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Lecture Notes - Brownian Motion

1 Brownian motion

Recall that a filtered space (Ω,F , {Fn},P) is given.

1.1 Definitions

Definition 1.1 (Standard Brownian motion). A continuous-time stochastic process {Bt}t∈[0,+∞)

is a standard Brownian motion if

1. B0 = 0 a.s.

2. (Stationary Gaussian increments) ∀ 0 ≤ s < t, Bt − Bs ∼ Bt−s − B0 and Bt − Bs ∼
N (0, t− s) (Gaussian of mean 0 and variance t− s).

3. (Independent increments) ∀ 0 ≤ s < t, Bt −Bs is independent of Fs.

4. With probability 1, the trajectories are continuous. Precisely:

∃A ⊂ Ω, P(A) = 1, ∀ω ∈ Ω, t 7→ Bt(ω) is continuous on [0,+∞).

Remark 1.2. One may ask whether all the assumptions are necessary in the definition of the
Brownian motion. Or, in other words, does one or several assumptions imply another one.

• The continuity assumption is a necessity. To see this, let {Bt} be a Brownian motion and
let U be uniformly distributed on [0, 1]. Define, for ω ∈ Ω and t ≥ 0,

B̃t(ω) = Bt(ω)1{t6=U(ω)} + (1 +Bt(ω))1{t=U(ω)}.

In this case, for all t ≥ 0, P(B̃t = Bt) = 1, and hence B̃t satisfies properties 1-3. of the definition.
However, for all ω ∈ Ω, t 7→ B̃t(ω) is discontinuous (at t = U(ω)).

• It can be shown that if 3-4 and stationary increments hold, then necessarily the increments
are Gaussian.

• Property 1. is just a normalization. A brownian motion can start at any point.

• We will always consider the natural filtration Ft = σ(Bs : s ≤ t).

Model: Brownian motions are used to model the trajectories of small particles in a fluid, or the
evolution of the stock market. Generally speaking, it is used to model erratic motions.

Remark 1.3. When we say “Let {Bt}t≥0 be a Brownian motion”, we implicitly assume the
existence of a probability space (Ω,F ,P) and a family of random variables {Bt} on (Ω,F) such
that P makes {Bt} a Brownian motion (that is, such that {Bt} satisfies the definitions 1-4. with
respect to P).

Question: Does such a probability space exist?

Answer: Yes, but technical to prove. This is the goal of the next section.
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1.2 Construction of the Brownian motion

We will restrict the construction to [0, 1]. For n ≥ 0, denote

Dn =

{
k

2n
: k ∈ {0, . . . , 2n}

}
.

For example,

D0 = {0, 1}, D1 =

{
0,

1

2
, 1

}
, D2 =

{
0,

1

4
,
1

2
,
3

4
, 1

}
.

Denote
D = ∪n≥0Dn,

the dyadic of [0, 1]. Before starting, first note that D is dense in [0, 1], and that {Dn} is increasing
(Dn ⊂ Dn+1).

The process will follow the following steps:

Step 1: For each n ∈ N, build a continuous process {B(n)
t }t∈[0,1] that satisfies the properties of

the Brownian motion on Dn.

Step 2: With probability 1, t 7→ B
(n)
t converges uniformly on [0, 1].

Step 3: limn→+∞B
(n)
t is a Brownian motion.

Step 1: [Construction on the dyadic]

Let {Zq}q∈D be a sequence of i.i.d. standard Gaussian. In particular, for all q 6= r ∈ D, Zq is
independent of Zr, and Zq ∼ N (0, 1).

——————

Main Lemma: If X,Y are i.i.d. N (0, 1), then X+Y√
2

and X−Y√
2

are i.i.d. N (0, 1).

Proof: Exercise.
——————

For each ω ∈ Ω, we are going to build B(n)
t (ω) by induction on n ∈ N, for t ∈ Dn, and then

interpolate linearly. We drop the variable ω next.

For n = 0:
Set B(0)

0 = 0 and B(0)
1 = Z1. Then, we interpolate linearly between B(0)

0 and B(0)
1 :

B
(0)
t = (1− t)B(0)

0 + tB
(0)
1 = tZ1, t ∈ [0, 1].

For n = 1:
Set

B
(1)
0 = B

(0)
0 = 0, B

(1)
1 = B

(0)
1 = Z1, B

(1)
1
2

=
1

2

(
B

(0)
0 +B

(0)
1

)
+

1

2
Z 1

2
=

1

2
Z1 +

1

2
Z 1

2
.

Then, define B(1)
t by linear interpolation:

B
(1)
t = (1− 2t)B

(1)
0 + 2tB

(1)
1
2

= 2tB
(1)
1
2

, t ∈ [0,
1

2
],

B
(1)
t = (2− 2t)B

(1)
1
2

+ (2t− 1)B
(1)
1 t ∈ [

1

2
, 1].
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We continue this process for each n ≥ 0.

For n+ 1:
Let n ≥ 0. Assume B(n)

t built. For k ∈ {0, . . . , 2n − 1}, define

B
(n+1)
2k+1

2n+1

=
1

2

(
B

(n)
k
2n

+B
(n)
k+1
2n

)
+

1

2
n+2
2

Z 2k+1

2n+1
,

and for t ∈ Dn, define
B

(n+1)
t = B

(n)
t .

Then, interpolate linearly to build B(n+1)
t for all t ∈ [0, 1].

Lemma 1.4. For all k ∈ {0, . . . , 2n − 1}, B(n+1)
2k+1

2n+1

− B(n)
k
2n

is independent of B(n)
k+1
2n
− B(n+1)

2k+1

2n+1

, and

B
(n+1)
2k+1

2n+1

−B(n)
k
2n
∼ N (0, 1

2n+1 ).

Proof. By induction. For n = 0. Let us first check that B(1)
1
2

−B(0)
0 is independent of B(1)

1 −B
(1)
1
2

.
Note that

B
(1)
1
2

−B(0)
0 =

1

2
Z1 +

1

2
Z 1

2
=

1√
2

Z1 + Z 1
2√

2
,

B
(1)
1 −B

(1)
1
2

=
1

2
Z1 −

1

2
Z 1

2
=

1√
2

Z1 − Z 1
2√

2
.

Since Z1, Z 1
2
are i.i.d. N (0, 1), the Main Lemma (c.f. beginning of the proof) tells us that

B
(1)
1
2

−B(0)
0 is independent of B(1)

1 −B
(1)
1
2

and that B(1)
1
2

−B(0)
0 is N (0, 12).

Now, let n ≥ 1, and assume that the property holds for n− 1. We have

B
(n+1)
2k+1

2n+1

−B(n)
k
2n

=
1

2

(
B

(n)
k
2n

+B
(n)
k+1
2n

)
+

1

2
n+2
2

Z 2k+1

2n+1
−B(n)

k
2n

=
1

2
B

(n)
k+1
2n
− 1

2
B

(n)
k
2n

+
1

2
n+2
2

Z 2k+1

2n+1

=
1

2

1√
2n

[√
2n
(
B

(n)
k+1
2n
−B(n)

k
2n

)
+ Z 2k+1

2n+1

]
.

By induction,
(
B

(n)
k+1
2n
−B(n)

k
2n

)
∼ N (0, 1

2n ). Also,
(
B

(n)
k+1
2n
−B(n)

k
2n

)
and Z 2k+1

2n+1
are independent

(since the Zq’s are independent). Thus, by the Main Lemma again,

1√
2

[√
2n
(
B

(n)
k+1
2n
−B(n)

k
2n

)
+ Z 2k+1

2n+1

]
is standard Gaussian. It follows that B(n+1)

2k+1

2n+1

−B(n)
k
2n
∼ N (0, 1

2n+1 ). Similarly, noting that

B
(n)
k+1
2n
−B(n+1)

2k+1

2n+1

=
1√

2n+1

1√
2

[√
2n
(
B

(n)
k+1
2n
−B(n)

k
2n

)
− Z 2k+1

2n+1

]
,

we deduce the result by the Main Lemma again.

Lemma 1.5. For all n ≥ 0, for all p < q ∈ Dn,

1. B(n)
q −B(n)

p ∼ N (0, q − p).

2. B(n)
q −B(n)

p is independent of B(n)
r , for all r ≤ p, r ∈ Dn.

3



Proof. This is a consequence of Lemma 1.4.

1. Let p, q ∈ Dn. Then there exists k < l such that p = k
2n and q = l

2n . Hence,

B(n)
q −B(n)

p = B
(n)
l

2n
−B(n)

k
2n

= B
(n)
l

2n
−B(n)

l−1
2n

+ · · ·+B
(n)
k+1
2n
−B(n)

k
2n
.

One can see that each term of sum are mutually independent (proof similar to Lemma 1.4). By
Lemma 1.4 each term is a Gaussian N (0, 1

2n ), hence B(n)
q −B(n)

p ∼ N (0, q − p).

2. Same argument.

Lemma 1.6. Lemma 1.5 holds for all p < q ∈ D.

Proof. If p, q ∈ D, then there exists n ∈ N such that p, q ∈ Dn. Apply then Lemma 1.5.

Step 2: [Almost sure uniform convergence]

Let us denote, for ω ∈ Ω,

∆(n)(ω) = max
t∈[0,1]

|B(n+1)
t (ω)−B(n)

t (ω)| = max
k∈{0,...,2n−1}

max
t∈[ k

2n
, k+1
2n

]
|B(n+1)

t (ω)−B(n)
t (ω)|.

We drop the variable ω next. Since, by definition, B(n)
t is defined by linear interpolation and

B
(n+1)
t = B

(n)
t when t ∈ Dn, we see that

max
t∈[ k

2n
, k+1
2n

]
|B(n+1)

t −B(n)
t |

is attained at the midpoint t = 2k+1
2n+1 (draw a picture). Hence,

∆(n) = max
k∈{0,...,2n−1}

|B(n+1)
2k+1

2n+1

−B(n)
2k+1

2n+1

| = max
k∈{0,...,2n−1}

|B(n+1)
2k+1

2n+1

− 1

2

(
B

(n)
k
2n

+B
(n)
k+1
2n

)
|

=
1

2
max

k∈{0,...,2n−1}
|
(
B

(n+1)
2k+1

2n+1

−B(n)
k
2n

)
−
(
B

(n)
k+1
2n
−B(n+1)

2k+1

2n+1

)
|.

Note that B(n+1)
2k+1

2n+1

−B(n)
k
2n

and B(n)
k+1
2n
−B(n+1)

2k+1

2n+1

are i.i.d. Gaussian N (0, 1
2n+1 ). Hence, for all k,

W
(n)
k =

(
B

(n+1)
2k+1

2n+1

−B(n)
k
2n

)
−
(
B

(n)
k+1
2n
−B(n+1)

2k+1

2n+1

)
is Gaussian N (0, 1

2n ). Let α ≥ 1. One has,

P(∆(n) ≥ α

2
√

2n
) = P(

1

2
max

k∈{0,...,2n−1}
|W (n)

k | ≥
α

2
√

2n
) ≤ 2nP(

1

2
|W (n)

0 | ≥
α

2
√

2n
),

where the inequality comes from the union bound. Note that for Z ∼ N (0, 1),

P(Z ≥ α) ≤ e−
α2

2

α
√

2π
,
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hence, by symmetry of Gaussian and the fact that
√

2nW
(n)
0 ∼ N (0, 1),

P(∆(n) ≥ α

2
√

2n
) = 2n+1P(

√
2nW

(n)
0 ≥ α) ≤ 2n+1 e

−α
2

2

α
√

2π
.

Now, take α = 2
√
n. Then,

P(∆(n) ≥
√
n√
2n

) ≤ 1√
2πn

(
2

e2

)n
.

Hence, ∑
n≥1

P(∆(n) ≥
√
n√
2n

) < +∞.

By Borel-Cantelli,

P(lim sup{∆(n) ≥
√
n√
2n
}) = 0.

In other words, there exists A ⊂ Ω, P(A) = 1, such that for all ω ∈ Ω, there exists N ∈ N, such
that for all n ≥ N ,

∆(n)(ω) ≤
√
n√
2n
.

Recalling the definition of ∆(n)(ω), we thus proved that for all ω in a set A of probability 1,∑
n≥1
‖Bn+1(ω)−Bn(ω)‖L∞([0,1]) < +∞.

A standard result of analysis allows us to conclude that, almost surely, {B(n)(ω)}n≥1 converges
uniformly on [0, 1]. We then define

B(ω) =

{
limn→+∞B

(n)(ω) if ω ∈ A
0 if ω /∈ A .

Step 3: [The limit is a Brownian motion on [0, 1]]

• Continuity: By construction, for all ω ∈ Ω, for all n ∈ N, t 7→ B
(n)
t (ω) is continuous

on [0, 1]. Since, almost surely, {Bn} converges uniformly on [0, 1] to B, we deduce that, almost
surely, t 7→ Bt(ω) is continuous.

• Since for all n ∈ N, B(n)
0 = 0, we deduce that B0 = 0.

• Stationary increments: Let t, s ∈ D. Then, there exists m ∈ N such that t, s ∈ Dm.
Hence, B(m)

t −B(m)
s ∼ N (0, t− s). By construction, for all t ∈ Dm, for all n ≥ m, B(n)

t = B
(m)
t .

Hence
Bt −Bs = lim

n→+∞
B

(n)
t −B(n)

s = lim
n→+∞

B
(m)
t −B(m)

s = B
(m)
t −B(m)

s ,

where the limit is understood as “almost sure convergence”. Since B(m)
t − B(m)

s ∼ N (0, t − s),
we have Bt − Bs ∼ N (0, t − s). Now, assume that t, s ∈ [0, 1]. By density of D in [0, 1], there
exist sequences {tk}, {sk} ∈ D such that t = limk tk and s = limk sk. Since, almost surely,
t 7→ Bt is continuous, we have, almost surely, Bt = limk Btk and Bs = limk Bsk . Since, for all
k, Btk − Bsk ∼ N (0, tk − sk), we can conclude that Bt − Bs ∼ N (0, t − s) (use, for example,
characteristic functions).

• Independent increments: Same argument.
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1.3 Simulation of Brownian motion

Fix an integer n ∈ N. Given times 0 = t0 < t1 < · · · < tn, generate Z1, . . . , Zn i.i.d. N (0, 1).
Define

B0 = 0,

Bt1 =
√
t1Z1,

Bt2 = Bt1 +
√
t2 − t1Z2 =

√
t1Z1 +

√
t2 − t1Z2,

...

Btn = Btn−1 +
√
tn − tn−1Zn =

n∑
i=1

√
ti − ti−1Zi

Using this construction, {Bt} is a Brownian motion at times 0 = t0 < t1 < · · · < tn. Indeed, it
starts at 0, and for all l ≤ m < n,

Btn −Btm =
n∑
i=1

√
ti − ti−1Zi −

m∑
i=1

√
ti − ti−1Zi =

n∑
i=m+1

√
ti − ti−1Zi,

which is Gaussian N (0, tn − tm), and is independent of Btl .

1.4 Properties of the Brownian motion

Definition 1.7. {Xt}t≥0 is a Gaussian process if for all n ∈ N, for all t1 < · · · < tn, the random
vector (Xt1 , . . . , Xtn) is multivariate Gaussian.

Theorem 1.1. (X1, . . . , Xn) is multivariate Gaussian ⇐⇒ every linear combination of the Xi’s
is Gaussian, that is, for all λ1, . . . , λn ∈ R, λ1X1 + · · ·+ λnXn is Gaussian ⇐⇒

∃µ ∈ Rn, ∃A ∈ Rn×m, (X1, . . . , Xn) = µ+A(Z1, . . . , Zn),

where Z1, . . . , Zn are i.i.d. N (0, 1).

Theorem 1.2. A Brownian motion is a Gaussian process.

Proof. Define

Zj =
Btj −Btj−1√
tj − tj−1

, j = 1, . . . , n.

In particular, the Zj ’s are i.i.d. standard Gaussian N (0, 1). Note that
Bt1
...
...
Btn

 =


√
t1 0 · · · 0
√
t1
√
t2 − t1

. . .
...

...
. . . 0√

t1
√
t2 − t1 · · ·

√
tn − tn−1




Z1
...
...
Zn

 .

Hence {Bt} is a Gaussian process.

Definition 1.8. Let {Ft} be a filtration. The germ σ-algebra is

F+
s = ∩t>sFt.

Remark 1.9. 1. In general F+
s 6= Fs. Indeed, let X be a non-constant random variable.

Define Xt = tX, t ≥ 0, and Ft = σ(Xs : 0 ≤ s ≤ t). Note that for all t > 0, Ft = σ(X).
However,

{∅,Ω} = F0 6= ∩t>0Ft = σ(X).
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2. F+
s represents an infinitesimal additional information into the future.

Theorem 1.3 (Blumenthal 0-1 Law). Let {Bt} be a Brownian motion. If A ∈ F+
0 , then P(A) = 0

or 1.

Corollary 1.10. Let {Bt} be a standard Brownian motion. Define

T1 = inf{t > 0 : Bt > 0}, T2 = inf{t > 0 : Bt = 0}, T3 = inf{t > 0 : Bt < 0}.

Then, P(T1 = 0) = P(T2 = 0) = P(T3 = 0) = 1.

Proof. One has
{T1 = 0} = ∩n≥1 ∪ε∈(0, 1

n
) {Bε > 0}.

Hence, {T1 = 0} ∈ F+
0 . Note that for all t > 0,

{Bt > 0} ⊂ {T1 ≤ t},

hence
P(T1 ≤ t) ≥ P(Bt > 0) =

1

2
.

We deduce that
P(T1 = 0) = P(∩n{T1 ≤

1

n
}) = lim

n
P(T1 ≤

1

n
) ≥ 1

2
.

Since {T1 = 0} ∈ F+
0 , by Blumenthal 0-1 law, we conclude that P(T1 = 0) = 1.

By symmetry, (that is, {−Bt} is a Brownian motion), P(T3 = 0) = 1.
With probability 1, t 7→ Bt is continuous and satisfies P(T1 = 0) = P(T3 = 0) = 1, hence by

the intermediate value theorem, P(T2 = 0) = 1.

Remark 1.11. In particular, Corollary 1.10 tells us that with proba 1, for all ε > 0, Bt hits 0
infinitely many times in the interval (0, ε).

Theorem 1.4 (Long term behavior of Brownian motion). Let {Bt} be a Brownian motion, then

lim sup
t→+∞

Bt√
t

= +∞ and lim inf
t→+∞

Bt√
t

= −∞.

Proof. Fix M > 0.

P(lim sup
t→+∞

Bt√
t
> M) = P(lim sup

t→0+

√
tB 1

t
> M) = P(∩t>0 ∪0≤s≤t {

√
sB 1

s
> M})

Fact: {sB 1
s
} is a Brownian motion (Time inversion — see later).

Fact: {lim sup ft > M} = lim sup{ft > M}.

Note that
√
sB 1

s
= Xs√

s
, where Xs = sB 1

s
being a Brownian motion. Hence,

∩t>0 ∪0≤s≤t {
√
sB 1

s
> M} = ∩t>0 ∪0≤s≤t {Xs > M

√
s} ∈ F+

0 .

By Blumenthal 0-1 law,

P(lim sup
t→+∞

Bt√
t
> M) = 0 or 1.

Now, note that

P(lim sup
t→+∞

Bt√
t
> M) ≥ P(lim sup

n→+∞

Bn√
n
> M) = P(∩n≥1 ∪k≥n {

Bk√
k
> M})

= lim
n→+∞

P(∪k≥n{
Bk√
k
> M}) ≥ lim

n→+∞
P({Bn√

n
> M}) = lim

n→+∞
P({B1 > M}) = P(B1 > M) > 0.
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We conclude that
P(lim sup

t→+∞

Bt√
t
> M) = 1.

It follows that

P(lim sup
t→+∞

Bt√
t

= +∞) = P(∩M>0 lim sup
t→+∞

Bt√
t
> M) = lim

M→+∞
P(lim sup

t→+∞

Bt√
t
> M) = 1.

By symmetry ({−Bt} is a Brownian motion), we deduce that

P(lim inf
t→+∞

Bt√
t

= −∞) = 1.

Remark 1.12. In other words, a Brownian motion is recurrent (each value a ∈ R is visited
infinitely many often).

Definition 1.13. Let (Ω,F ,P) be a probability space. Recall that a filtration {Ft}t≥0 is a familly
of sigma-algebras such that for all s ≤ t, Fs ⊂ Ft ⊂ F .

A process {Mt}t≥0 is a {Ft} continuous-time martingale if

i) For all t ≥ 0, Mt is Ft-measurable.
ii) For all t ≥ 0, E[|Mt|] < +∞.
iii) For all s ≤ t, E[Mt|Fs] = Ms.

Proposition 1.14. A Brownian motion is a continuous-time martingale.

Proof.
E[Bt|Fs] = E[Bt −Bs +Bs|Fs] = E[Bt −Bs|Fs] +Bs = Bs,

because Bt −Bs is independent of Fs and has expectation 0.

Theorem 1.5 (Law of Large Numbers for Brownian motion). For a Brownian motion {Bt},
limt→+∞

Bt
t = 0 almost surely.

Proof. Step 1: Note that Bn = B1 −B0 + · · ·+Bn −Bn−1, so we can write

Bn =

n∑
k=1

Xk,

where Xk = Bk −Bk−1. Note that {Xk} is a sequence of i.i.d. N (0, 1) random variable. Hence,
by the strong LLN, Bnn → E[B1] = 0 almost surely.

Step 2: We will prove that∑
n≥0

P( sup
t∈[n,n+1]

|Bt −Bn| > n
2
3 ) < +∞.

Fix n ≥ 0. Define, for m ≥ 0 and k ∈ {0, . . . , 2m},

Xk = Bn+ k
2m
−Bn.

Since {Bn+t−Bn}t≥0 is a Brownian motion, it is a martingale. It follows that {Xk} is a discrete
time martingale. We can thus apply Doob’s inequality and obtain

P( sup
0≤k≤2m

|Xk| > n
2
3 ) ≤ E[|X2m |2]

n
4
3

=
E[|Bn+1 −Bn|2]

n
4
3

=
1

n
4
3

.

8



Because t 7→ Bt is continuous, we have

{ sup
t∈[n,n+1]

|Bt −Bn| > n
2
3 } = ∪m≥1{ sup

0≤k≤2m
|Xk| > n

2
3 }.

Hence,

P( sup
t∈[n,n+1]

|Bt −Bn| > n
2
3 ) = lim

m→+∞
P( sup

0≤k≤2m
|Xk| > n

2
3 ) ≤ 1

n
4
3

.

Step 3: Define, for n ≥ 0,

An = { sup
t∈[n,n+1]

|Bt −Bn| > n
2
3 }.

Since
∑

P(An) < +∞, by Borel-Cantelli we have P(lim supAn) = 0. This means that, for all ω
in a set of probability 1,

∃n0 ≥ 1, ∀n ≥ n0,∀t ∈ [n, n+ 1],

∣∣∣∣Bt(ω)

t

∣∣∣∣ ≤ n

t

(∣∣∣∣Bt(ω)−Bn(ω)

n

∣∣∣∣+

∣∣∣∣Bn(ω)

n

∣∣∣∣) ≤ 1

n
1
3

+

∣∣∣∣Bn(ω)

n

∣∣∣∣ ,
which goes to 0 as n→ +∞.

Corollary 1.15 (Time Inversion). Let {Bt} be a Brownian motion. The process {Xt}t≥0 defined
by Xt = tB 1

t
for t > 0 and X0 = 0, is a Brownian motion, for the natural filtration F̃t = σ(Xs :

s ≤ t).

Proof. Continuity at 0: From Theorem 1.5, we have

lim
t→0+

Xt = lim
t→+∞

X 1
t

= lim
t→+∞

Bt
t

= 0 = X0.

Gaussian Increments: Note that, for s ≤ t,

Xt −Xs = (t− s)B 1
t
− s(B 1

s
−B 1

t
),

which is N (0, t− s).
Independent Increments: Since (Xt − Xs, Xs) is a bivariate Gaussian, we can conclude

independence because E[(Xt −Xs)Xs] = 0.

1.5 Reflection Principle

Definition 1.16. Let (Ω,F , {Fn},P) be a filtered space. Let {Xt} be a stochastic process
adapted to {Ft}. We say that {Xt} is a Markov process if

∀A ∈ F ,∀h ≥ 0, ∀t ≥ 0, P(Xt+h ∈ A|Ft) = P(Xt+h ∈ A|Xt).

Notation:
P(Xt+h ∈ A|Xt) = P(Xt+h ∈ A|σ(Xt)) = E[1A(Xt+h)|σ(Xt)].

Theorem 1.6. A Brownian motion is a Markov process (w.r.t the same filtration).

Sketch of proof. We want to prove that

P(Bt+h ∈ A|Ft) = P(Bt+h ∈ A|Bt),

equivalently,
E[1A(Bt+h)|Ft] = E[1A(Bt+h)|σ(Bt)].

Let Φ: R→ R be measurable, then

E[Φ(Bt+h)|Ft] = E[Φ(Bt+h −Bt +Bt)|Ft] = E[g(X,Bt)|Ft],

where X = Bt+h −Bt, which is independent of Ft, and g(x, y) = Φ(x+ y).
SinceX is independent of Ft, andBt is σ(Bt)-measurable, E[g(X,Bt)|Ft] = E[g(X,Bt)|σ(Bt)].

To prove this, start with functions g of the form g(x, y) = 1C(x)1D(y), and use the fact that they
approximate any Borel function.
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Definition 1.17. A random variable T is an {Ft}-stopping time if

∀t ≥ 0, {T ≤ t} ∈ Ft.

Proposition 1.18. 1. Every deterministic time is a stopping time.

2. If {Tn} is a sequence of stopping time, the supn Tn is a stopping time.

Proof. 1. Exercise.
2. Fix t ≥ 0. Then,

{sup
n
Tn ≤ t} = ∩n{Tn ≤ t} ∈ Ft.

Remark 1.19. In general, infn Tn is not a stopping time. Indeed, recalling that if m = inf(A),
then for all ε > 0, there exists a ∈ A, such that m ≥ a− ε. In particular we have

{inf
n
Tn ≤ t} = ∩ε>0 ∪n≥1 {Tn ≤ t+ ε} ∈ ∩ε>0Ft+ε = F+

t .

Since in general Ft 6= F+
t , it follows that infn Tn is not a stopping time.

Similarly, note that, when Ft = σ(Bs : s ≤ t),
1. If F is a closed set, then T = inf{t ≥ 0 : Bt ∈ F} is a stopping time.
2. If O is open, then T = inf{t ≥ 0 : Bt ∈ O} is not a stopping time.

Definition 1.20. A filtration {Ft} is right-continuous if for all t ≥ 0, Ft = F+
t .

Example 1.21. The canonical filtration for a Brownian motion {Bt}:
Define

Ft = σ(Bs : s ≤ t), t ≥ 0,

and
F̃t = F+

t = ∩ε>0Ft+ε, t ≥ 0.

Then {F̃t} is a right-continuous filtration, and {Bt} is adapted to {F̃t}.

Proposition 1.22. 1. If {Tn} is a sequence of {F+
t }-stopping times, then infn Tn is an {F+

t }-
stopping time.

2. If O is open, then T = inf{t ≥ 0 : Bt ∈ O} is an {F̃t}-stopping time.

Definition 1.23. For a stopping time T , define

FT = {A ∈ F : A ∩ {T ≤ t} ∈ F+
t , ∀ t ≥ 0}.

Theorem 1.7. FT is a σ-algebra.

Proof. Same proof as in the discrete case.

Definition 1.24. Let (Ω,F , {Fn},P) be a filtered space. Let {Xt} be a stochastic process
adapted to {Ft}. We say that {Xt} is a strong Markov process if for all stopping time T finite
almost surely,

∀A ∈ F ,∀h ≥ 0, P(XT+h ∈ A|FT ) = P(XT+h ∈ A|XT ).

Theorem 1.8. The Brownian motion is a strong Markov process.

Sketch of Proof. Note that {BT+t − BT }t≥0 is a standard Brownian motion independent of FT .
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Theorem 1.9 (Reflection principle). Let T be a stopping time and {Bt} be a standard Brownian
motion.

If M = (x, y), then the reflection of M with respect to the line passing through (0, a) and
parallel to the x-axis is M∗ = (x, 2a− y) (draw a picture).

For t ≥ 0, define
B∗t = Bt1t≤T + (2BT −Bt)1t>T .

Then, {B∗t } is a standard Brownian motion.

Definition 1.25. The process B∗t defined in Theorem 1.9 is called reflected Brownian motion.

Corollary 1.26. Let {Bt} be a Brownian motion. Consider, for t ≥ 0,

Mt = sup
0≤s≤t

Bs.

Then, Mt ∼ |Z|, where Z ∼ N (0, t). This means that supremum of Brownian motion path has a
χ distribution.

Proof. First note that P(Mt ≥ 0) = 1 because B0 = 0 a.s.
Fix a > 0. Let us find P(Mt ≥ a). Consider {B∗t } the reflected Brownian motion with respect

to the stopping time Ta = inf{t ≥ 0 : Bt = a}. Note that
i) {Bt ≥ a} ⊂ {Mt ≥ a}.
ii) {Mt ≥ a} ∩ {Bt < a} = {B∗t > a}.
The point i) is clear. The inclusion ⊂ of the point ii) is clear from the picture (after reflection,
Bt < a if and only if B∗t > a). For the other inclusion ⊃, if {B∗t > a}, then either {Bt > a} either
{Bt < a}. The case {Bt > a} is impossible because Bt > a implies that Ta < t. Necessarily,
{Bt < a}. Since {Bt < a} and {B∗t > a}, we have Ta ≤ t and thus Mt ≥ a.

Thus, from ii) and Theorem 1.9,

P(Mt ≥ a,Bt < a) = P(B∗t > a) = P(Bt > a).

Hence,

P(Mt ≥ a) = P(Mt ≥ a,Bt < a) + P(Mt ≥ a,Bt ≥ a) = 2P(Bt ≥ a) = P(|Bt| ≥ a).

1.6 Differentiability of the paths of the Brownian motion

Theorem 1.10. With probability 1, the paths of the Brownian motion are nowhere differentiable.
Formally, let {Bt} be a Brownian motion, then

P
(
{ω ∈ Ω : ∃t0 ∈ [0,+∞), t 7→ Bt(ω) is differentiable at t0}

)
= 0.

Proof. Step 1: [Setup]
Without loss of generality, let us prove the result on [0, 1]. Denote

A = {ω ∈ Ω : ∃t0 ∈ [0, 1], t 7→ Bt(ω) is differentiable at t0}.

We want to prove that P(A) = 0. For n ≥ 3 and k ∈ {1, . . . , n− 2}, define

Mk,n = max{|B k+2
n
−B k+1

n
|, |B k+1

n
−B k

n
|, |B k

n
−B k−1

n
|},

and
Mn = min(M1,n, . . . ,Mn−2,n).
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Step 2: The goal of Step 2 is to prove that

∀ω ∈ A,∃M ∈ N, ∃n0 ∈ N, ∀n ≥ n0,Mn(ω) ≤ 5

n
(1 +M).

Let ω ∈ A (we drop the dependence on ω next). Then there exists t0 ∈ [0, 1] such that t 7→ Bt
is differentiable at t0. By definition of differentiability, there exists L ∈ R and δ > 0 such that
for all t ∈ [0, 1] \ {t0}, if |t− t0| ≤ δ, then |Bt −Bt0 − L(t− t0)| ≤ |t− t0| (taking ε = 1). Hence,
by triangular inequality, for all t such that |t− t0| ≤ δ,

|Bt −Bt0 | ≤ (1 + |L|)|t− t0|.

Now, note that there exists n0 ≥ 1 and k ∈ {1, . . . , n0}, such that

t0 ∈
[
k − 1

n0
,
k

n0

]
and

∣∣∣∣k + 2

n0
− k − 1

n0

∣∣∣∣ =
3

n0
≤ δ.

Let n ≥ n0. Then there exists k ∈ {1, . . . , n} such that the above holds. Hence,

|B k
n
−B k−1

n
| ≤ |B k

n
−Bt0 |+ |Bt0 −B k−1

n
| ≤ (1 + |L|)

(
|k
n
− t0|+ |t0 −

k − 1

n
|
)
≤ 2

n
(1 + |L|).

Similarly, we have

|B k+1
n
−B k

n
| ≤ 3

n
(1 + |L|) and |B k+2

n
−B k+1

n
| ≤ 5

n
(1 + |L|).

We thus proved that for all n ≥ n0, there exists k ∈ {1, . . . , n} such that

Mk,n ≤
5

n
(1 + |L|).

By definition of Mn, this tells us that for all n ≥ n0,

Mn ≤
5

n
(1 + |L|).

Now, just take any integer M greater than |L| to conclude that

∀ω ∈ A,∃M ∈ N, ∃n0 ∈ N, ∀n ≥ n0,Mn(ω) ≤ 5

n
(1 +M).

Equivalently,

A ⊂ ∪M∈N ∪n0∈N ∩n≥n0

{
Mn ≤

5

n
(1 +M)

}
.

Step 3: The goal of Step 3 is to prove that

∀M ∈ N, lim
n→+∞

P(Mn ≤
5

n
(1 +M)) = 0.

Let n ≥ 3 and k ∈ {1, . . . , n− 2}. Denote,

X1 = |B k
n
−B k−1

n
|, X2 = |B k+1

n
−B k

n
|, X3 = |B k+2

n
−B k+1

n
|.

Since {Bt} is a Brownian motion, X1, X2, X3 are i.i.d. with same distribution as |Z| where
Z ∼ N (0, 1n). Thus, the CDF of Mk,n = max(X1, X2, X3) is

FMk,n
(x) = P(Mk,n ≤ x) = P(X1 ≤ x)3, x ∈ R.
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Note that
P(X1 ≤ x) = P(|Z| ≤ x

√
n),

where Z ∼ N (0, 1). Hence,

P(X1 ≤ x) =
2√
2π

∫ x
√
n

0
e−

t2

2 dt ≤ 2x
√
n√

2π
.

We deduce that for all M ∈ N,

P(Mk,n ≤
5

n
(1 +M)) ≤

[
10√
2π

(1 +M)
1√
n

]3
=

C

n
3
2

,

where C =
[

10√
2π

(1 +M)
]3
. Hence, by union bound,

P
(
Mn ≤

5

n
(1 +M)

)
= P

(
∪n−2k=1

{
Mk,n ≤

5

n
(1 +M)

})
≤

n−2∑
k=1

P
(
Mk,n ≤

5

n
(1 +M)

)
≤ C√

n
.

We conclude that
∀M ∈ N, lim

n→+∞
P(Mn ≤

5

n
(1 +M)) = 0.

Step 4: [Conclusion]
From Step 2,

P(A) ≤ P
(
∪M∈N ∪n0∈N ∩n≥n0

{
Mn ≤

5

n
(1 +M)

})
.

Denote Bn0 = ∩n≥n0

{
Mn ≤ 5

n(1 + M)
}
, and note that {Bn0} is an increasing sequence of sets,

hence, from Step 3,

P
(
∪n0∈N ∩n≥n0

{
Mn ≤

5

n
(1 +M)

})
= lim

n0→+∞
P
(
∩n≥n0

{
Mn ≤

5

n
(1 +M)

})
≤ lim

n0→+∞
P
({

Mn0 ≤
5

n0
(1 +M)

})
= 0.

We conclude that

P(A) ≤
∑
M∈N

P
(
∪n0∈N ∩n≥n0

{
Mn ≤

5

n
(1 +M)

})
= 0.
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