University of Florida

Lecture Notes - Brownian Motion

1 Brownian motion

Recall that a filtered space $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{n}\right\}, \mathbb{P}\right)$ is given.

1.1 Definitions

Definition 1.1 (Standard Brownian motion). A continuous-time stochastic process $\left.\left\{B_{t}\right\}_{t \in[0,+\infty}\right)$ is a standard Brownian motion if

1. $B_{0}=0$ a.s.
2. (Stationary Gaussian increments) $\forall 0 \leq s<t, B_{t}-B_{s} \sim B_{t-s}-B_{0}$ and $B_{t}-B_{s} \sim$ $\mathcal{N}(0, t-s)$ (Gaussian of mean 0 and variance $t-s)$.
3. (Independent increments) $\forall 0 \leq s<t, B_{t}-B_{s}$ is independent of \mathcal{F}_{s}.
4. With probability 1 , the trajectories are continuous. Precisely:

$$
\exists A \subset \Omega, \mathbb{P}(A)=1, \forall \omega \in \Omega, t \mapsto B_{t}(\omega) \text { is continuous on }[0,+\infty) .
$$

Remark 1.2. One may ask whether all the assumptions are necessary in the definition of the Brownian motion. Or, in other words, does one or several assumptions imply another one.

- The continuity assumption is a necessity. To see this, let $\left\{B_{t}\right\}$ be a Brownian motion and let U be uniformly distributed on $[0,1]$. Define, for $\omega \in \Omega$ and $t \geq 0$,

$$
\widetilde{B}_{t}(\omega)=B_{t}(\omega) 1_{\{t \neq U(\omega)\}}+\left(1+B_{t}(\omega)\right) 1_{\{t=U(\omega)\}} .
$$

In this case, for all $t \geq 0, \mathbb{P}\left(\widetilde{B}_{t}=B_{t}\right)=1$, and hence \widetilde{B}_{t} satisfies properties 1-3. of the definition. However, for all $\omega \in \Omega, t \mapsto \widetilde{B}_{t}(\omega)$ is discontinuous (at $t=U(\omega)$).

- It can be shown that if 3-4 and stationary increments hold, then necessarily the increments are Gaussian.
- Property 1. is just a normalization. A brownian motion can start at any point.
- We will always consider the natural filtration $\mathcal{F}_{t}=\sigma\left(B_{s}: s \leq t\right)$.

Model: Brownian motions are used to model the trajectories of small particles in a fluid, or the evolution of the stock market. Generally speaking, it is used to model erratic motions.

Remark 1.3. When we say "Let $\left\{B_{t}\right\}_{t \geq 0}$ be a Brownian motion", we implicitly assume the existence of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a family of random variables $\left\{B_{t}\right\}$ on (Ω, \mathcal{F}) such that \mathbb{P} makes $\left\{B_{t}\right\}$ a Brownian motion (that is, such that $\left\{B_{t}\right\}$ satisfies the definitions 1-4. with respect to \mathbb{P}).

Question: Does such a probability space exist?
Answer: Yes, but technical to prove. This is the goal of the next section.

1.2 Construction of the Brownian motion

We will restrict the construction to $[0,1]$. For $n \geq 0$, denote

$$
\mathcal{D}_{n}=\left\{\frac{k}{2^{n}}: k \in\left\{0, \ldots, 2^{n}\right\}\right\} .
$$

For example,

$$
D_{0}=\{0,1\}, \quad D_{1}=\left\{0, \frac{1}{2}, 1\right\}, \quad \mathcal{D}_{2}=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\} .
$$

Denote

$$
\mathcal{D}=\cup_{n \geq 0} D_{n},
$$

the dyadic of $[0,1]$. Before starting, first note that \mathcal{D} is dense in $[0,1]$, and that $\left\{\mathcal{D}_{n}\right\}$ is increasing ($\mathcal{D}_{n} \subset \mathcal{D}_{n+1}$).

The process will follow the following steps:
Step 1: For each $n \in \mathbb{N}$, build a continuous process $\left\{B_{t}^{(n)}\right\}_{t \in[0,1]}$ that satisfies the properties of the Brownian motion on \mathcal{D}_{n}.
Step 2: With probability $1, t \mapsto B_{t}^{(n)}$ converges uniformly on $[0,1]$.
Step 3: $\lim _{n \rightarrow+\infty} B_{t}^{(n)}$ is a Brownian motion.

Step 1: [Construction on the dyadic]

Let $\left\{Z_{q}\right\}_{q \in \mathcal{D}}$ be a sequence of i.i.d. standard Gaussian. In particular, for all $q \neq r \in \mathcal{D}, Z_{q}$ is independent of Z_{r}, and $Z_{q} \sim \mathcal{N}(0,1)$.

Main Lemma: If X, Y are i.i.d. $\mathcal{N}(0,1)$, then $\frac{X+Y}{\sqrt{2}}$ and $\frac{X-Y}{\sqrt{2}}$ are i.i.d. $\mathcal{N}(0,1)$.
Proof: Exercise.

For each $\omega \in \Omega$, we are going to build $B_{t}^{(n)}(\omega)$ by induction on $n \in \mathbb{N}$, for $t \in \mathcal{D}_{n}$, and then interpolate linearly. We drop the variable ω next.

For $n=0$:
Set $B_{0}^{(0)}=0$ and $B_{1}^{(0)}=Z_{1}$. Then, we interpolate linearly between $B_{0}^{(0)}$ and $B_{1}^{(0)}$:

$$
B_{t}^{(0)}=(1-t) B_{0}^{(0)}+t B_{1}^{(0)}=t Z_{1}, \quad t \in[0,1] .
$$

For $n=1$:

Set

$$
B_{0}^{(1)}=B_{0}^{(0)}=0, \quad B_{1}^{(1)}=B_{1}^{(0)}=Z_{1}, \quad B_{\frac{1}{2}}^{(1)}=\frac{1}{2}\left(B_{0}^{(0)}+B_{1}^{(0)}\right)+\frac{1}{2} Z_{\frac{1}{2}}=\frac{1}{2} Z_{1}+\frac{1}{2} Z_{\frac{1}{2}} .
$$

Then, define $B_{t}^{(1)}$ by linear interpolation:

$$
\begin{gathered}
B_{t}^{(1)}=(1-2 t) B_{0}^{(1)}+2 t B_{\frac{1}{2}}^{(1)}=2 t B_{\frac{1}{2}}^{(1)}, \quad t \in\left[0, \frac{1}{2}\right], \\
B_{t}^{(1)}=(2-2 t) B_{\frac{1}{2}}^{(1)}+(2 t-1) B_{1}^{(1)} \quad t \in\left[\frac{1}{2}, 1\right] .
\end{gathered}
$$

We continue this process for each $n \geq 0$.
For $n+1$:
Let $n \geq 0$. Assume $B_{t}^{(n)}$ built. For $k \in\left\{0, \ldots, 2^{n}-1\right\}$, define

$$
B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}=\frac{1}{2}\left(B_{\frac{k}{2^{n}}}^{(n)}+B_{\frac{k+1}{2^{n}}}^{(n)}\right)+\frac{1}{2^{\frac{n+2}{2}}} Z_{\frac{2 k+1}{2^{n+1}}}
$$

and for $t \in D_{n}$, define

$$
B_{t}^{(n+1)}=B_{t}^{(n)}
$$

Then, interpolate linearly to build $B_{t}^{(n+1)}$ for all $t \in[0,1]$.
Lemma 1.4. For all $k \in\left\{0, \ldots, 2^{n}-1\right\}, B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{k}{2^{n}}}^{(n)}$ is independent of $B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}$, and $B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{k}{2^{n}}}^{(n)} \sim \mathcal{N}\left(0, \frac{1}{2^{n+1}}\right)$.

Proof. By induction. For $n=0$. Let us first check that $B_{\frac{1}{2}}^{(1)}-B_{0}^{(0)}$ is independent of $B_{1}^{(1)}-B_{\frac{1}{2}}^{(1)}$. Note that

$$
\begin{aligned}
& B_{\frac{1}{2}}^{(1)}-B_{0}^{(0)}=\frac{1}{2} Z_{1}+\frac{1}{2} Z_{\frac{1}{2}}=\frac{1}{\sqrt{2}} \frac{Z_{1}+Z_{\frac{1}{2}}}{\sqrt{2}} \\
& B_{1}^{(1)}-B_{\frac{1}{2}}^{(1)}=\frac{1}{2} Z_{1}-\frac{1}{2} Z_{\frac{1}{2}}=\frac{1}{\sqrt{2}} \frac{Z_{1}-Z_{\frac{1}{2}}}{\sqrt{2}}
\end{aligned}
$$

Since $Z_{1}, Z_{\frac{1}{2}}$ are i.i.d. $\mathcal{N}(0,1)$, the Main Lemma (c.f. beginning of the proof) tells us that $B_{\frac{1}{2}}^{(1)}-B_{0}^{(0)}$ is independent of $B_{1}^{(1)}-B_{\frac{1}{2}}^{(1)}$ and that $B_{\frac{1}{2}}^{(1)}-B_{0}^{(0)}$ is $\mathcal{N}\left(0, \frac{1}{2}\right)$.

Now, let $n \geq 1$, and assume that the property holds for $n-1$. We have

$$
\begin{aligned}
B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{k}{2^{n}}}^{(n)} & =\frac{1}{2}\left(B_{\frac{k}{2^{n}}}^{(n)}+B_{\frac{k+1}{2^{n}}}^{(n)}\right)+\frac{1}{2^{\frac{n+2}{2}}} Z_{\frac{2 k+1}{2^{n+1}}}-B_{\frac{k}{2^{n}}}^{(n)} \\
& =\frac{1}{2} B_{\frac{k+1}{2^{n}}}^{(n)}-\frac{1}{2} B_{\frac{k}{2^{n}}}^{(n)}+\frac{1}{2^{\frac{n+2}{2}}} Z_{\frac{2 k+1}{2^{n+1}}} \\
& =\frac{1}{2} \frac{1}{\sqrt{2^{n}}}\left[\sqrt{2^{n}}\left(B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{k}{2^{n}}}^{(n)}\right)+Z_{\frac{k k+1}{2^{n+1}}}\right] .
\end{aligned}
$$

By induction, $\left(B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{k}{2^{n}}}^{(n)}\right) \sim \mathcal{N}\left(0, \frac{1}{2^{n}}\right)$. Also, $\left(B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{k}{2^{n}}}^{(n)}\right)$ and $Z_{\frac{2 k+1}{2^{n+1}}}$ are independent (since the Z_{q} 's are independent). Thus, by the Main Lemma again,

$$
\frac{1}{\sqrt{2}}\left[\sqrt{2^{n}}\left(B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{k}{2^{n}}}^{(n)}\right)+Z_{\frac{2 k+1}{2^{n+1}}}\right]
$$

is standard Gaussian. It follows that $B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{k}{2^{n}}}^{(n)} \sim \mathcal{N}\left(0, \frac{1}{2^{n+1}}\right)$. Similarly, noting that

$$
B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}=\frac{1}{\sqrt{2^{n+1}}} \frac{1}{\sqrt{2}}\left[\sqrt{2^{n}}\left(B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{k}{2^{n}}}^{(n)}\right)-Z_{\frac{2 k+1}{2^{n+1}}}\right]
$$

we deduce the result by the Main Lemma again.
Lemma 1.5. For all $n \geq 0$, for all $p<q \in \mathcal{D}_{n}$,

1. $B_{q}^{(n)}-B_{p}^{(n)} \sim \mathcal{N}(0, q-p)$.
2. $B_{q}^{(n)}-B_{p}^{(n)}$ is independent of $B_{r}^{(n)}$, for all $r \leq p, r \in \mathcal{D}_{n}$.

Proof. This is a consequence of Lemma 1.4.

1. Let $p, q \in \mathcal{D}_{n}$. Then there exists $k<l$ such that $p=\frac{k}{2^{n}}$ and $q=\frac{l}{2^{n}}$. Hence,

$$
B_{q}^{(n)}-B_{p}^{(n)}=B_{\frac{l}{2^{n}}}^{(n)}-B_{\frac{k}{2^{n}}}^{(n)}=B_{\frac{l}{2^{n}}}^{(n)}-B_{\frac{l-1}{2^{n}}}^{(n)}+\cdots+B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{k}{2^{n}}}^{(n)} .
$$

One can see that each term of sum are mutually independent (proof similar to Lemma 1.4). By Lemma 1.4 each term is a Gaussian $\mathcal{N}\left(0, \frac{1}{2^{n}}\right)$, hence $B_{q}^{(n)}-B_{p}^{(n)} \sim \mathcal{N}(0, q-p)$.
2. Same argument.

Lemma 1.6. Lemma 1.5 holds for all $p<q \in \mathcal{D}$.
Proof. If $p, q \in \mathcal{D}$, then there exists $n \in \mathbb{N}$ such that $p, q \in \mathcal{D}_{n}$. Apply then Lemma 1.5.

Step 2: [Almost sure uniform convergence]

Let us denote, for $\omega \in \Omega$,

$$
\Delta^{(n)}(\omega)=\max _{t \in[0,1]}\left|B_{t}^{(n+1)}(\omega)-B_{t}^{(n)}(\omega)\right|=\max _{k \in\left\{0, \ldots, 2^{2^{n}}-1\right\}} \max _{t \in\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]}\left|B_{t}^{(n+1)}(\omega)-B_{t}^{(n)}(\omega)\right|
$$

We drop the variable ω next. Since, by definition, $B_{t}^{(n)}$ is defined by linear interpolation and $B_{t}^{(n+1)}=B_{t}^{(n)}$ when $t \in \mathcal{D}_{n}$, we see that

$$
\max _{t \in\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]}\left|B_{t}^{(n+1)}-B_{t}^{(n)}\right|
$$

is attained at the midpoint $t=\frac{2 k+1}{2^{n+1}}$ (draw a picture). Hence,

$$
\begin{gathered}
\Delta^{(n)}=\max _{k \in\left\{0, \ldots, 2^{n}-1\right\}}\left|B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{2 k+1}{2^{n+1}}}^{(n)}\right|=\max _{k \in\left\{0, \ldots, 2^{n}-1\right\}}\left|B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-\frac{1}{2}\left(B_{\frac{k}{2^{n}}}^{(n)}+B_{\frac{k+1}{2^{n}}}^{(n)}\right)\right| \\
=\frac{1}{2} \max _{k \in\left\{0, \ldots, 2^{n}-1\right\}}\left|\left(B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{k}{2^{n}}}^{(n)}\right)-\left(B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}\right)\right|
\end{gathered}
$$

Note that $B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{k}{2^{n}}}^{(n)}$ and $B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}$ are i.i.d. Gaussian $\mathcal{N}\left(0, \frac{1}{2^{n+1}}\right)$. Hence, for all k,

$$
W_{k}^{(n)}=\left(B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{k}{2^{n}}}^{(n)}\right)-\left(B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}\right)
$$

is Gaussian $\mathcal{N}\left(0, \frac{1}{2^{n}}\right)$. Let $\alpha \geq 1$. One has,

$$
\mathbb{P}\left(\Delta^{(n)} \geq \frac{\alpha}{2 \sqrt{2^{n}}}\right)=\mathbb{P}\left(\frac{1}{2} \max _{k \in\left\{0, \ldots, 2^{n}-1\right\}}\left|W_{k}^{(n)}\right| \geq \frac{\alpha}{2 \sqrt{2^{n}}}\right) \leq 2^{n} \mathbb{P}\left(\frac{1}{2}\left|W_{0}^{(n)}\right| \geq \frac{\alpha}{2 \sqrt{2^{n}}}\right)
$$

where the inequality comes from the union bound. Note that for $Z \sim \mathcal{N}(0,1)$,

$$
\mathbb{P}(Z \geq \alpha) \leq \frac{e^{-\frac{\alpha^{2}}{2}}}{\alpha \sqrt{2 \pi}}
$$

hence, by symmetry of Gaussian and the fact that $\sqrt{2^{n}} W_{0}^{(n)} \sim \mathcal{N}(0,1)$,

$$
\mathbb{P}\left(\Delta^{(n)} \geq \frac{\alpha}{2 \sqrt{2^{n}}}\right)=2^{n+1} \mathbb{P}\left(\sqrt{2^{n}} W_{0}^{(n)} \geq \alpha\right) \leq 2^{n+1} \frac{e^{-\frac{\alpha^{2}}{2}}}{\alpha \sqrt{2 \pi}}
$$

Now, take $\alpha=2 \sqrt{n}$. Then,

$$
\mathbb{P}\left(\Delta^{(n)} \geq \frac{\sqrt{n}}{\sqrt{2^{n}}}\right) \leq \frac{1}{\sqrt{2 \pi n}}\left(\frac{2}{e^{2}}\right)^{n}
$$

Hence,

$$
\sum_{n \geq 1} \mathbb{P}\left(\Delta^{(n)} \geq \frac{\sqrt{n}}{\sqrt{2^{n}}}\right)<+\infty
$$

By Borel-Cantelli,

$$
\mathbb{P}\left(\lim \sup \left\{\Delta^{(n)} \geq \frac{\sqrt{n}}{\sqrt{2^{n}}}\right\}\right)=0
$$

In other words, there exists $A \subset \Omega, \mathbb{P}(A)=1$, such that for all $\omega \in \Omega$, there exists $N \in \mathbb{N}$, such that for all $n \geq N$,

$$
\Delta^{(n)}(\omega) \leq \frac{\sqrt{n}}{\sqrt{2^{n}}}
$$

Recalling the definition of $\Delta^{(n)}(\omega)$, we thus proved that for all ω in a set A of probability 1 ,

$$
\sum_{n \geq 1}\left\|B^{n+1}(\omega)-B^{n}(\omega)\right\|_{L^{\infty}([0,1])}<+\infty
$$

A standard result of analysis allows us to conclude that, almost surely, $\left\{B^{(n)}(\omega)\right\}_{n \geq 1}$ converges uniformly on $[0,1]$. We then define

$$
B(\omega)= \begin{cases}\lim _{n \rightarrow+\infty} B^{(n)}(\omega) & \text { if } \omega \in A \\ 0 & \text { if } \omega \notin A\end{cases}
$$

Step 3: [The limit is a Brownian motion on $[0,1]$]

- Continuity: By construction, for all $\omega \in \Omega$, for all $n \in \mathbb{N}, t \mapsto B_{t}^{(n)}(\omega)$ is continuous on $[0,1]$. Since, almost surely, $\left\{B_{n}\right\}$ converges uniformly on $[0,1]$ to B, we deduce that, almost surely, $t \mapsto B_{t}(\omega)$ is continuous.
- Since for all $n \in \mathbb{N}, B_{0}^{(n)}=0$, we deduce that $B_{0}=0$.
- Stationary increments: Let $t, s \in \mathcal{D}$. Then, there exists $m \in \mathbb{N}$ such that $t, s \in \mathcal{D}_{m}$. Hence, $B_{t}^{(m)}-B_{s}^{(m)} \sim \mathcal{N}(0, t-s)$. By construction, for all $t \in \mathcal{D}_{m}$, for all $n \geq m, B_{t}^{(n)}=B_{t}^{(m)}$. Hence

$$
B_{t}-B_{s}=\lim _{n \rightarrow+\infty} B_{t}^{(n)}-B_{s}^{(n)}=\lim _{n \rightarrow+\infty} B_{t}^{(m)}-B_{s}^{(m)}=B_{t}^{(m)}-B_{s}^{(m)}
$$

where the limit is understood as "almost sure convergence". Since $B_{t}^{(m)}-B_{s}^{(m)} \sim \mathcal{N}(0, t-s)$, we have $B_{t}-B_{s} \sim \mathcal{N}(0, t-s)$. Now, assume that $t, s \in[0,1]$. By density of \mathcal{D} in $[0,1]$, there exist sequences $\left\{t_{k}\right\},\left\{s_{k}\right\} \in \mathcal{D}$ such that $t=\lim _{k} t_{k}$ and $s=\lim _{k} s_{k}$. Since, almost surely, $t \mapsto B_{t}$ is continuous, we have, almost surely, $B_{t}=\lim _{k} B_{t_{k}}$ and $B_{s}=\lim _{k} B_{s_{k}}$. Since, for all $k, B_{t_{k}}-B_{s_{k}} \sim \mathcal{N}\left(0, t_{k}-s_{k}\right)$, we can conclude that $B_{t}-B_{s} \sim \mathcal{N}(0, t-s)$ (use, for example, characteristic functions).

- Independent increments: Same argument.

1.3 Simulation of Brownian motion

Fix an integer $n \in \mathbb{N}$. Given times $0=t_{0}<t_{1}<\cdots<t_{n}$, generate Z_{1}, \ldots, Z_{n} i.i.d. $\mathcal{N}(0,1)$. Define

$$
\begin{aligned}
B_{0} & =0 \\
B_{t_{1}} & =\sqrt{t_{1}} Z_{1}, \\
B_{t_{2}} & =B_{t_{1}}+\sqrt{t_{2}-t_{1}} Z_{2}=\sqrt{t_{1}} Z_{1}+\sqrt{t_{2}-t_{1}} Z_{2}, \\
& \vdots \\
B_{t_{n}} & =B_{t_{n-1}}+\sqrt{t_{n}-t_{n-1}} Z_{n}=\sum_{i=1}^{n} \sqrt{t_{i}-t_{i-1}} Z_{i}
\end{aligned}
$$

Using this construction, $\left\{B_{t}\right\}$ is a Brownian motion at times $0=t_{0}<t_{1}<\cdots<t_{n}$. Indeed, it starts at 0 , and for all $l \leq m<n$,

$$
B_{t_{n}}-B_{t_{m}}=\sum_{i=1}^{n} \sqrt{t_{i}-t_{i-1}} Z_{i}-\sum_{i=1}^{m} \sqrt{t_{i}-t_{i-1}} Z_{i}=\sum_{i=m+1}^{n} \sqrt{t_{i}-t_{i-1}} Z_{i},
$$

which is Gaussian $\mathcal{N}\left(0, t_{n}-t_{m}\right)$, and is independent of $B_{t_{l}}$.

1.4 Properties of the Brownian motion

Definition 1.7. $\left\{X_{t}\right\}_{t \geq 0}$ is a Gaussian process if for all $n \in \mathbb{N}$, for all $t_{1}<\cdots<t_{n}$, the random vector ($X_{t_{1}}, \ldots, X_{t_{n}}$) is multivariate Gaussian.

Theorem 1.1. $\left(X_{1}, \ldots, X_{n}\right)$ is multivariate Gaussian \Longleftrightarrow every linear combination of the X_{i} 's is Gaussian, that is, for all $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}, \lambda_{1} X_{1}+\cdots+\lambda_{n} X_{n}$ is Gaussian \Longleftrightarrow

$$
\exists \mu \in \mathbb{R}^{n}, \exists A \in \mathbb{R}^{n \times m},\left(X_{1}, \ldots, X_{n}\right)=\mu+A\left(Z_{1}, \ldots, Z_{n}\right),
$$

where Z_{1}, \ldots, Z_{n} are i.i.d. $\mathcal{N}(0,1)$.
Theorem 1.2. A Brownian motion is a Gaussian process.
Proof. Define

$$
Z_{j}=\frac{B_{t_{j}}-B_{t_{j-1}}}{\sqrt{t_{j}-t_{j-1}}}, \quad j=1, \ldots, n .
$$

In particular, the Z_{j} 's are i.i.d. standard Gaussian $\mathcal{N}(0,1)$. Note that

$$
\left(\begin{array}{c}
B_{t_{1}} \\
\vdots \\
\vdots \\
B_{t_{n}}
\end{array}\right)=\left(\begin{array}{cccc}
\sqrt{t_{1}} & 0 & \cdots & 0 \\
\sqrt{t_{1}} & \sqrt{t_{2}-t_{1}} & \ddots & \vdots \\
\vdots & & \ddots & 0 \\
\sqrt{t_{1}} & \sqrt{t_{2}-t_{1}} & \cdots & \sqrt{t_{n}-t_{n-1}}
\end{array}\right)\left(\begin{array}{c}
Z_{1} \\
\vdots \\
\vdots \\
Z_{n}
\end{array}\right)
$$

Hence $\left\{B_{t}\right\}$ is a Gaussian process.
Definition 1.8. Let $\left\{\mathcal{F}_{t}\right\}$ be a filtration. The germ σ-algebra is

$$
\mathcal{F}_{s}^{+}=\cap_{t>s} \mathcal{F}_{t}
$$

Remark 1.9. 1. In general $\mathcal{F}_{s}^{+} \neq \mathcal{F}_{s}$. Indeed, let X be a non-constant random variable. Define $X_{t}=t X, t \geq 0$, and $\mathcal{F}_{t}=\sigma\left(X_{s}: 0 \leq s \leq t\right)$. Note that for all $t>0, \mathcal{F}_{t}=\sigma(X)$. However,

$$
\{\emptyset, \Omega\}=\mathcal{F}_{0} \neq \cap_{t>0} \mathcal{F}_{t}=\sigma(X) .
$$

2. \mathcal{F}_{s}^{+}represents an infinitesimal additional information into the future.

Theorem 1.3 (Blumenthal 0-1 Law). Let $\left\{B_{t}\right\}$ be a Brownian motion. If $A \in \mathcal{F}_{0}^{+}$, then $\mathbb{P}(A)=0$ or 1 .

Corollary 1.10. Let $\left\{B_{t}\right\}$ be a standard Brownian motion. Define

$$
T_{1}=\inf \left\{t>0: B_{t}>0\right\}, \quad T_{2}=\inf \left\{t>0: B_{t}=0\right\}, \quad T_{3}=\inf \left\{t>0: B_{t}<0\right\}
$$

Then, $\mathbb{P}\left(T_{1}=0\right)=\mathbb{P}\left(T_{2}=0\right)=\mathbb{P}\left(T_{3}=0\right)=1$.
Proof. One has

$$
\left\{T_{1}=0\right\}=\cap_{n \geq 1} \cup_{\varepsilon \in\left(0, \frac{1}{n}\right)}\left\{B_{\varepsilon}>0\right\}
$$

Hence, $\left\{T_{1}=0\right\} \in \mathcal{F}_{0}^{+}$. Note that for all $t>0$,

$$
\left\{B_{t}>0\right\} \subset\left\{T_{1} \leq t\right\}
$$

hence

$$
\mathbb{P}\left(T_{1} \leq t\right) \geq \mathbb{P}\left(B_{t}>0\right)=\frac{1}{2}
$$

We deduce that

$$
\mathbb{P}\left(T_{1}=0\right)=\mathbb{P}\left(\cap_{n}\left\{T_{1} \leq \frac{1}{n}\right\}\right)=\lim _{n} \mathbb{P}\left(T_{1} \leq \frac{1}{n}\right) \geq \frac{1}{2}
$$

Since $\left\{T_{1}=0\right\} \in \mathcal{F}_{0}^{+}$, by Blumenthal 0-1 law, we conclude that $\mathbb{P}\left(T_{1}=0\right)=1$.
By symmetry, (that is, $\left\{-B_{t}\right\}$ is a Brownian motion), $\mathbb{P}\left(T_{3}=0\right)=1$.
With probability $1, t \mapsto B_{t}$ is continuous and satisfies $\mathbb{P}\left(T_{1}=0\right)=\mathbb{P}\left(T_{3}=0\right)=1$, hence by the intermediate value theorem, $\mathbb{P}\left(T_{2}=0\right)=1$.

Remark 1.11. In particular, Corollary 1.10 tells us that with proba 1 , for all $\varepsilon>0, B_{t}$ hits 0 infinitely many times in the interval $(0, \varepsilon)$.

Theorem 1.4 (Long term behavior of Brownian motion). Let $\left\{B_{t}\right\}$ be a Brownian motion, then

$$
\limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}=+\infty \text { and } \liminf _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}=-\infty
$$

Proof. Fix $M>0$.

$$
\mathbb{P}\left(\limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}>M\right)=\mathbb{P}\left(\limsup _{t \rightarrow 0^{+}} \sqrt{t} B_{\frac{1}{t}}>M\right)=\mathbb{P}\left(\cap_{t>0} \cup_{0 \leq s \leq t}\left\{\sqrt{s} B_{\frac{1}{s}}>M\right\}\right)
$$

Fact: $\left\{s B_{\frac{1}{s}}\right\}$ is a Brownian motion (Time inversion - see later).
Fact: $\left\{\lim { }^{s} \sup f_{t}>M\right\}=\limsup \left\{f_{t}>M\right\}$.
Note that $\sqrt{s} B_{\frac{1}{s}}=\frac{X_{s}}{\sqrt{s}}$, where $X_{s}=s B_{\frac{1}{s}}$ being a Brownian motion. Hence,

$$
\cap_{t>0} \cup_{0 \leq s \leq t}\left\{\sqrt{s} B_{\frac{1}{s}}>M\right\}=\cap_{t>0} \cup_{0 \leq s \leq t}\left\{X_{s}>M \sqrt{s}\right\} \in \mathcal{F}_{0}^{+}
$$

By Blumenthal 0-1 law,

$$
\mathbb{P}\left(\limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}>M\right)=0 \text { or } 1
$$

Now, note that

$$
\begin{gathered}
\mathbb{P}\left(\limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}>M\right) \geq \mathbb{P}\left(\limsup _{n \rightarrow+\infty} \frac{B_{n}}{\sqrt{n}}>M\right)=\mathbb{P}\left(\cap_{n \geq 1} \cup_{k \geq n}\left\{\frac{B_{k}}{\sqrt{k}}>M\right\}\right) \\
=\lim _{n \rightarrow+\infty} \mathbb{P}\left(\cup_{k \geq n}\left\{\frac{B_{k}}{\sqrt{k}}>M\right\}\right) \geq \lim _{n \rightarrow+\infty} \mathbb{P}\left(\left\{\frac{B_{n}}{\sqrt{n}}>M\right\}\right)=\lim _{n \rightarrow+\infty} \mathbb{P}\left(\left\{B_{1}>M\right\}\right)=\mathbb{P}\left(B_{1}>M\right)>0 .
\end{gathered}
$$

We conclude that

$$
\mathbb{P}\left(\limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}>M\right)=1
$$

It follows that

$$
\mathbb{P}\left(\limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}=+\infty\right)=\mathbb{P}\left(\cap_{M>0} \limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}>M\right)=\lim _{M \rightarrow+\infty} \mathbb{P}\left(\limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}>M\right)=1
$$

By symmetry $\left(\left\{-B_{t}\right\}\right.$ is a Brownian motion), we deduce that

$$
\mathbb{P}\left(\liminf _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}=-\infty\right)=1
$$

Remark 1.12. In other words, a Brownian motion is recurrent (each value $a \in \mathbb{R}$ is visited infinitely many often).

Definition 1.13. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Recall that a filtration $\left\{F_{t}\right\}_{t \geq 0}$ is a familly of sigma-algebras such that for all $s \leq t, \mathcal{F}_{s} \subset \mathcal{F}_{t} \subset \mathcal{F}$.

A process $\left\{M_{t}\right\}_{t \geq 0}$ is a $\left\{F_{t}\right\}$ continuous-time martingale if
i) For all $t \geq 0, M_{t}$ is \mathcal{F}_{t}-measurable.
ii) For all $t \geq 0, \mathbb{E}\left[\left|M_{t}\right|\right]<+\infty$.
iii) For all $s \leq t, \mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right]=M_{s}$.

Proposition 1.14. A Brownian motion is a continuous-time martingale.
Proof.

$$
\mathbb{E}\left[B_{t} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[B_{t}-B_{s}+B_{s} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[B_{t}-B_{s} \mid \mathcal{F}_{s}\right]+B_{s}=B_{s}
$$

because $B_{t}-B_{s}$ is independent of \mathcal{F}_{s} and has expectation 0 .
Theorem 1.5 (Law of Large Numbers for Brownian motion). For a Brownian motion $\left\{B_{t}\right\}$, $\lim _{t \rightarrow+\infty} \frac{B_{t}}{t}=0$ almost surely.

Proof. Step 1: Note that $B_{n}=B_{1}-B_{0}+\cdots+B_{n}-B_{n-1}$, so we can write

$$
B_{n}=\sum_{k=1}^{n} X_{k}
$$

where $X_{k}=B_{k}-B_{k-1}$. Note that $\left\{X_{k}\right\}$ is a sequence of i.i.d. $\mathcal{N}(0,1)$ random variable. Hence, by the strong LLN, $\frac{B_{n}}{n} \rightarrow \mathbb{E}\left[B_{1}\right]=0$ almost surely.

Step 2: We will prove that

$$
\sum_{n \geq 0} \mathbb{P}\left(\sup _{t \in[n, n+1]}\left|B_{t}-B_{n}\right|>n^{\frac{2}{3}}\right)<+\infty
$$

Fix $n \geq 0$. Define, for $m \geq 0$ and $k \in\left\{0, \ldots, 2^{m}\right\}$,

$$
X_{k}=B_{n+\frac{k}{2^{m}}}-B_{n}
$$

Since $\left\{B_{n+t}-B_{n}\right\}_{t \geq 0}$ is a Brownian motion, it is a martingale. It follows that $\left\{X_{k}\right\}$ is a discrete time martingale. We can thus apply Doob's inequality and obtain

$$
\mathbb{P}\left(\sup _{0 \leq k \leq 2^{m}}\left|X_{k}\right|>n^{\frac{2}{3}}\right) \leq \frac{\mathbb{E}\left[\left|X_{2^{m}}\right|^{2}\right]}{n^{\frac{4}{3}}}=\frac{\mathbb{E}\left[\left|B_{n+1}-B_{n}\right|^{2}\right]}{n^{\frac{4}{3}}}=\frac{1}{n^{\frac{4}{3}}}
$$

Because $t \mapsto B_{t}$ is continuous, we have

$$
\left\{\sup _{t \in[n, n+1]}\left|B_{t}-B_{n}\right|>n^{\frac{2}{3}}\right\}=\cup_{m \geq 1}\left\{\sup _{0 \leq k \leq 2^{m}}\left|X_{k}\right|>n^{\frac{2}{3}}\right\} .
$$

Hence,

$$
\mathbb{P}\left(\sup _{t \in[n, n+1]}\left|B_{t}-B_{n}\right|>n^{\frac{2}{3}}\right)=\lim _{m \rightarrow+\infty} \mathbb{P}\left(\sup _{0 \leq k \leq 2^{m}}\left|X_{k}\right|>n^{\frac{2}{3}}\right) \leq \frac{1}{n^{\frac{4}{3}}}
$$

Step 3: Define, for $n \geq 0$,

$$
A_{n}=\left\{\sup _{t \in[n, n+1]}\left|B_{t}-B_{n}\right|>n^{\frac{2}{3}}\right\} .
$$

Since $\sum \mathbb{P}\left(A_{n}\right)<+\infty$, by Borel-Cantelli we have $\mathbb{P}\left(\limsup A_{n}\right)=0$. This means that, for all ω in a set of probability 1 ,
$\exists n_{0} \geq 1, \forall n \geq n_{0}, \forall t \in[n, n+1],\left|\frac{B_{t}(\omega)}{t}\right| \leq \frac{n}{t}\left(\left|\frac{B_{t}(\omega)-B_{n}(\omega)}{n}\right|+\left|\frac{B_{n}(\omega)}{n}\right|\right) \leq \frac{1}{n^{\frac{1}{3}}}+\left|\frac{B_{n}(\omega)}{n}\right|$, which goes to 0 as $n \rightarrow+\infty$.

Corollary 1.15 (Time Inversion). Let $\left\{B_{t}\right\}$ be a Brownian motion. The process $\left\{X_{t}\right\}_{t \geq 0}$ defined by $X_{t}=t B_{\frac{1}{t}}$ for $t>0$ and $X_{0}=0$, is a Brownian motion, for the natural filtration $\widetilde{\mathcal{F}}_{t}=\sigma\left(X_{s}\right.$: $s \leq t$).
Proof. Continuity at 0: From Theorem 1.5, we have

$$
\lim _{t \rightarrow 0^{+}} X_{t}=\lim _{t \rightarrow+\infty} X_{\frac{1}{t}}=\lim _{t \rightarrow+\infty} \frac{B_{t}}{t}=0=X_{0}
$$

Gaussian Increments: Note that, for $s \leq t$,

$$
X_{t}-X_{s}=(t-s) B_{\frac{1}{t}}-s\left(B_{\frac{1}{s}}-B_{\frac{1}{t}}\right)
$$

which is $\mathcal{N}(0, t-s)$.
Independent Increments: Since $\left(X_{t}-X_{s}, X_{s}\right)$ is a bivariate Gaussian, we can conclude independence because $\mathbb{E}\left[\left(X_{t}-X_{s}\right) X_{s}\right]=0$.

1.5 Reflection Principle

Definition 1.16. Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{n}\right\}, \mathbb{P}\right)$ be a filtered space. Let $\left\{X_{t}\right\}$ be a stochastic process adapted to $\left\{\mathcal{F}_{t}\right\}$. We say that $\left\{X_{t}\right\}$ is a Markov process if

$$
\forall A \in \mathcal{F}, \forall h \geq 0, \forall t \geq 0, \quad \mathbb{P}\left(X_{t+h} \in A \mid \mathcal{F}_{t}\right)=\mathbb{P}\left(X_{t+h} \in A \mid X_{t}\right)
$$

Notation:

$$
\mathbb{P}\left(X_{t+h} \in A \mid X_{t}\right)=\mathbb{P}\left(X_{t+h} \in A \mid \sigma\left(X_{t}\right)\right)=\mathbb{E}\left[1_{A}\left(X_{t+h}\right) \mid \sigma\left(X_{t}\right)\right]
$$

Theorem 1.6. A Brownian motion is a Markov process (w.r.t the same filtration).
Sketch of proof. We want to prove that

$$
\mathbb{P}\left(B_{t+h} \in A \mid \mathcal{F}_{t}\right)=\mathbb{P}\left(B_{t+h} \in A \mid B_{t}\right)
$$

equivalently,

$$
\mathbb{E}\left[1_{A}\left(B_{t+h}\right) \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[1_{A}\left(B_{t+h}\right) \mid \sigma\left(B_{t}\right)\right]
$$

Let $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ be measurable, then

$$
\mathbb{E}\left[\Phi\left(B_{t+h}\right) \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[\Phi\left(B_{t+h}-B_{t}+B_{t}\right) \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[g\left(X, B_{t}\right) \mid \mathcal{F}_{t}\right]
$$

where $X=B_{t+h}-B_{t}$, which is independent of \mathcal{F}_{t}, and $g(x, y)=\Phi(x+y)$.
Since X is independent of \mathcal{F}_{t}, and B_{t} is $\sigma\left(B_{t}\right)$-measurable, $\mathbb{E}\left[g\left(X, B_{t}\right) \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[g\left(X, B_{t}\right) \mid \sigma\left(B_{t}\right)\right]$. To prove this, start with functions g of the form $g(x, y)=1_{C}(x) 1_{D}(y)$, and use the fact that they approximate any Borel function.

Definition 1.17. A random variable T is an $\left\{\mathcal{F}_{t}\right\}$-stopping time if

$$
\forall t \geq 0, \quad\{T \leq t\} \in \mathcal{F}_{t} .
$$

Proposition 1.18. 1. Every deterministic time is a stopping time.
2. If $\left\{T_{n}\right\}$ is a sequence of stopping time, the $\sup _{n} T_{n}$ is a stopping time.

Proof. 1. Exercise.
2. Fix $t \geq 0$. Then,

$$
\left\{\sup _{n} T_{n} \leq t\right\}=\cap_{n}\left\{T_{n} \leq t\right\} \in \mathcal{F}_{t} .
$$

Remark 1.19. In general, $\inf _{n} T_{n}$ is not a stopping time. Indeed, recalling that if $m=\inf (A)$, then for all $\varepsilon>0$, there exists $a \in A$, such that $m \geq a-\varepsilon$. In particular we have

$$
\left\{\inf _{n} T_{n} \leq t\right\}=\cap_{\varepsilon>0} \cup_{n \geq 1}\left\{T_{n} \leq t+\varepsilon\right\} \in \cap_{\varepsilon>0} \mathcal{F}_{t+\varepsilon}=\mathcal{F}_{t}^{+} .
$$

Since in general $\mathcal{F}_{t} \neq \mathcal{F}_{t}^{+}$, it follows that $\inf _{n} T_{n}$ is not a stopping time.
Similarly, note that, when $\mathcal{F}_{t}=\sigma\left(B_{s}: s \leq t\right)$,

1. If F is a closed set, then $T=\inf \left\{t \geq 0: B_{t} \in F\right\}$ is a stopping time.
2. If O is open, then $T=\inf \left\{t \geq 0: B_{t} \in O\right\}$ is not a stopping time.

Definition 1.20. A filtration $\left\{F_{t}\right\}$ is right-continuous if for all $t \geq 0, \mathcal{F}_{t}=\mathcal{F}_{t}^{+}$.
Example 1.21. The canonical filtration for a Brownian motion $\left\{B_{t}\right\}$:
Define

$$
\mathcal{F}_{t}=\sigma\left(B_{s}: s \leq t\right), \quad t \geq 0,
$$

and

$$
\widetilde{\mathcal{F}}_{t}=\mathcal{F}_{t}^{+}=\cap_{\varepsilon>0} \mathcal{F}_{t+\varepsilon}, \quad t \geq 0 .
$$

Then $\left\{\widetilde{\mathcal{F}}_{t}\right\}$ is a right-continuous filtration, and $\left\{B_{t}\right\}$ is adapted to $\left\{\widetilde{\mathcal{F}}_{t}\right\}$.
Proposition 1.22. 1. If $\left\{T_{n}\right\}$ is a sequence of $\left\{\mathcal{F}_{t}^{+}\right\}$-stopping times, then $\inf _{n} T_{n}$ is an $\left\{\mathcal{F}_{t}^{+}\right\}$stopping time.
2. If O is open, then $T=\inf \left\{t \geq 0: B_{t} \in O\right\}$ is an $\left\{\widetilde{\mathcal{F}}_{t}\right\}$-stopping time.

Definition 1.23. For a stopping time T, define

$$
\mathcal{F}_{T}=\left\{A \in \mathcal{F}: A \cap\{T \leq t\} \in \mathcal{F}_{t}^{+}, \forall t \geq 0\right\} .
$$

Theorem 1.7. \mathcal{F}_{T} is a σ-algebra.
Proof. Same proof as in the discrete case.
Definition 1.24. Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{n}\right\}, \mathbb{P}\right)$ be a filtered space. Let $\left\{X_{t}\right\}$ be a stochastic process adapted to $\left\{\mathcal{F}_{t}\right\}$. We say that $\left\{X_{t}\right\}$ is a strong Markov process if for all stopping time T finite almost surely,

$$
\forall A \in \mathcal{F}, \forall h \geq 0, \quad \mathbb{P}\left(X_{T+h} \in A \mid \mathcal{F}_{T}\right)=\mathbb{P}\left(X_{T+h} \in A \mid X_{T}\right) .
$$

Theorem 1.8. The Brownian motion is a strong Markov process.
Sketch of Proof. Note that $\left\{B_{T+t}-B_{T}\right\}_{t \geq 0}$ is a standard Brownian motion independent of \mathcal{F}_{T}.

Theorem 1.9 (Reflection principle). Let T be a stopping time and $\left\{B_{t}\right\}$ be a standard Brownian motion.

If $M=(x, y)$, then the reflection of M with respect to the line passing through $(0, a)$ and parallel to the x-axis is $M^{*}=(x, 2 a-y)$ (draw a picture).

For $t \geq 0$, define

$$
B_{t}^{*}=B_{t} 1_{t \leq T}+\left(2 B_{T}-B_{t}\right) 1_{t>T}
$$

Then, $\left\{B_{t}^{*}\right\}$ is a standard Brownian motion.
Definition 1.25. The process B_{t}^{*} defined in Theorem 1.9 is called reflected Brownian motion.
Corollary 1.26. Let $\left\{B_{t}\right\}$ be a Brownian motion. Consider, for $t \geq 0$,

$$
M_{t}=\sup _{0 \leq s \leq t} B_{s}
$$

Then, $M_{t} \sim|Z|$, where $Z \sim \mathcal{N}(0, t)$. This means that supremum of Brownian motion path has a χ distribution.

Proof. First note that $\mathbb{P}\left(M_{t} \geq 0\right)=1$ because $B_{0}=0$ a.s.
Fix $a>0$. Let us find $\mathbb{P}\left(M_{t} \geq a\right)$. Consider $\left\{B_{t}^{*}\right\}$ the reflected Brownian motion with respect to the stopping time $T_{a}=\inf \left\{t \geq 0: B_{t}=a\right\}$. Note that
i) $\left\{B_{t} \geq a\right\} \subset\left\{M_{t} \geq a\right\}$.
ii) $\left\{M_{t} \geq a\right\} \cap\left\{B_{t}<a\right\}=\left\{B_{t}^{*}>a\right\}$.

The point i) is clear. The inclusion \subset of the point ii) is clear from the picture (after reflection, $B_{t}<a$ if and only if $\left.B_{t}^{*}>a\right)$. For the other inclusion \supset, if $\left\{B_{t}^{*}>a\right\}$, then either $\left\{B_{t}>a\right\}$ either $\left\{B_{t}<a\right\}$. The case $\left\{B_{t}>a\right\}$ is impossible because $B_{t}>a$ implies that $T_{a}<t$. Necessarily, $\left\{B_{t}<a\right\}$. Since $\left\{B_{t}<a\right\}$ and $\left\{B_{t}^{*}>a\right\}$, we have $T_{a} \leq t$ and thus $M_{t} \geq a$.

Thus, from ii) and Theorem 1.9,

$$
\mathbb{P}\left(M_{t} \geq a, B_{t}<a\right)=\mathbb{P}\left(B_{t}^{*}>a\right)=\mathbb{P}\left(B_{t}>a\right)
$$

Hence,

$$
\mathbb{P}\left(M_{t} \geq a\right)=\mathbb{P}\left(M_{t} \geq a, B_{t}<a\right)+\mathbb{P}\left(M_{t} \geq a, B_{t} \geq a\right)=2 \mathbb{P}\left(B_{t} \geq a\right)=\mathbb{P}\left(\left|B_{t}\right| \geq a\right)
$$

1.6 Differentiability of the paths of the Brownian motion

Theorem 1.10. With probability 1, the paths of the Brownian motion are nowhere differentiable. Formally, let $\left\{B_{t}\right\}$ be a Brownian motion, then

$$
\mathbb{P}\left(\left\{\omega \in \Omega: \exists t_{0} \in[0,+\infty), t \mapsto B_{t}(\omega) \text { is differentiable at } t_{0}\right\}\right)=0
$$

Proof. Step 1: [Setup]

Without loss of generality, let us prove the result on $[0,1]$. Denote

$$
A=\left\{\omega \in \Omega: \exists t_{0} \in[0,1], t \mapsto B_{t}(\omega) \text { is differentiable at } t_{0}\right\}
$$

We want to prove that $\mathbb{P}(A)=0$. For $n \geq 3$ and $k \in\{1, \ldots, n-2\}$, define

$$
M_{k, n}=\max \left\{\left|B_{\frac{k+2}{n}}-B_{\frac{k+1}{n}}\right|,\left|B_{\frac{k+1}{n}}-B_{\frac{k}{n}}\right|,\left|B_{\frac{k}{n}}-B_{\frac{k-1}{n}}\right|\right\}
$$

and

$$
M_{n}=\min \left(M_{1, n}, \ldots, M_{n-2, n}\right)
$$

Step 2: The goal of Step 2 is to prove that

$$
\forall \omega \in A, \exists M \in \mathbb{N}, \exists n_{0} \in N, \forall n \geq n_{0}, M_{n}(\omega) \leq \frac{5}{n}(1+M)
$$

Let $\omega \in A$ (we drop the dependence on ω next). Then there exists $t_{0} \in[0,1]$ such that $t \mapsto B_{t}$ is differentiable at t_{0}. By definition of differentiability, there exists $L \in \mathbb{R}$ and $\delta>0$ such that for all $t \in[0,1] \backslash\left\{t_{0}\right\}$, if $\left|t-t_{0}\right| \leq \delta$, then $\left|B_{t}-B_{t_{0}}-L\left(t-t_{0}\right)\right| \leq\left|t-t_{0}\right|$ (taking $\varepsilon=1$). Hence, by triangular inequality, for all t such that $\left|t-t_{0}\right| \leq \delta$,

$$
\left|B_{t}-B_{t_{0}}\right| \leq(1+|L|)\left|t-t_{0}\right| .
$$

Now, note that there exists $n_{0} \geq 1$ and $k \in\left\{1, \ldots, n_{0}\right\}$, such that

$$
t_{0} \in\left[\frac{k-1}{n_{0}}, \frac{k}{n_{0}}\right] \text { and }\left|\frac{k+2}{n_{0}}-\frac{k-1}{n_{0}}\right|=\frac{3}{n_{0}} \leq \delta .
$$

Let $n \geq n_{0}$. Then there exists $k \in\{1, \ldots, n\}$ such that the above holds. Hence,

$$
\left|B_{\frac{k}{n}}-B_{\frac{k-1}{n}}\right| \leq\left|B_{\frac{k}{n}}-B_{t_{0}}\right|+\left|B_{t_{0}}-B_{\frac{k-1}{n}}\right| \leq(1+|L|)\left(\left|\frac{k}{n}-t_{0}\right|+\left|t_{0}-\frac{k-1}{n}\right|\right) \leq \frac{2}{n}(1+|L|)
$$

Similarly, we have

$$
\left|B_{\frac{k+1}{n}}-B_{\frac{k}{n}}\right| \leq \frac{3}{n}(1+|L|) \quad \text { and } \quad\left|B_{\frac{k+2}{n}}-B_{\frac{k+1}{n}}\right| \leq \frac{5}{n}(1+|L|)
$$

We thus proved that for all $n \geq n_{0}$, there exists $k \in\{1, \ldots, n\}$ such that

$$
M_{k, n} \leq \frac{5}{n}(1+|L|)
$$

By definition of M_{n}, this tells us that for all $n \geq n_{0}$,

$$
M_{n} \leq \frac{5}{n}(1+|L|)
$$

Now, just take any integer M greater than $|L|$ to conclude that

$$
\forall \omega \in A, \exists M \in \mathbb{N}, \exists n_{0} \in N, \forall n \geq n_{0}, M_{n}(\omega) \leq \frac{5}{n}(1+M)
$$

Equivalently,

$$
A \subset \cup_{M \in \mathbb{N}} \cup_{n_{0} \in \mathbb{N}} \cap_{n \geq n_{0}}\left\{M_{n} \leq \frac{5}{n}(1+M)\right\}
$$

Step 3: The goal of Step 3 is to prove that

$$
\forall M \in \mathbb{N}, \lim _{n \rightarrow+\infty} \mathbb{P}\left(M_{n} \leq \frac{5}{n}(1+M)\right)=0
$$

Let $n \geq 3$ and $k \in\{1, \ldots, n-2\}$. Denote,

$$
X_{1}=\left|B_{\frac{k}{n}}-B_{\frac{k-1}{n}}\right|, \quad X_{2}=\left|B_{\frac{k+1}{n}}-B_{\frac{k}{n}}\right|, \quad X_{3}=\left|B_{\frac{k+2}{n}}-B_{\frac{k+1}{n}}\right|
$$

Since $\left\{B_{t}\right\}$ is a Brownian motion, X_{1}, X_{2}, X_{3} are i.i.d. with same distribution as $|Z|$ where $Z \sim \mathcal{N}\left(0, \frac{1}{n}\right)$. Thus, the CDF of $M_{k, n}=\max \left(X_{1}, X_{2}, X_{3}\right)$ is

$$
F_{M_{k, n}}(x)=\mathbb{P}\left(M_{k, n} \leq x\right)=\mathbb{P}\left(X_{1} \leq x\right)^{3}, \quad x \in \mathbb{R}
$$

Note that

$$
\mathbb{P}\left(X_{1} \leq x\right)=\mathbb{P}(|Z| \leq x \sqrt{n})
$$

where $Z \sim \mathcal{N}(0,1)$. Hence,

$$
\mathbb{P}\left(X_{1} \leq x\right)=\frac{2}{\sqrt{2 \pi}} \int_{0}^{x \sqrt{n}} e^{-\frac{t^{2}}{2}} d t \leq \frac{2 x \sqrt{n}}{\sqrt{2 \pi}}
$$

We deduce that for all $M \in \mathbb{N}$,

$$
\mathbb{P}\left(M_{k, n} \leq \frac{5}{n}(1+M)\right) \leq\left[\frac{10}{\sqrt{2 \pi}}(1+M) \frac{1}{\sqrt{n}}\right]^{3}=\frac{C}{n^{\frac{3}{2}}}
$$

where $C=\left[\frac{10}{\sqrt{2 \pi}}(1+M)\right]^{3}$. Hence, by union bound,

$$
\mathbb{P}\left(M_{n} \leq \frac{5}{n}(1+M)\right)=\mathbb{P}\left(\cup_{k=1}^{n-2}\left\{M_{k, n} \leq \frac{5}{n}(1+M)\right\}\right) \leq \sum_{k=1}^{n-2} \mathbb{P}\left(M_{k, n} \leq \frac{5}{n}(1+M)\right) \leq \frac{C}{\sqrt{n}}
$$

We conclude that

$$
\forall M \in \mathbb{N}, \lim _{n \rightarrow+\infty} \mathbb{P}\left(M_{n} \leq \frac{5}{n}(1+M)\right)=0
$$

Step 4: [Conclusion]

From Step 2,

$$
\mathbb{P}(A) \leq \mathbb{P}\left(\cup_{M \in \mathbb{N}} \cup_{n_{0} \in \mathbb{N}} \cap_{n \geq n_{0}}\left\{M_{n} \leq \frac{5}{n}(1+M)\right\}\right)
$$

Denote $B_{n_{0}}=\cap_{n \geq n_{0}}\left\{M_{n} \leq \frac{5}{n}(1+M)\right\}$, and note that $\left\{B_{n_{0}}\right\}$ is an increasing sequence of sets, hence, from Step 3,

$$
\begin{aligned}
\mathbb{P}\left(\cup_{n_{0} \in \mathbb{N}} \cap_{n \geq n_{0}}\left\{M_{n} \leq \frac{5}{n}(1+M)\right\}\right) & =\lim _{n_{0} \rightarrow+\infty} \mathbb{P}\left(\cap_{n \geq n_{0}}\left\{M_{n} \leq \frac{5}{n}(1+M)\right\}\right) \\
& \leq \lim _{n_{0} \rightarrow+\infty} \mathbb{P}\left(\left\{M_{n_{0}} \leq \frac{5}{n_{0}}(1+M)\right\}\right) \\
& =0 .
\end{aligned}
$$

We conclude that

$$
\mathbb{P}(A) \leq \sum_{M \in \mathbb{N}} \mathbb{P}\left(\cup_{n_{0} \in \mathbb{N}} \cap_{n \geq n_{0}}\left\{M_{n} \leq \frac{5}{n}(1+M)\right\}\right)=0
$$

