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Lecture Notes - Brownian Motion

1 Brownian motion

Recall that a filtered space (2, F,{F,},P) is given.

1.1 Definitions

Definition 1.1 (Standard Brownian motion). A continuous-time stochastic process { B }1(0,4-)
is a standard Brownian motion if

1. Bo =0 a.s.

2. (Stationary Gaussian increments) V0 < s < t, By — By ~ B;_s — By and B; — Bs ~
N(0,t — s) (Gaussian of mean 0 and variance ¢ — s).

3. (Independent increments) V0 < s < t, By — By is independent of Fs.
4. With probability 1, the trajectories are continuous. Precisely:

JACQ,PA) =1,Vw e Q, t — By(w) is continuous on [0, +00).

Remark 1.2. One may ask whether all the assumptions are necessary in the definition of the
Brownian motion. Or, in other words, does one or several assumptions imply another one.

e The continuity assumption is a necessity. To see this, let {B;} be a Brownian motion and
let U be uniformly distributed on [0, 1]. Define, for w € Q and ¢t > 0,

Bi(w) = Be(w) 12wy + (1 + Be(w)) 1 i—v(w)}-

In this case, for all t > 0, ]P’(EJ = B;) = 1, and hence B, satisfies properties 1-3. of the definition.
However, for all w € Q, t — B;(w) is discontinuous (at t = U(w)).

e It can be shown that if 3-4 and stationary increments hold, then necessarily the increments
are Gaussian.

e Property 1. is just a normalization. A brownian motion can start at any point.

e We will always consider the natural filtration F; = o(Bs : s < t).

Model: Brownian motions are used to model the trajectories of small particles in a fluid, or the
evolution of the stock market. Generally speaking, it is used to model erratic motions.

Remark 1.3. When we say “Let {B;};>0 be a Brownian motion”, we implicitly assume the
existence of a probability space (€2, F,P) and a family of random variables {B;} on (£, F) such
that P makes {B;} a Brownian motion (that is, such that {B;} satisfies the definitions 1-4. with
respect to P).

Question: Does such a probability space exist?

Answer: Yes, but technical to prove. This is the goal of the next section.



1.2 Construction of the Brownian motion

We will restrict the construction to [0,1]. For n > 0, denote

For example,
1 113
Do=1{0,1}, D1 =40,5,1¢p, D2=140,-,5,,1¢.
0 {07 }7 1 {0)2) }7 2 {074)2745 }

Denote
D= UnZODna
the dyadic of [0, 1]. Before starting, first note that D is dense in [0, 1], and that {D,,} is increasing
(Dn C Dn—f—l)-
The process will follow the following steps:

Step 1: For each n € N, build a continuous process {Bt(n)}te[o,l] that satisfies the properties of
the Brownian motion on D,,.

Step 2: With probability 1, t — Bt(n) converges uniformly on [0, 1].
n)

Step 3: lim, 1 BIS is a Brownian motion.

Step 1: [Construction on the dyadic]|

Let {Z,}4ep be a sequence of i.i.d. standard Gaussian. In particular, for all ¢ # r € D, Z, is
independent of Z,, and Z, ~ N(0,1).

Main Lemma: If XY are i.i.d. N(0,1), then iny and X\by are i.i.d. N(0,1).

Proof: Exercise.

For each w € Q, we are going to build Bt(n) (w) by induction on n € N, for t € D,,, and then

interpolate linearly. We drop the variable w next.
For n = 0:

Set B(()O) =0 and B§O) = Z;. Then, we interpolate linearly between B(()O) and B%O):

B =(1-4)B" +tBY =+tz,, te0,1].

For n=1:
Set
1 1 1 1
By =B’ =0, B{"=B" =2z, B =2 (B +B")+:2, =52+ 52.
2 2 2 2 2 2 2
Then, define Bfl) by linear interpolation:
1
BY = (1 —20)B{" + 2B = 2BV, t e, 5
2 2
1
B = @2-20)BM + 2t - 1)BY te 51
2
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We continue this process for each n > 0.

For n + 1:
Let n > 0. Assume Bt(n) built. For k € {0,...,2" — 1}, define

1 1 1
B(QZIJ;(B( )—|-BSC+)1> 2n+2Z2k+1,

on+1 2 on on+1

and for t € D,,, define
B(n+1) (n)
t

Then, interpolate linearly to build Bt(m_l) for all t € [0, 1].
Lemma 1.4. For all k& € {0,... — 1}, B;,ii_ll) — B(:) is independent of BSJQI — B(;Zi_ll), and

an+1 2m on+1

(n+1) (n) 1

BiLy - B ~ N(0, k).
P "

Proof. By induction. For n = 0. Let us first check that B(ll) — B(()O) is independent of Bgl) — B(;).
Note that ’ ’

1 1 1Z1+Z;
BY _BO_Zz 4 7 - 2
e N . RN, B
1 1 | ZH—2

Since Zp,Z1 are i.i.d. N(0,1), the Main Lemma (c.f. beginning of the proof) tells us that
2
B(ll) — B(go) is independent of Bg) - B(ll) and that B(;) — B(()O) is NV(0, 3).
2 2 2
Now, let n > 1, and assume that the property holds for n — 1. We have

1 1
BYL) - BY = o <B(§Z) + Bi’ﬁ) + g Loy — BY
on+1 om om on 2 2 on+1 om
1 1 1
= 5P - 3B e la

By induction, Bﬁ - B(,:L)> ~ N(0,5). Also, (BSH)1 B(n)> and szﬂl are independent

’ 2n
omn on on on+
(since the Z;’s are independent). Thus, by the Main Lemma again,

L1 e (gm _ g
- n —
NG [ 2 (B By )+ Zun
is standard Gaussian. It follows that B(;,iill) — ,7: ~ N(0, 2n+1) Similarly, noting that
on+1 on

on

+1 1
Bl ~ Bl = v [ﬁ (B” —B(?)> —ij} ’

we deduce the result by the Main Lemma again. O

Lemma 1.5. For alln > 0, for all p < g € D,,
L By" = B ~ N (0, - p).

2. Bén) — Bé,n) is independent of Bq(nn), for all r < p, r € D,.



Proof. This is a consequence of Lemma 1.4.

1. Let p,q € D,,. Then there exists k < [ such that p = 5% and ¢ = 5. Hence,
B — B(™ = B;’Z) - B(zgn) - B;? Bg --+B§€;ﬂ)1 _ Bgn).

One can see that each term of sum are mutually independent (proof similar to Lemma 1.4). By

Lemma 1.4 each term is a Gaussian N(0, 5 ), hence Bén) — BZ(,n) ~N(0,q—p).

2. Same argument. O
Lemma 1.6. Lemma 1.5 holds for all p < g € D.

Proof. If p,q € D, then there exists n € N such that p,q € D,,. Apply then Lemma 1.5. O

Step 2: [Almost sure uniform convergence]

Let us denote, for w € §,

() () _ (n 1)y _ gy — (nt+1) Y _ g
AMN(w) = tgl[g>1<]!B (W) =B (w)| = e 1}t6[$§;§m\3t (w) = By (w)l.

n)

We drop the variable w next. Since, by definition, Bé is defined by linear interpolation and

Bt(nH) = Bt(n) when ¢ € D,,, we see that

n+1 n
B = B

max
te[ L AL
is attained at the midpoint ¢ = glfill (draw a picture). Hence,
1
A(n) _ ma B (n+1) _ B(") ma B (n+1) - B(”) + B(n)
ey Py~ Bag[= max | Bay =5 (B + Big )|

1 n n n n
=5 max | (B&JP BSJ) - (Bi ) B&JP) ;
2n

ke{0,...,27—1} on+1 an on+1

Note that B(QZLD — B(E) and Bg — B(;,L;rll) are i.i.d. Gaussian N(0, 2n+1) Hence, for all k,

on+1 2n 2M on—+1
Wi = (3221? - BS’P) — (B(ﬁ - B‘Jii?)
on+1 an on on+1
is Gaussian NV(0, 3-). Let a > 1. One has,
1 « o
PA™ > & P(= a W > (= (W " ,
B( 2\/271) (2 ke{o,...;ﬁ_l}' plz z\ﬁ) ( Wo | - 2\/27)

where the inequality comes from the union bound. Note that for Z ~ N (0, 1),

N‘QN

P(Z > «) <

§



hence, by symmetry of Gaussian and the fact that +/ Q”Wén) ~ N(0,1),

PAM > %y — ontlip/onp (™) > con+l € 2
( —2\/27) ( 0 _CE)_ am

Now, take o = 24/n. Then,

Hence,

By Borel-Cantelli,

B

P(lim sup{A™ >

=} =o0.

In other words, there exists A C 2, P(A) = 1, such that for all w € Q, there exists N € N, such
that for all m > N,

ﬂ

B

A (W) <

5

Recalling the definition of A (w), we thus proved that for all w in a set A of probability 1,

> IIB (@) = B @)ooy < +oe.

n>1

A standard result of analysis allows us to conclude that, almost surely, {B™(w)},>1 converges
uniformly on [0, 1]. We then define

~ limyiee BM(w) ifweA
BW”‘{O ifweg A

Step 3: [The limit is a Brownian motion on [0, 1]]

e Continuity: By construction, for all w € Q, for all n € N, ¢ Bfn)(w) is continuous
on [0,1]. Since, almost surely, { By} converges uniformly on [0,1] to B, we deduce that, almost
surely, t — By(w) is continuous.

e Since for all n € N, B(()n) = 0, we deduce that By = 0.

e Stationary increments: Let ¢t,s € D. Then, there exists m € N such that ¢t,s € D,,.
Hence, Bt(m) — Bgm) ~ N(0,t — s). By construction, for all t € D,,, for all n > m, Bgn) = Bgm).
Hence

B~ B, = lim_ B™ — B = im_ BM™ — glm = g™ _ glm)
where the limit is understood as “almost sure convergence”. Since Bgm) —B™ ~ N (0,t —s),
we have By — B; ~ N(0,t — s). Now, assume that ¢,s € [0,1]. By density of D in [0, 1], there
exist sequences {tx},{sp} € D such that t = limyt; and s = limg s;. Since, almost surely,
t — By is continuous, we have, almost surely, B; = limy, By, and B, = limy B,,. Since, for all
k, By, — Bs, ~ N(0,t; — si), we can conclude that By — Bs ~ N(0,t — s) (use, for example,
characteristic functions).

¢ Independent increments: Same argument.



1.3 Simulation of Brownian motion

Fix an integer n € N. Given times 0 = ¢ty < t; < --- < t,, generate Z1,...,Z, i.id. N(0,1).
Define

BO = Oa
Bt1 = \/Ezla
By, = By +ta—t1Zo =172 +\ts — t1 2o,

n
B, = B, +\th—th-1Zn = Z ti —ti—1Z;
i=1
Using this construction, {B;} is a Brownian motion at times 0 = tp < t; < --- < t,,. Indeed, it

starts at 0, and for all ] <m < n,
n m n
By, — By, =Y ti—ti1Zi—Y \Jti—ti1Zi= Y Jti—ti1Z,
i=1 i=1 i=m+1

which is Gaussian N(0,t, — t,), and is independent of By, .

1.4 Properties of the Brownian motion

Definition 1.7. {X;}:>0 is a Gaussian process if for all n € N, for all ¢; < --- < ¢,,, the random
vector (Xy, ..., Xy, ) is multivariate Gaussian.

Theorem 1.1. (Xi,...,X,) is multivariate Gaussian <= every linear combination of the X;’s
is Gaussian, that is, for all Aq,..., A, € R, A\ X1 + -+ - + A\ X, is Gaussian <

ElM € Rn’aA € Rnxma(Xl,"'aXn) ZM+A(Z17"'aZn)’
where Z1, ..., Z, are i.i.d. N(0,1).
Theorem 1.2. A Brownian motion is a Gaussian process.
Proof. Define
B, — By, , )
Zj=—F—=——, j=1,...,n.

In particular, the Z;’s are i.i.d. standard Gaussian N (0,1). Note that

By, v 0 0 Z
_ Vi Vi =t :
: : 0 :
Btn \/E V to—t1 --- vV tp —th1 Zn
Hence {B;} is a Gaussian process. O

Definition 1.8. Let {F;} be a filtration. The germ o-algebra is

'/_.'s+ = Ni>sFt

Remark 1.9. 1. In general F- # F;. Indeed, let X be a non-constant random variable.
Define X; = tX,t >0, and F; = 0(Xs : 0 < s <t). Note that for all ¢ > 0, F; = o(X).
However,

{@,Q} = Fo 75 NgsoFt = O’(X)



2. F. represents an infinitesimal additional information into the future.

Theorem 1.3 (Blumenthal 0-1 Law). Let {B;} be a Brownian motion. If A € ", then P(A) = 0
or 1.

Corollary 1.10. Let {B;} be a standard Brownian motion. Define
Ty=inf{t>0:B,>0}, Tp=inf{t>0:B,=0}, Ty=inf{t>0:B, <0}
Then, ]P)(Tl = O) = ]P)(TQ = 0) = P(Tg = O) = 1.

Proof. One has

{Tl :0}:ﬂn21U 1y {BE >0}.

e€(0,
Hence, {T1 = 0} € F,". Note that for all ¢ > 0,
{Bt > 0} C {T1 < t},

hence )
]P)(Tl < t) > P(Bt > O) = 5

We deduce that

N
o NI

By symmetry, (that is, {—B;} is a Brownian motion), P(75 = 0) = 1.
With probability 1, t — B; is continuous and satisfies P(T; = 0) = P(73 = 0) = 1, hence by
the intermediate value theorem, P(7> = 0) = 1. O

Remark 1.11. In particular, Corollary 1.10 tells us that with proba 1, for all ¢ > 0, B; hits 0
infinitely many times in the interval (0, ¢).

Theorem 1.4 (Long term behavior of Brownian motion). Let {B;} be a Brownian motion, then

B B
lim sup Z! = 400 and liminf —f = —oo.
tstoo V1t t—+oo /t

Proof. Fix M > 0.

B

P(lim sup —= > M) = P(limsup ViB1 > M) = P(Ny0 Up<s<i {v/sB1 > M})
t—+o00 \/E t—0t t - - s

Fact: {sB1} is a Brownian motion (Time inversion — see later).

Fact: {limsup f; > M} = limsup{f: > M}.

Note that v/sB1 = %, where Xy = sB1 being a Brownian motion. Hence,

Ne>0 Up<s<t {\/EB% > M} = M=o Up<s<t {Xs > My/s} € Ff.

By Blumenthal 0-1 law,

B
P(lim sup —

> M)=0or 1.
t—)—i—oo\/i )

Now, note that

P(limsup — > M) > P(limsup — > M) = P(Np>1 Ugp>p {—= > M
(t_)+oop\/i ) > (n_>+of\/ﬁ ) =P(Mn>1 Up> {\/E 1y

= lim P(Uan{\B;%>M})2 lim P(

B, )
nStoo o {% > M}) = lim P({By > M})=P(Bi > M)>0.



We conclude that

By
P(limsup — > M) = 1.
(tHJroop\/i )

It follows that

. By . B, . . By
P(limsup — = +o0) = P(N limsup— > M) = lim Plimsup— > M) =1.
( t%+oop \/i ) ( M>0 taJroop \/i ) M—+o00 ( t%Jroop \/i )

By symmetry ({—B;} is a Brownian motion), we deduce that

B
P(lim inf =% = —oc0) = 1.
t—+o0 \/i

O]

Remark 1.12. In other words, a Brownian motion is recurrent (each value a € R is visited
infinitely many often).

Definition 1.13. Let (£, F,P) be a probability space. Recall that a filtration { F} }+>¢ is a familly
of sigma-algebras such that for all s <t, F3 C Fy C F.
A process {M;}4>0 is a {F}} continuous-time martingale if

i) For all ¢ > 0, M, is F;-measurable.
ii) For all t > 0, E[|M;|] < +o0.
iii) For all s < ¢, E[M;|Fs] = M.

Proposition 1.14. A Brownian motion is a continuous-time martingale.

Proof.
E[Bt|~rs] - E[Bt - Bs + Bs|Fs] - E[Bt - Bs’]:s] + Bs - Bsa

because B; — B, is independent of F; and has expectation 0. ]

Theorem 1.5 (Law of Large Numbers for Brownian motion). For a Brownian motion {B;},
limy 400 % = 0 almost surely.

Proof. Step 1: Note that B, = By — By +---+ B,, — B,,_1, S0 we can write

Bn = Zn: ka
k=1

where X = By — B_1. Note that {Xj} is a sequence of i.i.d. N(0,1) random variable. Hence,
by the strong LLN, % — E[B;] = 0 almost surely.
Step 2: We will prove that

P( sup |B;— By|>n) < +oo.
n>0 te[n,n+1]

Fix n > 0. Define, for m > 0 and k € {0,...,2™},
Xy=B, . — By

Since {Bp+t — By }+>0 is a Brownian motion, it is a martingale. It follows that { X} is a discrete
time martingale. We can thus apply Doob’s inequality and obtain

E
P( sup |Xg| > n%) < [ 1
0<k<2m ns3 n3

[ Xom?] _ E[|Bat1 — Byl?]
1

3
SR



Because t — B; is continuous, we have
2 2
{ sup |B;— Byp|>n3}=Upn>1{ sup |Xi| >n3}.
te[n,n+1] 0<k<2m™
Hence,

P( sup |[B;— Byl > n%) = lim P( sup |Xi|> n%) <
te[n,n+1] m—=+00  g<p<om

Step 3: Define, for n > 0,

3
wha|

A, ={ sup |B;— By|> n%}
ten,n+1]

Since Y P(A4,) < +oo, by Borel-Cantelli we have P(limsup A4,,) = 0. This means that, for all w
in a set of probability 1,

Ing > 1,Vn > ng, Vt € [n,n + 1], " < ;
n n n

Bt(W)’ n (’Bt(@ — Bn(w)

) =

ns
which goes to 0 as n — +00. O
Corollary 1.15 (Time Inversion). Let {B;} be a Brownian motion. The process {X}+>o defined
by Xy =tBi1 for t > 0 and Xy = 0, is a Brownian motion, for the natural filtration F; = o(Xj :
t
s <t).
Proof. Continuity at 0: From Theorem 1.5, we have
B
lim X; = lim X1 = lim — =0 = X,.

t—0+ t—+oco ¢ t—+oco t

Gaussian Increments: Note that, for s <,

Xt—Xs:(t—S)B;—S(B;—B ),
t s

o=

which is N(0,¢ — s).
Independent Increments: Since (X; — X, X;) is a bivariate Gaussian, we can conclude
independence because E[(X; — X,)X;] = 0. O

1.5 Reflection Principle

Definition 1.16. Let (Q,F,{F,},P) be a filtered space. Let {X;} be a stochastic process
adapted to {F;}. We say that {X;} is a Markov process if

VA S ./—", Vh Z O,Vt Z 0, ]P)(Xt—i-h € A|ft> = P(Xt—i—h € A|Xt)

Notation:
P(Xpin € AlXy) = P(Xpyp € Alo(Xy)) = E[1a(Xppn)|o(Xy)]

Theorem 1.6. A Brownian motion is a Markov process (w.r.t the same filtration).
Sketch of proof. We want to prove that
P(Bt+h S A’ft) == P(Bt+h € A‘Bt),
equivalently,
E[1a(Be+n)|Ft] = E[1a(Bitn)|o(By)].
Let ®: R — R be measurable, then
E[®(By1n)|Ft] = E[®(Byn, — B + By)|Fi] = Elg(X, Bt)|Fl,

where X = By, — By, which is independent of F;, and g(z,y) = ®(z +y).

Since X is independent of F, and By is o (By)-measurable, E[g(X, B;)|F:] = Elg(X, By)|o(By)].
To prove this, start with functions g of the form g(z,y) = 1o(z)1p(y), and use the fact that they
approximate any Borel function. ]



Definition 1.17. A random variable T is an {F;}-stopping time if
vt>0, {T<t}eF.
Proposition 1.18. 1. Every deterministic time is a stopping time.
2. If {T},} is a sequence of stopping time, the sup,, T}, is a stopping time.

Proof. 1. Exercise.
2. Fix t > 0. Then,
{supT,, <t} =N, {T,, <t} € F.
n

O

Remark 1.19. In general, inf,, T}, is not a stopping time. Indeed, recalling that if m = inf(A),

then for all € > 0, there exists a € A, such that m > a — . In particular we have

{i%an < t} =Ne>0 UnZl {Tn <t+ 5} € m€>0‘Ft+E = ./—‘?.

Since in general F; # F,, it follows that inf,, T}, is not a stopping time.

Similarly, note that, when F; = o(Bs : s <t),
1. If Fis a closed set, then T'= inf{t > 0 : B; € F'} is a stopping time.
2. If O is open, then T' = inf{t > 0: B; € O} is not a stopping time.

Definition 1.20. A filtration {F}} is right-continuous if for all ¢ > 0, F; = }? .

Example 1.21. The canonical filtration for a Brownian motion {B;}:
Define
Fi=0(Bs:s<t), t>0,

and B
Fi=F; =Nes0Frpe, t>0.

Then {F;} is a right-continuous filtration, and {B,} is adapted to {F;}.

Proposition 1.22. 1. If {T},} is a sequence of {F," }-stopping times, then inf, T}, is an {F;}-

stopping time.

2. If O is open, then T' = inf{t > 0: B, € O} is an {JF;}-stopping time.

Definition 1.23. For a stopping time 7', define
Fr={AcF:An{T <t} e F", Vt>0}.
Theorem 1.7. Fr is a o-algebra.

Proof. Same proof as in the discrete case.

O]

Definition 1.24. Let (Q,F,{F,},P) be a filtered space. Let {X;} be a stochastic process
adapted to {F;}. We say that {X;} is a strong Markov process if for all stopping time 7 finite

almost surely,
VA € F,Vh >0, ]P)(XT—HL € A|.7:T) = P(qu.h S A|XT)

Theorem 1.8. The Brownian motion is a strong Markov process.

Sketch of Proof. Note that {Br4+ — Br}i>0 is a standard Brownian motion independent of Fr.

10

O]



Theorem 1.9 (Reflection principle). Let T' be a stopping time and {B;} be a standard Brownian
motion.
If M = (x,y), then the reflection of M with respect to the line passing through (0,a) and
parallel to the z-axis is M* = (x,2a — y) (draw a picture).
For t > 0, define
B} = Bily<r + (2B1 — By) 1>

Then, {B}} is a standard Brownian motion.

Definition 1.25. The process B defined in Theorem 1.9 is called reflected Brownian motion.

Corollary 1.26. Let {B;} be a Brownian motion. Consider, for ¢ > 0,

M; = sup Bs.
0<s<t

Then, M; ~ |Z|, where Z ~ N(0,t). This means that supremum of Brownian motion path has a
x distribution.

Proof. First note that P(M; > 0) = 1 because By = 0 a.s.

Fix a > 0. Let us find P(M; > a). Consider { B} } the reflected Brownian motion with respect
to the stopping time T, = inf{¢t > 0 : By = a}. Note that
1) {Bt Z a} C {Mt 2 CL}.
ii) {M; > a} N {By < a} ={B} > a}.
The point i) is clear. The inclusion C of the point ii) is clear from the picture (after reflection,
B; < aif and only if Bf > a). For the other inclusion D, if { B > a}, then either {B; > a} either
{B: < a}. The case {B; > a} is impossible because B; > a implies that T, < ¢t. Necessarily,
{B; < a}. Since {B; < a} and {B} > a}, we have T, <t and thus M; > a.

Thus, from ii) and Theorem 1.9,

P(M; > a,B; < a) =P(B} > a) =P(B; > a).
Hence,

P(M; > a) =P(M; > a,B; < a) +P(My > a,B; > a) = 2P(B; > a) = P(|B;| > a).

1.6 Differentiability of the paths of the Brownian motion

Theorem 1.10. With probability 1, the paths of the Brownian motion are nowhere differentiable.
Formally, let {B;} be a Brownian motion, then

P({w € Q: 3ty € [0,+00),t — By(w) is differentiable at t0}> = 0.

Proof. Step 1: [Setup]
Without loss of generality, let us prove the result on [0, 1]. Denote

A={weN:3tyel0,1],t — Bi(w) is differentiable at ¢}
We want to prove that P(A) =0. Forn >3 and k € {1,...,n — 2}, define
My = max{|Brs2 — Biss|,|Brsr — Bil,|Br — Be-a |},

and
Mn = min(Ml’n, e 7Mn—2,n)-

11



Step 2: The goal of Step 2 is to prove that

Yw e A,AM € N,3ng € N,Vn > ng, Mp(w) < 5
n

(1+ M).

Let w € A (we drop the dependence on w next). Then there exists to € [0, 1] such that ¢t — B,
is differentiable at tg. By definition of differentiability, there exists L € R and § > 0 such that
for all t € [0, 1]\ {to}, if |t — to| < 9, then |B; — By, — L(t —to)| < |t — to| (taking € = 1). Hence,
by triangular inequality, for all ¢ such that |t — ¢o| <,

|B; — Byy| < (14 |L|)|t — tol.

Now, note that there exists ng > 1 and k € {1,...,ng}, such that

k—1 k
t0€|: ,] and

no nNo

= — <.

k+2_k—1’ 3

no no no

Let n > ng. Then there exists k € {1,...,n} such that the above holds. Hence,

k k—1 2
|Br — Br-1| < |Br — Byy| + |Byy — Br—1| < (1 +[L]) <|n — to| + |to — n’> < E(l—f— |L]).
Similarly, we have
3 5
Bun ~Bi| < 2(+ L)) and |Buss — Bans| < 2(1+ |L))

We thus proved that for all n > ng, there exists k € {1,...,n} such that
)
My < 2(1+ |L))

By definition of M,,, this tells us that for all n > ny,
5

M, < 2(1+|L)).

Now, just take any integer M greater than |L| to conclude that

5
Yw e A,IM € N,3Ing € N,Vn > ng, Mp(w) < —(1+ M).
n
Equivalently,
5
AcC UMGN UnOGN ngno{Mn < E(l + M)}
Step 3: The goal of Step 3 is to prove that

5

VM eN, lim P(M, <—(1+M))=0.
n—-+4oo n

Let n >3 and k € {1,...,n — 2}. Denote,
X1 =|Brx — Bi-1|, Xo=|Brt1 — Bi|, X3=|Brsz — Bit1].

Since {B;} is a Brownian motion, X, X5, X3 are i.i.d. with same distribution as |Z| where
Z ~N(0,2). Thus, the CDF of M}, = max(Xy, X2, X3) is

Fu, () = P(My,, < 7) =P(X; < 2)°, z€R.
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Note that
(X, < ) = B(|Z] < xV/n),

where Z ~ N(0,1). Hence,

z/n 2
P(X; < z) = 2/ e ar < 22V
V2 Jo V2T

We deduce that for all M € N,

3
P(Mp,, < E(1 +M)) < [(1 +M)} _

3

3
where C' = [\}—207(1 + M)] . Hence, by union bound,

P(Mn < 2(1+M)> Z]P’(UZ‘f {Mk,n < 5(1+M)}> gnzzﬂb(Mk,n < 5(1+M)) <

n n
k=1

ER

We conclude that

ot

VM €N, lim P(M, <—(1+ M))=0.

n—-+oo n

Step 4: [Conclusion]
From Step 2,

)
IFJ(14) < P( Unren UnOEN ngno {Mn < E(l + M)})

Denote By, = ﬂnzno{Mn < %(1 + M)}, and note that {B,,} is an increasing sequence of sets,
hence, from Step 3,

) . )
P(UnOEN mnzno{Mn < E(l +M)}> — nogrgoo]?(mnzno {Mn < 5(1 +M)}>
< lim ]P({Mno §5(1+M)}>
no——+0o0 no
= 0.

We conclude that

at

P(A)< > P(UnoeN ngnO{Mn <=Q +M)}> =0.

n
MeN

13



