λ

1−pB, with p given by (16). To have equality in (7) we need to have, in particular, equality in the
above inclusion (with this particular choice of p). Notice that apb1−p = pa + (1 − p)b, a, b ≥ 0, if and
only if a = b. Thus, Ã�Sp B̃ = pÃ+ (1− p)B̃ if and only if Ã = B̃ (by using the fact that hÃ = hB̃ if
and only if Ã = B̃). Similarly, one has Ã�Ip B̃ = pÃ+ (1− p)B̃ if and only if Ã = B̃. This means that
A is a dilation of B.

In general one cannot hope to have equality cases only if A = B. Let us illustrate this in the case of
the Lebesgue measure. Indeed, then we have equality in (7) if A = aK and B = bK, where K is some
fixed convex set. In this case the equality Ã = B̃ leads to the condition λ

pa = 1−λ
1−p b, which is equivalent

to choosing p = λa
λa+(1−λ)b . This coincides with (16).

However, one can get A = B as the only case of equality if one assumes that the density of µ is
strictly decreasing. To see this it suffices to observe that for the equality in (7) we have to have t = 1
in the proof of Proposition 1, which leads to µ(A) = µ(B). Together with the fact that A is a dilation
of B we get A = B.

12



We also show that the assumptions of Theorem 1 are necessary. Namely, as long as we work with
decreasing densities, which may not be log-concave, one has to assume that the measure is product and
the sets are unconditional.

Example 1. The assumption, that our measure µ in Theorem 1 is a product, is important. Indeed, let
us take the square C = {|x|, |y| ≤ 1} ⊂ R2 and take the measure with density ϕ(x) = 1

212C(x)+ 1
21C(x).

This density is unconditional, however it is not a product. Let us define ψ(a) =
√
µ(aC). The assertion

of Theorem 1 implies that ψ is concave. However, we have ψ(a) =
√

2a2 + 2 for a ∈ [1, 2], which is
strictly convex. Thus, µ does not satisfy (7).

Example 2. In general, under the assumption that our measure µ is unconditional and a product,
one cannot prove that Theorem 1 holds true for arbitrary symmetric convex sets. To see this, let
us take the product measure µ = µ0 ⊗ µ0 on R2, where µ0 has an unconditional density ϕ(x) =
p+ (1− p)1[−1/√2,1/√2](x) for some p ∈ [0, 1].

To simplify the computation let us rotate the whole picture by angle π/4. Then consider the
rectangle R = [−1, 1]× [−λ, λ] for 0 < λ ≤ 1/2. As in the previous example, it is enough to show that
the function ψ(a) =

√
µ(aR) is not concave. Let us consider this function only on the interval [1/λ,∞).

The condition λ ≤ 1/2 ensures that the point (a, λa) lies in the region with density p2. Let us introduce
lengths l1, l2, l3 (see the picture below).

(a, λa)

(1, 0)
l1

l2l3

Note that l1 =
√

2λa, l2 =
√

2(λa− 1) and l3 = a− (1 + λa). Let ω(a) = µ(aR). We have

ω(a) = 2 + 4
√

2p · l1 + l2
2

+ p2l21 + p2l22 + 4p2l3λa

= 2 + 4p(2λa− 1) + 2p2λ2a2 + 2p2(λa− 1)2 + 4p2λa(a− 1− λa)

= 2(1− p)2 + 4pλa(pa+ 2− 2p) = d0 + d1a+ d2a
2,

where d0 = 2(1− p)2, d1 = 8p(1− p)λ, d2 = 4p2λ. We show that ψ is strictly convex for p ∈ (0, 1) and
0 < λ < 1/2. Indeed, ψ′′ > 0 is equivalent to 2ωω′′ > (ω′)2. But

2ω(a)ω′′(a)− (ω′(a))2 = 4d2(d0 + d1a+ d2a
2)− (2d2a+ d1)

2 = 4d2d0 − d21
= 32λp2(1− p)2 − 64λ2p2(1− p)2 = 32λp2(1− p)2(1− 2λ) > 0.

We would like to finish the paper with a list of open questions that arose during our study.

Question. Let us assume that the measure µ has an even log-concave density (not-necessarily product).

• Does the assertion of Theorem 1 holds true for arbitrary symmetric sets A and B?

• If not, is it true under additional assumption that the measure is product?

• In particular, can one remove the assumption of unconditionality in the Gaussian Brunn-Minkowski
inequality?
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