Lecture Notes - Brownian Motion

1 Brownian motion

Recall that a filtered space $(\Omega, \mathcal{F}, \{\mathcal{F}_n\}, \mathbb{P})$ is given.

1.1 Definitions

Definition 1.1 (Standard Brownian motion). A continuous-time stochastic process $\{B_t\}_{t \in [0,+\infty)}$ is a standard Brownian motion if

- 1. $B_0 = 0$ a.s.
- 2. (Stationary Gaussian increments) $\forall 0 \leq s < t, B_t B_s \sim B_{t-s} B_0$ and $B_t B_s \sim \mathcal{N}(0, t-s)$ (Gaussian of mean 0 and variance t-s).
- 3. (Independent increments) $\forall 0 \leq s < t, B_t B_s$ is independent of \mathcal{F}_s .
- 4. With probability 1, the trajectories are continuous. Precisely:

$$\exists A \subset \Omega, \mathbb{P}(A) = 1, \forall \omega \in \Omega, t \mapsto B_t(\omega) \text{ is continuous on } [0, +\infty).$$

Remark 1.2. One may ask whether all the assumptions are necessary in the definition of the Brownian motion. Or, in other words, does one or several assumptions imply another one.

• The continuity assumption is a necessity. To see this, let $\{B_t\}$ be a Brownian motion and let U be uniformly distributed on [0, 1]. Define, for $\omega \in \Omega$ and $t \ge 0$,

$$B_t(\omega) = B_t(\omega) \mathbf{1}_{\{t \neq U(\omega)\}} + (1 + B_t(\omega)) \mathbf{1}_{\{t = U(\omega)\}}.$$

In this case, for all $t \ge 0$, $\mathbb{P}(\widetilde{B}_t = B_t) = 1$, and hence \widetilde{B}_t satisfies properties 1-3. of the definition. However, for all $\omega \in \Omega$, $t \mapsto \widetilde{B}_t(\omega)$ is discontinuous (at $t = U(\omega)$).

• It can be shown that if 3-4 and stationary increments hold, then necessarily the increments are Gaussian.

- Property 1. is just a normalization. A brownian motion can start at any point.
- We will always consider the natural filtration $\mathcal{F}_t = \sigma(B_s : s \leq t)$.

Model: Brownian motions are used to model the trajectories of small particles in a fluid, or the evolution of the stock market. Generally speaking, it is used to model erratic motions.

Remark 1.3. When we say "Let $\{B_t\}_{t\geq 0}$ be a Brownian motion", we implicitly assume the existence of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a family of random variables $\{B_t\}$ on (Ω, \mathcal{F}) such that \mathbb{P} makes $\{B_t\}$ a Brownian motion (that is, such that $\{B_t\}$ satisfies the definitions 1-4. with respect to \mathbb{P}).

Question: Does such a probability space exist?

Answer: Yes, but technical to prove. This is the goal of the next section.

1.2 Construction of the Brownian motion

We will restrict the construction to [0,1]. For $n \ge 0$, denote

$$\mathcal{D}_n = \left\{ \frac{k}{2^n} : k \in \{0, \dots, 2^n\} \right\}.$$

For example,

$$D_0 = \{0,1\}, \quad D_1 = \{0,\frac{1}{2},1\}, \quad D_2 = \{0,\frac{1}{4},\frac{1}{2},\frac{3}{4},1\}.$$

Denote

$$\mathcal{D} = \cup_{n \ge 0} D_n,$$

the dyadic of [0, 1]. Before starting, first note that \mathcal{D} is dense in [0, 1], and that $\{\mathcal{D}_n\}$ is increasing $(\mathcal{D}_n \subset \mathcal{D}_{n+1})$.

The process will follow the following steps:

Step 1: For each $n \in \mathbb{N}$, build a continuous process $\{B_t^{(n)}\}_{t \in [0,1]}$ that satisfies the properties of the Brownian motion on \mathcal{D}_n .

Step 2: With probability $1, t \mapsto B_t^{(n)}$ converges uniformly on [0, 1].

Step 3: $\lim_{n \to +\infty} B_t^{(n)}$ is a Brownian motion.

Step 1: [Construction on the dyadic]

Let $\{Z_q\}_{q \in \mathcal{D}}$ be a sequence of i.i.d. standard Gaussian. In particular, for all $q \neq r \in \mathcal{D}$, Z_q is independent of Z_r , and $Z_q \sim \mathcal{N}(0, 1)$.

Main Lemma: If X, Y are i.i.d. $\mathcal{N}(0,1)$, then $\frac{X+Y}{\sqrt{2}}$ and $\frac{X-Y}{\sqrt{2}}$ are i.i.d. $\mathcal{N}(0,1)$.

Proof: Exercise.

For each $\omega \in \Omega$, we are going to build $B_t^{(n)}(\omega)$ by induction on $n \in \mathbb{N}$, for $t \in \mathcal{D}_n$, and then interpolate linearly. We drop the variable ω next.

For n = 0: Set $B_0^{(0)} = 0$ and $B_1^{(0)} = Z_1$. Then, we interpolate <u>linearly</u> between $B_0^{(0)}$ and $B_1^{(0)}$: $B_t^{(0)} = (1-t)B_0^{(0)} + tB_1^{(0)} = tZ_1, \quad t \in [0,1].$

 $\frac{\text{For } n = 1:}{\text{Set}}$

$$B_0^{(1)} = B_0^{(0)} = 0, \quad B_1^{(1)} = B_1^{(0)} = Z_1, \quad B_{\frac{1}{2}}^{(1)} = \frac{1}{2} \left(B_0^{(0)} + B_1^{(0)} \right) + \frac{1}{2} Z_{\frac{1}{2}} = \frac{1}{2} Z_1 + \frac{1}{2} Z_{\frac{1}{2}}.$$

Then, define $B_t^{(1)}$ by linear interpolation:

$$B_t^{(1)} = (1 - 2t)B_0^{(1)} + 2tB_{\frac{1}{2}}^{(1)} = 2tB_{\frac{1}{2}}^{(1)}, \quad t \in [0, \frac{1}{2}].$$
$$B_t^{(1)} = (2 - 2t)B_{\frac{1}{2}}^{(1)} + (2t - 1)B_1^{(1)} \quad t \in [\frac{1}{2}, 1].$$

We continue this process for each $n \ge 0$.

For n+1: Let $n \ge 0$. Assume $B_t^{(n)}$ built. For $k \in \{0, \dots, 2^n - 1\}$, define

$$B_{\frac{2k+1}{2^{n+1}}}^{(n+1)} = \frac{1}{2} \left(B_{\frac{k}{2^n}}^{(n)} + B_{\frac{k+1}{2^n}}^{(n)} \right) + \frac{1}{2^{\frac{n+2}{2}}} Z_{\frac{2k+1}{2^{n+1}}},$$

and for $t \in D_n$, define

$$B_t^{(n+1)} = B_t^{(n)}$$

Then, interpolate linearly to build $B_t^{(n+1)}$ for all $t \in [0, 1]$.

Lemma 1.4. For all $k \in \{0, \dots, 2^n - 1\}$, $B_{\frac{2k+1}{2^{n+1}}}^{(n+1)} - B_{\frac{k}{2^n}}^{(n)}$ is independent of $B_{\frac{k+1}{2^n}}^{(n)} - B_{\frac{2k+1}{2^{n+1}}}^{(n+1)}$, and $B_{\frac{2k+1}{2^{n+1}}}^{(n+1)} - B_{\frac{k}{2^n}}^{(n)} \sim \mathcal{N}(0, \frac{1}{2^{n+1}}).$

Proof. By induction. For n = 0. Let us first check that $B_{\frac{1}{2}}^{(1)} - B_0^{(0)}$ is independent of $B_1^{(1)} - B_{\frac{1}{2}}^{(1)}$. Note that

$$B_{\frac{1}{2}}^{(1)} - B_{0}^{(0)} = \frac{1}{2}Z_{1} + \frac{1}{2}Z_{\frac{1}{2}} = \frac{1}{\sqrt{2}}\frac{Z_{1} + Z_{\frac{1}{2}}}{\sqrt{2}},$$
$$B_{1}^{(1)} - B_{\frac{1}{2}}^{(1)} = \frac{1}{2}Z_{1} - \frac{1}{2}Z_{\frac{1}{2}} = \frac{1}{\sqrt{2}}\frac{Z_{1} - Z_{\frac{1}{2}}}{\sqrt{2}}.$$

Since $Z_1, Z_{\frac{1}{2}}$ are i.i.d. $\mathcal{N}(0, 1)$, the Main Lemma (c.f. beginning of the proof) tells us that $B_{\frac{1}{2}}^{(1)} - B_0^{(0)}$ is independent of $B_1^{(1)} - B_{\frac{1}{2}}^{(1)}$ and that $B_{\frac{1}{2}}^{(1)} - B_0^{(0)}$ is $\mathcal{N}(0, \frac{1}{2})$. Now, let $n \ge 1$, and assume that the property holds for n - 1. We have

$$\begin{split} B_{\frac{2k+1}{2^{n+1}}}^{(n+1)} - B_{\frac{k}{2^n}}^{(n)} &= \frac{1}{2} \left(B_{\frac{k}{2^n}}^{(n)} + B_{\frac{k+1}{2^n}}^{(n)} \right) + \frac{1}{2^{\frac{n+2}{2}}} Z_{\frac{2k+1}{2^{n+1}}} - B_{\frac{k}{2^n}}^{(n)} \\ &= \frac{1}{2} B_{\frac{k+1}{2^n}}^{(n)} - \frac{1}{2} B_{\frac{k}{2^n}}^{(n)} + \frac{1}{2^{\frac{n+2}{2}}} Z_{\frac{2k+1}{2^{n+1}}} \\ &= \frac{1}{2} \frac{1}{\sqrt{2^n}} \left[\sqrt{2^n} \left(B_{\frac{k+1}{2^n}}^{(n)} - B_{\frac{k}{2^n}}^{(n)} \right) + Z_{\frac{2k+1}{2^{n+1}}} \right]. \end{split}$$

By induction, $\left(B_{\frac{k+1}{2^n}}^{(n)} - B_{\frac{k}{2^n}}^{(n)}\right) \sim \mathcal{N}(0, \frac{1}{2^n})$. Also, $\left(B_{\frac{k+1}{2^n}}^{(n)} - B_{\frac{k}{2^n}}^{(n)}\right)$ and $Z_{\frac{2k+1}{2^{n+1}}}$ are independent (since the Z_q 's are independent). Thus, by the Main Lemma again,

$$\frac{1}{\sqrt{2}} \left[\sqrt{2^n} \left(B_{\frac{k+1}{2^n}}^{(n)} - B_{\frac{k}{2^n}}^{(n)} \right) + Z_{\frac{2k+1}{2^{n+1}}} \right]$$

is standard Gaussian. It follows that $B_{\frac{2k+1}{2^{n+1}}}^{(n+1)} - B_{\frac{k}{2^n}}^{(n)} \sim \mathcal{N}(0, \frac{1}{2^{n+1}})$. Similarly, noting that

$$B_{\frac{k+1}{2^n}}^{(n)} - B_{\frac{2k+1}{2^{n+1}}}^{(n+1)} = \frac{1}{\sqrt{2^{n+1}}} \frac{1}{\sqrt{2}} \left[\sqrt{2^n} \left(B_{\frac{k+1}{2^n}}^{(n)} - B_{\frac{k}{2^n}}^{(n)} \right) - Z_{\frac{2k+1}{2^{n+1}}} \right],$$

we deduce the result by the Main Lemma again.

Lemma 1.5. For all $n \ge 0$, for all $p < q \in \mathcal{D}_n$,

1. $B_a^{(n)} - B_p^{(n)} \sim \mathcal{N}(0, q-p).$ 2. $B_q^{(n)} - B_p^{(n)}$ is independent of $B_r^{(n)}$, for all $r \leq p, r \in \mathcal{D}_n$. *Proof.* This is a consequence of Lemma 1.4.

1. Let $p, q \in \mathcal{D}_n$. Then there exists k < l such that $p = \frac{k}{2^n}$ and $q = \frac{l}{2^n}$. Hence,

$$B_q^{(n)} - B_p^{(n)} = B_{\frac{l}{2^n}}^{(n)} - B_{\frac{k}{2^n}}^{(n)} = B_{\frac{l}{2^n}}^{(n)} - B_{\frac{l-1}{2^n}}^{(n)} + \dots + B_{\frac{k+1}{2^n}}^{(n)} - B_{\frac{k}{2^n}}^{(n)}$$

One can see that each term of sum are mutually independent (proof similar to Lemma 1.4). By Lemma 1.4 each term is a Gaussian $\mathcal{N}(0, \frac{1}{2^n})$, hence $B_q^{(n)} - B_p^{(n)} \sim \mathcal{N}(0, q-p)$.

2. Same argument.

Lemma 1.6. Lemma 1.5 holds for all $p < q \in \mathcal{D}$.

Proof. If $p, q \in \mathcal{D}$, then there exists $n \in \mathbb{N}$ such that $p, q \in \mathcal{D}_n$. Apply then Lemma 1.5.

Step 2: [Almost sure uniform convergence]

Let us denote, for $\omega \in \Omega$,

$$\Delta^{(n)}(\omega) = \max_{t \in [0,1]} |B_t^{(n+1)}(\omega) - B_t^{(n)}(\omega)| = \max_{k \in \{0,\dots,2^n-1\}} \max_{t \in [\frac{k}{2^n}, \frac{k+1}{2^n}]} |B_t^{(n+1)}(\omega) - B_t^{(n)}(\omega)|.$$

We drop the variable ω next. Since, by definition, $B_t^{(n)}$ is defined by linear interpolation and $B_t^{(n+1)} = B_t^{(n)}$ when $t \in \mathcal{D}_n$, we see that

$$\max_{t \in [\frac{k}{2^n}, \frac{k+1}{2^n}]} |B_t^{(n+1)} - B_t^{(n)}|$$

is attained at the midpoint $t = \frac{2k+1}{2^{n+1}}$ (draw a picture). Hence,

$$\Delta^{(n)} = \max_{k \in \{0, \dots, 2^n - 1\}} |B_{\frac{2k+1}{2^{n+1}}}^{(n+1)} - B_{\frac{2k+1}{2^{n+1}}}^{(n)}| = \max_{k \in \{0, \dots, 2^n - 1\}} |B_{\frac{2k+1}{2^{n+1}}}^{(n+1)} - \frac{1}{2} \left(B_{\frac{k}{2^n}}^{(n)} + B_{\frac{k+1}{2^n}}^{(n)} \right)|$$
$$= \frac{1}{2} \max_{k \in \{0, \dots, 2^n - 1\}} |\left(B_{\frac{2k+1}{2^{n+1}}}^{(n+1)} - B_{\frac{k}{2^n}}^{(n)} \right) - \left(B_{\frac{k+1}{2^n}}^{(n)} - B_{\frac{2k+1}{2^{n+1}}}^{(n+1)} \right)|.$$

Note that $B_{\frac{2k+1}{2^{n+1}}}^{(n+1)} - B_{\frac{k}{2^n}}^{(n)}$ and $B_{\frac{k+1}{2^n}}^{(n)} - B_{\frac{2k+1}{2^{n+1}}}^{(n+1)}$ are i.i.d. Gaussian $\mathcal{N}(0, \frac{1}{2^{n+1}})$. Hence, for all k,

$$W_k^{(n)} = \left(B_{\frac{2k+1}{2^{n+1}}}^{(n+1)} - B_{\frac{k}{2^n}}^{(n)}\right) - \left(B_{\frac{k+1}{2^n}}^{(n)} - B_{\frac{2k+1}{2^{n+1}}}^{(n+1)}\right)$$

is Gaussian $\mathcal{N}(0, \frac{1}{2^n})$. Let $\alpha \geq 1$. One has,

$$\mathbb{P}(\Delta^{(n)} \geq \frac{\alpha}{2\sqrt{2^n}}) = \mathbb{P}(\frac{1}{2} \max_{k \in \{0, \dots, 2^n - 1\}} |W_k^{(n)}| \geq \frac{\alpha}{2\sqrt{2^n}}) \leq 2^n \mathbb{P}(\frac{1}{2}|W_0^{(n)}| \geq \frac{\alpha}{2\sqrt{2^n}}),$$

where the inequality comes from the union bound. Note that for $Z \sim \mathcal{N}(0, 1)$,

$$\mathbb{P}(Z \ge \alpha) \le \frac{e^{-\frac{\alpha^2}{2}}}{\alpha\sqrt{2\pi}},$$

hence, by symmetry of Gaussian and the fact that $\sqrt{2^n} W_0^{(n)} \sim \mathcal{N}(0,1)$,

$$\mathbb{P}(\Delta^{(n)} \ge \frac{\alpha}{2\sqrt{2^n}}) = 2^{n+1} \mathbb{P}(\sqrt{2^n} W_0^{(n)} \ge \alpha) \le 2^{n+1} \frac{e^{-\frac{\alpha^2}{2}}}{\alpha\sqrt{2\pi}}.$$

Now, take $\alpha = 2\sqrt{n}$. Then,

$$\mathbb{P}(\Delta^{(n)} \ge \frac{\sqrt{n}}{\sqrt{2^n}}) \le \frac{1}{\sqrt{2\pi n}} \left(\frac{2}{e^2}\right)^n.$$

Hence,

$$\sum_{n\geq 1} \mathbb{P}(\Delta^{(n)} \geq \frac{\sqrt{n}}{\sqrt{2^n}}) < +\infty.$$

By Borel-Cantelli,

$$\mathbb{P}(\limsup\{\Delta^{(n)} \ge \frac{\sqrt{n}}{\sqrt{2^n}}\}) = 0.$$

In other words, there exists $A \subset \Omega$, $\mathbb{P}(A) = 1$, such that for all $\omega \in \Omega$, there exists $N \in \mathbb{N}$, such that for all $n \geq N$,

$$\Delta^{(n)}(\omega) \le \frac{\sqrt{n}}{\sqrt{2^n}}.$$

Recalling the definition of $\Delta^{(n)}(\omega)$, we thus proved that for all ω in a set A of probability 1,

$$\sum_{n\geq 1} \|B^{n+1}(\omega) - B^n(\omega)\|_{L^{\infty}([0,1])} < +\infty.$$

A standard result of analysis allows us to conclude that, almost surely, $\{B^{(n)}(\omega)\}_{n\geq 1}$ converges uniformly on [0, 1]. We then define

$$B(\omega) = \begin{cases} \lim_{n \to +\infty} B^{(n)}(\omega) & \text{if } \omega \in A \\ 0 & \text{if } \omega \notin A \end{cases}.$$

Step 3: [The limit is a Brownian motion on [0,1]]

• Continuity: By construction, for all $\omega \in \Omega$, for all $n \in \mathbb{N}$, $t \mapsto B_t^{(n)}(\omega)$ is continuous on [0, 1]. Since, almost surely, $\{B_n\}$ converges uniformly on [0, 1] to B, we deduce that, almost surely, $t \mapsto B_t(\omega)$ is continuous.

• Since for all $n \in \mathbb{N}$, $B_0^{(n)} = 0$, we deduce that $B_0 = 0$.

• Stationary increments: Let $t, s \in \mathcal{D}$. Then, there exists $m \in \mathbb{N}$ such that $t, s \in \mathcal{D}_m$. Hence, $B_t^{(m)} - B_s^{(m)} \sim \mathcal{N}(0, t - s)$. By construction, for all $t \in \mathcal{D}_m$, for all $n \ge m$, $B_t^{(n)} = B_t^{(m)}$. Hence

$$B_t - B_s = \lim_{n \to +\infty} B_t^{(n)} - B_s^{(n)} = \lim_{n \to +\infty} B_t^{(m)} - B_s^{(m)} = B_t^{(m)} - B_s^{(m)},$$

where the limit is understood as "almost sure convergence". Since $B_t^{(m)} - B_s^{(m)} \sim \mathcal{N}(0, t-s)$, we have $B_t - B_s \sim \mathcal{N}(0, t-s)$. Now, assume that $t, s \in [0, 1]$. By density of \mathcal{D} in [0, 1], there exist sequences $\{t_k\}, \{s_k\} \in \mathcal{D}$ such that $t = \lim_k t_k$ and $s = \lim_k s_k$. Since, almost surely, $t \mapsto B_t$ is continuous, we have, almost surely, $B_t = \lim_k B_{t_k}$ and $B_s = \lim_k B_{s_k}$. Since, for all $k, B_{t_k} - B_{s_k} \sim \mathcal{N}(0, t_k - s_k)$, we can conclude that $B_t - B_s \sim \mathcal{N}(0, t-s)$ (use, for example, characteristic functions).

• Independent increments: Same argument.

1.3 Simulation of Brownian motion

Fix an integer $n \in \mathbb{N}$. Given times $0 = t_0 < t_1 < \cdots < t_n$, generate Z_1, \ldots, Z_n i.i.d. $\mathcal{N}(0, 1)$. Define

$$B_{0} = 0,$$

$$B_{t_{1}} = \sqrt{t_{1}}Z_{1},$$

$$B_{t_{2}} = B_{t_{1}} + \sqrt{t_{2} - t_{1}}Z_{2} = \sqrt{t_{1}}Z_{1} + \sqrt{t_{2} - t_{1}}Z_{2},$$

$$\vdots$$

$$B_{t_{n}} = B_{t_{n-1}} + \sqrt{t_{n} - t_{n-1}}Z_{n} = \sum_{i=1}^{n} \sqrt{t_{i} - t_{i-1}}Z_{i}$$

Using this construction, $\{B_t\}$ is a Brownian motion at times $0 = t_0 < t_1 < \cdots < t_n$. Indeed, it starts at 0, and for all $l \leq m < n$,

$$B_{t_n} - B_{t_m} = \sum_{i=1}^n \sqrt{t_i - t_{i-1}} Z_i - \sum_{i=1}^m \sqrt{t_i - t_{i-1}} Z_i = \sum_{i=m+1}^n \sqrt{t_i - t_{i-1}} Z_i,$$

which is Gaussian $\mathcal{N}(0, t_n - t_m)$, and is independent of B_{t_l} .

1.4 Properties of the Brownian motion

Definition 1.7. $\{X_t\}_{t\geq 0}$ is a <u>Gaussian process</u> if for all $n \in \mathbb{N}$, for all $t_1 < \cdots < t_n$, the random vector $(X_{t_1}, \ldots, X_{t_n})$ is multivariate Gaussian.

Theorem 1.1. (X_1, \ldots, X_n) is multivariate Gaussian \iff every linear combination of the X_i 's is Gaussian, that is, for all $\lambda_1, \ldots, \lambda_n \in \mathbb{R}, \lambda_1 X_1 + \cdots + \lambda_n X_n$ is Gaussian \iff

$$\exists \mu \in \mathbb{R}^n, \exists A \in \mathbb{R}^{n \times m}, (X_1, \dots, X_n) = \mu + A(Z_1, \dots, Z_n),$$

where Z_1, \ldots, Z_n are i.i.d. $\mathcal{N}(0, 1)$.

Theorem 1.2. A Brownian motion is a Gaussian process.

Proof. Define

$$Z_j = \frac{B_{t_j} - B_{t_{j-1}}}{\sqrt{t_j - t_{j-1}}}, \quad j = 1, \dots, n.$$

In particular, the Z_j 's are i.i.d. standard Gaussian $\mathcal{N}(0,1)$. Note that

$$\begin{pmatrix} B_{t_1} \\ \vdots \\ \vdots \\ B_{t_n} \end{pmatrix} = \begin{pmatrix} \sqrt{t_1} & 0 & \cdots & 0 \\ \sqrt{t_1} & \sqrt{t_2 - t_1} & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ \sqrt{t_1} & \sqrt{t_2 - t_1} & \cdots & \sqrt{t_n - t_{n-1}} \end{pmatrix} \begin{pmatrix} Z_1 \\ \vdots \\ \vdots \\ Z_n \end{pmatrix}.$$

Hence $\{B_t\}$ is a Gaussian process.

Definition 1.8. Let $\{\mathcal{F}_t\}$ be a filtration. The germ σ -algebra is

$$\mathcal{F}_s^+ = \cap_{t>s} \mathcal{F}_t.$$

Remark 1.9. 1. In general $\mathcal{F}_s^+ \neq \mathcal{F}_s$. Indeed, let X be a non-constant random variable. Define $X_t = tX$, $t \ge 0$, and $\mathcal{F}_t = \sigma(X_s : 0 \le s \le t)$. Note that for all t > 0, $\mathcal{F}_t = \sigma(X)$. However,

$$\{\emptyset, \Omega\} = \mathcal{F}_0 \neq \cap_{t>0} \mathcal{F}_t = \sigma(X).$$

2. \mathcal{F}_s^+ represents an infinitesimal additional information into the future.

Theorem 1.3 (Blumenthal 0-1 Law). Let $\{B_t\}$ be a Brownian motion. If $A \in \mathcal{F}_0^+$, then $\mathbb{P}(A) = 0$ or 1.

Corollary 1.10. Let $\{B_t\}$ be a standard Brownian motion. Define

$$T_1 = \inf\{t > 0 : B_t > 0\}, \qquad T_2 = \inf\{t > 0 : B_t = 0\}, \qquad T_3 = \inf\{t > 0 : B_t < 0\},$$

Then, $\mathbb{P}(T_1 = 0) = \mathbb{P}(T_2 = 0) = \mathbb{P}(T_3 = 0) = 1.$

Proof. One has

$$\{T_1 = 0\} = \bigcap_{n \ge 1} \bigcup_{\varepsilon \in (0, \frac{1}{n})} \{B_{\varepsilon} > 0\}$$

Hence, $\{T_1 = 0\} \in \mathcal{F}_0^+$. Note that for all t > 0,

$$\{B_t > 0\} \subset \{T_1 \le t\},\$$

hence

$$\mathbb{P}(T_1 \le t) \ge \mathbb{P}(B_t > 0) = \frac{1}{2}$$

We deduce that

$$\mathbb{P}(T_1 = 0) = \mathbb{P}(\cap_n \{T_1 \le \frac{1}{n}\}) = \lim_n \mathbb{P}(T_1 \le \frac{1}{n}) \ge \frac{1}{2}.$$

Since $\{T_1 = 0\} \in \mathcal{F}_0^+$, by Blumenthal 0-1 law, we conclude that $\mathbb{P}(T_1 = 0) = 1$.

By symmetry, (that is, $\{-B_t\}$ is a Brownian motion), $\mathbb{P}(T_3 = 0) = 1$.

With probability 1, $t \mapsto B_t$ is continuous and satisfies $\mathbb{P}(T_1 = 0) = \mathbb{P}(T_3 = 0) = 1$, hence by the intermediate value theorem, $\mathbb{P}(T_2 = 0) = 1$.

Remark 1.11. In particular, Corollary 1.10 tells us that with proba 1, for all $\varepsilon > 0$, B_t hits 0 infinitely many times in the interval $(0, \varepsilon)$.

Theorem 1.4 (Long term behavior of Brownian motion). Let $\{B_t\}$ be a Brownian motion, then

$$\limsup_{t \to +\infty} \frac{B_t}{\sqrt{t}} = +\infty \text{ and } \liminf_{t \to +\infty} \frac{B_t}{\sqrt{t}} = -\infty.$$

Proof. Fix M > 0.

$$\mathbb{P}(\limsup_{t \to +\infty} \frac{B_t}{\sqrt{t}} > M) = \mathbb{P}(\limsup_{t \to 0^+} \sqrt{t}B_{\frac{1}{t}} > M) = \mathbb{P}(\cap_{t > 0} \cup_{0 \le s \le t} \{\sqrt{s}B_{\frac{1}{s}} > M\})$$

Fact: $\{sB_{\frac{1}{s}}\}$ is a Brownian motion (Time inversion — see later).

Fact: { $\limsup f_t > M$ } = $\limsup \{f_t > M\}$.

Note that $\sqrt{s}B_{\frac{1}{s}} = \frac{X_s}{\sqrt{s}}$, where $X_s = sB_{\frac{1}{s}}$ being a Brownian motion. Hence,

$$\cap_{t>0} \cup_{0 \le s \le t} \{ \sqrt{s} B_{\frac{1}{s}} > M \} = \cap_{t>0} \cup_{0 \le s \le t} \{ X_s > M\sqrt{s} \} \in \mathcal{F}_0^+.$$

By Blumenthal 0-1 law,

$$\mathbb{P}(\limsup_{t \to +\infty} \frac{B_t}{\sqrt{t}} > M) = 0 \text{ or } 1$$

Now, note that

$$\mathbb{P}(\limsup_{t \to +\infty} \frac{B_t}{\sqrt{t}} > M) \ge \mathbb{P}(\limsup_{n \to +\infty} \frac{B_n}{\sqrt{n}} > M) = \mathbb{P}(\cap_{n \ge 1} \cup_{k \ge n} \{\frac{B_k}{\sqrt{k}} > M\})$$

 $= \lim_{n \to +\infty} \mathbb{P}(\bigcup_{k \ge n} \{\frac{B_k}{\sqrt{k}} > M\}) \ge \lim_{n \to +\infty} \mathbb{P}(\{\frac{B_n}{\sqrt{n}} > M\}) = \lim_{n \to +\infty} \mathbb{P}(\{B_1 > M\}) = \mathbb{P}(B_1 > M) > 0.$

We conclude that

$$\mathbb{P}(\limsup_{t \to +\infty} \frac{B_t}{\sqrt{t}} > M) = 1.$$

It follows that

$$\mathbb{P}(\limsup_{t \to +\infty} \frac{B_t}{\sqrt{t}} = +\infty) = \mathbb{P}(\cap_{M>0} \limsup_{t \to +\infty} \frac{B_t}{\sqrt{t}} > M) = \lim_{M \to +\infty} \mathbb{P}(\limsup_{t \to +\infty} \frac{B_t}{\sqrt{t}} > M) = 1.$$

By symmetry $(\{-B_t\}$ is a Brownian motion), we deduce that

$$\mathbb{P}(\liminf_{t \to +\infty} \frac{B_t}{\sqrt{t}} = -\infty) = 1$$

Remark 1.12. In other words, a Brownian motion is recurrent (each value $a \in \mathbb{R}$ is visited infinitely many often).

Definition 1.13. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Recall that a filtration $\{F_t\}_{t\geq 0}$ is a family of sigma-algebras such that for all $s \leq t$, $\mathcal{F}_s \subset \mathcal{F}_t \subset \mathcal{F}$.

A process $\{M_t\}_{t\geq 0}$ is a $\{F_t\}$ continuous-time martingale if

i) For all $t \ge 0$, M_t is \mathcal{F}_t -measurable.

ii) For all $t \ge 0$, $\mathbb{E}[|M_t|] < +\infty$.

iii) For all $s \leq t$, $\mathbb{E}[M_t | \mathcal{F}_s] = M_s$.

Proposition 1.14. A Brownian motion is a continuous-time martingale.

Proof.

$$\mathbb{E}[B_t|\mathcal{F}_s] = \mathbb{E}[B_t - B_s + B_s|\mathcal{F}_s] = \mathbb{E}[B_t - B_s|\mathcal{F}_s] + B_s = B_s,$$

because $B_t - B_s$ is independent of \mathcal{F}_s and has expectation 0.

Theorem 1.5 (Law of Large Numbers for Brownian motion). For a Brownian motion $\{B_t\}$, $\lim_{t\to+\infty} \frac{B_t}{t} = 0$ almost surely.

Proof. Step 1: Note that $B_n = B_1 - B_0 + \cdots + B_n - B_{n-1}$, so we can write

$$B_n = \sum_{k=1}^n X_k,$$

where $X_k = B_k - B_{k-1}$. Note that $\{X_k\}$ is a sequence of i.i.d. $\mathcal{N}(0,1)$ random variable. Hence, by the strong LLN, $\frac{B_n}{n} \to \mathbb{E}[B_1] = 0$ almost surely.

Step 2: We will prove that

$$\sum_{n>0} \mathbb{P}(\sup_{t\in[n,n+1]} |B_t - B_n| > n^{\frac{2}{3}}) < +\infty.$$

Fix $n \ge 0$. Define, for $m \ge 0$ and $k \in \{0, \ldots, 2^m\}$,

$$X_k = B_{n + \frac{k}{2m}} - B_n$$

Since $\{B_{n+t} - B_n\}_{t \ge 0}$ is a Brownian motion, it is a martingale. It follows that $\{X_k\}$ is a discrete time martingale. We can thus apply Doob's inequality and obtain

$$\mathbb{P}(\sup_{0 \le k \le 2^m} |X_k| > n^{\frac{2}{3}}) \le \frac{\mathbb{E}[|X_{2^m}|^2]}{n^{\frac{4}{3}}} = \frac{\mathbb{E}[|B_{n+1} - B_n|^2]}{n^{\frac{4}{3}}} = \frac{1}{n^{\frac{4}{3}}}.$$

Because $t \mapsto B_t$ is continuous, we have

$$\{\sup_{t \in [n,n+1]} |B_t - B_n| > n^{\frac{2}{3}}\} = \bigcup_{m \ge 1} \{\sup_{0 \le k \le 2^m} |X_k| > n^{\frac{2}{3}}\}.$$

Hence,

$$\mathbb{P}(\sup_{t \in [n,n+1]} |B_t - B_n| > n^{\frac{2}{3}}) = \lim_{m \to +\infty} \mathbb{P}(\sup_{0 \le k \le 2^m} |X_k| > n^{\frac{2}{3}}) \le \frac{1}{n^{\frac{4}{3}}}.$$

Step 3: Define, for $n \ge 0$,

$$A_n = \{ \sup_{t \in [n, n+1]} |B_t - B_n| > n^{\frac{2}{3}} \}.$$

Since $\sum \mathbb{P}(A_n) < +\infty$, by Borel-Cantelli we have $\mathbb{P}(\limsup A_n) = 0$. This means that, for all ω in a set of probability 1,

$$\exists n_0 \ge 1, \forall n \ge n_0, \forall t \in [n, n+1], \left| \frac{B_t(\omega)}{t} \right| \le \frac{n}{t} \left(\left| \frac{B_t(\omega) - B_n(\omega)}{n} \right| + \left| \frac{B_n(\omega)}{n} \right| \right) \le \frac{1}{n^{\frac{1}{3}}} + \left| \frac{B_n(\omega)}{n} \right|,$$
which goes to 0 as $n \to +\infty$.

Corollary 1.15 (Time Inversion). Let $\{B_t\}$ be a Brownian motion. The process $\{X_t\}_{t\geq 0}$ defined by $X_t = tB_{\frac{1}{t}}$ for t > 0 and $X_0 = 0$, is a Brownian motion, for the natural filtration $\widetilde{\mathcal{F}}_t = \sigma(X_s : s \leq t)$.

Proof. Continuity at 0: From Theorem 1.5, we have

$$\lim_{t \to 0^+} X_t = \lim_{t \to +\infty} X_{\frac{1}{t}} = \lim_{t \to +\infty} \frac{B_t}{t} = 0 = X_0.$$

Gaussian Increments: Note that, for $s \leq t$,

$$X_t - X_s = (t - s)B_{\frac{1}{t}} - s(B_{\frac{1}{s}} - B_{\frac{1}{t}}),$$

which is $\mathcal{N}(0, t-s)$.

Independent Increments: Since $(X_t - X_s, X_s)$ is a bivariate Gaussian, we can conclude independence because $\mathbb{E}[(X_t - X_s)X_s] = 0$.

1.5 Reflection Principle

Definition 1.16. Let $(\Omega, \mathcal{F}, \{\mathcal{F}_n\}, \mathbb{P})$ be a filtered space. Let $\{X_t\}$ be a stochastic process adapted to $\{\mathcal{F}_t\}$. We say that $\{X_t\}$ is a <u>Markov process</u> if

$$\forall A \in \mathcal{F}, \forall h \ge 0, \forall t \ge 0, \quad \mathbb{P}(X_{t+h} \in A | \mathcal{F}_t) = \mathbb{P}(X_{t+h} \in A | X_t).$$

Notation:

$$\mathbb{P}(X_{t+h} \in A | X_t) = \mathbb{P}(X_{t+h} \in A | \sigma(X_t)) = \mathbb{E}[1_A(X_{t+h}) | \sigma(X_t)]$$

Theorem 1.6. A Brownian motion is a Markov process (w.r.t the same filtration).

Sketch of proof. We want to prove that

$$\mathbb{P}(B_{t+h} \in A | \mathcal{F}_t) = \mathbb{P}(B_{t+h} \in A | B_t),$$

equivalently,

$$\mathbb{E}[1_A(B_{t+h})|\mathcal{F}_t] = \mathbb{E}[1_A(B_{t+h})|\sigma(B_t)]$$

Let $\Phi \colon \mathbb{R} \to \mathbb{R}$ be measurable, then

$$\mathbb{E}[\Phi(B_{t+h})|\mathcal{F}_t] = \mathbb{E}[\Phi(B_{t+h} - B_t + B_t)|\mathcal{F}_t] = \mathbb{E}[g(X, B_t)|\mathcal{F}_t],$$

where $X = B_{t+h} - B_t$, which is independent of \mathcal{F}_t , and $g(x, y) = \Phi(x + y)$.

Since X is independent of \mathcal{F}_t , and B_t is $\sigma(B_t)$ -measurable, $\mathbb{E}[g(X, B_t)|\mathcal{F}_t] = \mathbb{E}[g(X, B_t)|\sigma(B_t)]$. To prove this, start with functions g of the form $g(x, y) = 1_C(x)1_D(y)$, and use the fact that they approximate any Borel function. **Definition 1.17.** A random variable T is an $\{\mathcal{F}_t\}$ -stopping time if

$$\forall t \ge 0, \quad \{T \le t\} \in \mathcal{F}_t.$$

Proposition 1.18. 1. Every deterministic time is a stopping time.

2. If $\{T_n\}$ is a sequence of stopping time, the $\sup_n T_n$ is a stopping time.

Proof. 1. Exercise. 2. Fix $t \ge 0$. Then,

$$\{\sup_{n} T_{n} \leq t\} = \bigcap_{n} \{T_{n} \leq t\} \in \mathcal{F}_{t}.$$

Remark 1.19. In general, $\inf_n T_n$ is not a stopping time. Indeed, recalling that if $m = \inf(A)$, then for all $\varepsilon > 0$, there exists $a \in A$, such that $m \ge a - \varepsilon$. In particular we have

$$\{\inf_n T_n \le t\} = \cap_{\varepsilon > 0} \cup_{n \ge 1} \{T_n \le t + \varepsilon\} \in \cap_{\varepsilon > 0} \mathcal{F}_{t+\varepsilon} = \mathcal{F}_t^+.$$

Since in general $\mathcal{F}_t \neq \mathcal{F}_t^+$, it follows that $\inf_n T_n$ is not a stopping time.

Similarly, note that, when $\mathcal{F}_t = \sigma(B_s : s \leq t)$,

1. If F is a closed set, then $T = \inf\{t \ge 0 : B_t \in F\}$ is a stopping time.

2. If O is open, then $T = \inf\{t \ge 0 : B_t \in O\}$ is not a stopping time.

Definition 1.20. A filtration $\{F_t\}$ is right-continuous if for all $t \ge 0$, $\mathcal{F}_t = \mathcal{F}_t^+$.

Example 1.21. The canonical filtration for a Brownian motion $\{B_t\}$: Define

$$\mathcal{F}_t = \sigma(B_s : s \le t), \quad t \ge 0,$$

and

$$\widetilde{\mathcal{F}}_t = \mathcal{F}_t^+ = \cap_{\varepsilon > 0} \mathcal{F}_{t+\varepsilon}, \quad t \ge 0.$$

Then $\{\widetilde{\mathcal{F}}_t\}$ is a right-continuous filtration, and $\{B_t\}$ is adapted to $\{\widetilde{\mathcal{F}}_t\}$.

Proposition 1.22. 1. If $\{T_n\}$ is a sequence of $\{\mathcal{F}_t^+\}$ -stopping times, then $\inf_n T_n$ is an $\{\mathcal{F}_t^+\}$ -stopping time.

2. If O is open, then $T = \inf\{t \ge 0 : B_t \in O\}$ is an $\{\widetilde{\mathcal{F}}_t\}$ -stopping time.

Definition 1.23. For a stopping time T, define

$$\mathcal{F}_T = \{ A \in \mathcal{F} : A \cap \{ T \le t \} \in \mathcal{F}_t^+, \, \forall t \ge 0 \}.$$

Theorem 1.7. \mathcal{F}_T is a σ -algebra.

Proof. Same proof as in the discrete case.

Definition 1.24. Let $(\Omega, \mathcal{F}, \{\mathcal{F}_n\}, \mathbb{P})$ be a filtered space. Let $\{X_t\}$ be a stochastic process adapted to $\{\mathcal{F}_t\}$. We say that $\{X_t\}$ is a strong Markov process if for all stopping time T finite almost surely,

$$\forall A \in \mathcal{F}, \forall h \ge 0, \quad \mathbb{P}(X_{T+h} \in A | \mathcal{F}_T) = \mathbb{P}(X_{T+h} \in A | X_T)$$

Theorem 1.8. The Brownian motion is a strong Markov process.

Sketch of Proof. Note that $\{B_{T+t} - B_T\}_{t \ge 0}$ is a standard Brownian motion independent of \mathcal{F}_T .

Theorem 1.9 (Reflection principle). Let T be a stopping time and $\{B_t\}$ be a standard Brownian motion.

If M = (x, y), then the reflection of M with respect to the line passing through (0, a) and parallel to the x-axis is $M^* = (x, 2a - y)$ (draw a picture).

For $t \geq 0$, define

$$B_t^* = B_t \mathbf{1}_{t \le T} + (2B_T - B_t)\mathbf{1}_{t > T}$$

Then, $\{B_t^*\}$ is a standard Brownian motion.

Definition 1.25. The process B_t^* defined in Theorem 1.9 is called <u>reflected Brownian motion</u>.

Corollary 1.26. Let $\{B_t\}$ be a Brownian motion. Consider, for $t \ge 0$,

$$M_t = \sup_{0 \le s \le t} B_s.$$

Then, $M_t \sim |Z|$, where $Z \sim \mathcal{N}(0, t)$. This means that supremum of Brownian motion path has a χ distribution.

Proof. First note that $\mathbb{P}(M_t \ge 0) = 1$ because $B_0 = 0$ a.s.

Fix a > 0. Let us find $\mathbb{P}(M_t \ge a)$. Consider $\{B_t^*\}$ the reflected Brownian motion with respect to the stopping time $T_a = \inf\{t \ge 0 : B_t = a\}$. Note that

- i) $\{B_t \ge a\} \subset \{M_t \ge a\}.$
- ii) $\{M_t \ge a\} \cap \{B_t < a\} = \{B_t^* > a\}.$

The point i) is clear. The inclusion \subset of the point ii) is clear from the picture (after reflection, $B_t < a$ if and only if $B_t^* > a$). For the other inclusion \supset , if $\{B_t^* > a\}$, then either $\{B_t > a\}$ either $\{B_t < a\}$. The case $\{B_t > a\}$ is impossible because $B_t > a$ implies that $T_a < t$. Necessarily, $\{B_t < a\}$. Since $\{B_t < a\}$ and $\{B_t^* > a\}$, we have $T_a \leq t$ and thus $M_t \geq a$.

Thus, from ii) and Theorem 1.9,

$$\mathbb{P}(M_t \ge a, B_t < a) = \mathbb{P}(B_t^* > a) = \mathbb{P}(B_t > a).$$

Hence,

$$\mathbb{P}(M_t \ge a) = \mathbb{P}(M_t \ge a, B_t < a) + \mathbb{P}(M_t \ge a, B_t \ge a) = 2\mathbb{P}(B_t \ge a) = \mathbb{P}(|B_t| \ge a).$$

1.6 Differentiability of the paths of the Brownian motion

Theorem 1.10. With probability 1, the paths of the Brownian motion are nowhere differentiable. Formally, let $\{B_t\}$ be a Brownian motion, then

$$\mathbb{P}\bigg(\{\omega\in\Omega:\exists t_0\in[0,+\infty),t\mapsto B_t(\omega)\text{ is differentiable at }t_0\}\bigg)=0.$$

Proof. Step 1: [Setup]

Without loss of generality, let us prove the result on [0, 1]. Denote

$$A = \{ \omega \in \Omega : \exists t_0 \in [0, 1], t \mapsto B_t(\omega) \text{ is differentiable at } t_0 \}.$$

We want to prove that $\mathbb{P}(A) = 0$. For $n \ge 3$ and $k \in \{1, \ldots, n-2\}$, define

$$M_{k,n} = \max\{|B_{\frac{k+2}{n}} - B_{\frac{k+1}{n}}|, |B_{\frac{k+1}{n}} - B_{\frac{k}{n}}|, |B_{\frac{k}{n}} - B_{\frac{k-1}{n}}|\},\$$

and

$$M_n = \min(M_{1,n},\ldots,M_{n-2,n}).$$

Step 2: The goal of Step 2 is to prove that

$$\forall \omega \in A, \exists M \in \mathbb{N}, \exists n_0 \in N, \forall n \ge n_0, M_n(\omega) \le \frac{5}{n}(1+M).$$

Let $\omega \in A$ (we drop the dependence on ω next). Then there exists $t_0 \in [0, 1]$ such that $t \mapsto B_t$ is differentiable at t_0 . By definition of differentiability, there exists $L \in \mathbb{R}$ and $\delta > 0$ such that for all $t \in [0, 1] \setminus \{t_0\}$, if $|t - t_0| \leq \delta$, then $|B_t - B_{t_0} - L(t - t_0)| \leq |t - t_0|$ (taking $\varepsilon = 1$). Hence, by triangular inequality, for all t such that $|t - t_0| \leq \delta$,

$$|B_t - B_{t_0}| \le (1 + |L|)|t - t_0|.$$

Now, note that there exists $n_0 \ge 1$ and $k \in \{1, \ldots, n_0\}$, such that

$$t_0 \in \left[\frac{k-1}{n_0}, \frac{k}{n_0}\right]$$
 and $\left|\frac{k+2}{n_0} - \frac{k-1}{n_0}\right| = \frac{3}{n_0} \le \delta.$

Let $n \ge n_0$. Then there exists $k \in \{1, \ldots, n\}$ such that the above holds. Hence,

$$|B_{\frac{k}{n}} - B_{\frac{k-1}{n}}| \le |B_{\frac{k}{n}} - B_{t_0}| + |B_{t_0} - B_{\frac{k-1}{n}}| \le (1+|L|)\left(|\frac{k}{n} - t_0| + |t_0 - \frac{k-1}{n}|\right) \le \frac{2}{n}(1+|L|).$$

Similarly, we have

$$|B_{\frac{k+1}{n}} - B_{\frac{k}{n}}| \le \frac{3}{n}(1+|L|)$$
 and $|B_{\frac{k+2}{n}} - B_{\frac{k+1}{n}}| \le \frac{5}{n}(1+|L|).$

We thus proved that for all $n \ge n_0$, there exists $k \in \{1, \ldots, n\}$ such that

$$M_{k,n} \le \frac{5}{n}(1+|L|).$$

By definition of M_n , this tells us that for all $n \ge n_0$,

$$M_n \le \frac{5}{n}(1+|L|).$$

Now, just take any integer M greater than |L| to conclude that

$$\forall \omega \in A, \exists M \in \mathbb{N}, \exists n_0 \in N, \forall n \ge n_0, M_n(\omega) \le \frac{5}{n}(1+M).$$

Equivalently,

$$A \subset \bigcup_{M \in \mathbb{N}} \bigcup_{n_0 \in \mathbb{N}} \bigcap_{n \ge n_0} \bigg\{ M_n \le \frac{5}{n} (1+M) \bigg\}.$$

Step 3: The goal of Step 3 is to prove that

$$\forall M \in \mathbb{N}, \lim_{n \to +\infty} \mathbb{P}(M_n \le \frac{5}{n}(1+M)) = 0.$$

Let $n \ge 3$ and $k \in \{1, \ldots, n-2\}$. Denote,

$$X_1 = |B_{\frac{k}{n}} - B_{\frac{k-1}{n}}|, \quad X_2 = |B_{\frac{k+1}{n}} - B_{\frac{k}{n}}|, \quad X_3 = |B_{\frac{k+2}{n}} - B_{\frac{k+1}{n}}|.$$

Since $\{B_t\}$ is a Brownian motion, X_1 , X_2 , X_3 are i.i.d. with same distribution as |Z| where $Z \sim \mathcal{N}(0, \frac{1}{n})$. Thus, the CDF of $M_{k,n} = \max(X_1, X_2, X_3)$ is

$$F_{M_{k,n}}(x) = \mathbb{P}(M_{k,n} \le x) = \mathbb{P}(X_1 \le x)^3, \quad x \in \mathbb{R}.$$

Note that

$$\mathbb{P}(X_1 \le x) = \mathbb{P}(|Z| \le x\sqrt{n}),$$

where $Z \sim \mathcal{N}(0, 1)$. Hence,

$$\mathbb{P}(X_1 \le x) = \frac{2}{\sqrt{2\pi}} \int_0^{x\sqrt{n}} e^{-\frac{t^2}{2}} dt \le \frac{2x\sqrt{n}}{\sqrt{2\pi}}.$$

We deduce that for all $M \in \mathbb{N}$,

$$\mathbb{P}(M_{k,n} \le \frac{5}{n}(1+M)) \le \left[\frac{10}{\sqrt{2\pi}}(1+M)\frac{1}{\sqrt{n}}\right]^3 = \frac{C}{n^{\frac{3}{2}}},$$

where $C = \left[\frac{10}{\sqrt{2\pi}}(1+M)\right]^3$. Hence, by union bound,

$$\mathbb{P}\left(M_{n} \leq \frac{5}{n}(1+M)\right) = \mathbb{P}\left(\bigcup_{k=1}^{n-2} \left\{M_{k,n} \leq \frac{5}{n}(1+M)\right\}\right) \leq \sum_{k=1}^{n-2} \mathbb{P}\left(M_{k,n} \leq \frac{5}{n}(1+M)\right) \leq \frac{C}{\sqrt{n}}.$$

We conclude that

$$\forall M \in \mathbb{N}, \lim_{n \to +\infty} \mathbb{P}(M_n \le \frac{5}{n}(1+M)) = 0.$$

Step 4: [Conclusion]

From Step 2,

$$\mathbb{P}(A) \le \mathbb{P}\bigg(\bigcup_{M \in \mathbb{N}} \bigcup_{n_0 \in \mathbb{N}} \bigcap_{n \ge n_0} \bigg\{ M_n \le \frac{5}{n} (1+M) \bigg\} \bigg).$$

Denote $B_{n_0} = \bigcap_{n \ge n_0} \{ M_n \le \frac{5}{n} (1+M) \}$, and note that $\{ B_{n_0} \}$ is an increasing sequence of sets, hence, from Step 3,

$$\mathbb{P}\bigg(\cup_{n_0\in\mathbb{N}}\cap_{n\geq n_0}\bigg\{M_n\leq\frac{5}{n}(1+M)\bigg\}\bigg) = \lim_{n_0\to+\infty}\mathbb{P}\bigg(\cap_{n\geq n_0}\bigg\{M_n\leq\frac{5}{n}(1+M)\bigg\}\bigg)$$
$$\leq \lim_{n_0\to+\infty}\mathbb{P}\bigg(\bigg\{M_{n_0}\leq\frac{5}{n_0}(1+M)\bigg\}\bigg)$$
$$= 0.$$

We conclude that

$$\mathbb{P}(A) \le \sum_{M \in \mathbb{N}} \mathbb{P}\left(\bigcup_{n_0 \in \mathbb{N}} \bigcap_{n \ge n_0} \left\{ M_n \le \frac{5}{n} (1+M) \right\} \right) = 0.$$