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1 Brownian motion

Recall that a filtered space (Ω,F , {Fn},P) is given.

1.1 Definitions

Definition 1.1 (Standard Brownian motion). A continuous-time stochastic process {Bt}t∈[0,+∞)

is a standard Brownian motion if

1. B0 = 0 a.s.

2. ∀ 0 ≤ s < t, Bt −Bs ∼ N (0, t− s) (Gaussian of mean 0 and variance t− s).

3. ∀ 0 ≤ s < t, Bt −Bs is independent of Fs.

4. With probability 1, the trajectories are continuous. Precisely:

∃A ⊂ Ω, P(A) = 1,∀ω ∈ Ω, t 7→ Bt(ω) is continuous on [0,+∞).

Remark 1.2. One may ask whether all the assumptions are necessary in the definition of the
Brownian motion. Or, in other words, does one or several assumptions imply another one.

• The continuity assumption is a necessity. To see this, let {Bt} be a Brownian motion and
let U be uniformly distributed on [0, 1]. Define, for ω ∈ Ω and t ≥ 0,

B̃t(ω) = Bt(ω)1{t6=U(ω)} + (1 +Bt(ω))1{t=U(ω)}.

In this case, for all t ≥ 0, P(B̃t = Bt) = 1, and hence B̃t satisfies properties 1-3. of the definition.
However, for all ω ∈ Ω, t 7→ B̃t(ω) is discontinuous (at t = U(ω)).

• It can be shown that if 3-4. hold, then 2. necessary hold.

• Property 1. is just a normalization. A brownian motion can start at any point.

• We will always consider the natural filtration Ft = σ(Bs : s ≤ t).

Model: Brownian motions are used to model the trajectories of small particles in a fluid, or the
evolution of the stock market. Generally speaking, it is used to model erratic motions.

Remark 1.3. When we say “Let {Bt}t≥0 be a Brownian motion”, we implicitly assume the
existence of a probability space (Ω,F ,P) and a family of random variables {Bt} on (Ω,F) such
that P makes {Bt} a Brownian motion (that is, such that {Bt} satisfies the definitions 1-4. with
respect to P).

Question: Does such a probability space exist?

Answer: Yes, but technical to prove. This is the goal of the next section.
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Wednesday, April 1

1.2 Construction of the Brownian motion

We will restrict the construction to [0, 1]. For n ≥ 0, denote

Dn =

{
k

2n
: k ∈ {0, . . . , 2n}

}
.

For example,

D0 = {0, 1}, D1 =

{
0,

1

2
, 1

}
, D2 =

{
0,

1

4
,
1

2
,
3

4
, 1

}
.

Denote
D = ∪n≥0Dn,

the dyadic of [0, 1]. Before starting, first note that D is dense in [0, 1], and that {Dn} is increasing
(Dn ⊂ Dn+1).

The process will follow the following steps:

Step 1: For each n ∈ N, build a continuous process {B(n)
t }t∈[0,1] that satisfies the properties of

the Brownian motion on Dn.

Step 2: With probability 1, t 7→ B
(n)
t converges uniformly on [0, 1].

Step 3: limn→+∞B
(n)
t is a Brownian motion.

Step 1: [Construction on the dyadic]

Let {Zq}q∈D be a sequence of i.i.d. standard Gaussian. In particular, for all q 6= r ∈ D, Zq is
independent of Zr, and Zq ∼ N (0, 1).

——————

Main Lemma: If X,Y are i.i.d. N (0, 1), then X+Y√
2

and X−Y√
2

are i.i.d. N (0, 1).

Proof: Exercise.
——————

For each ω ∈ Ω, we are going to build B(n)
t (ω) by induction on n ∈ N, for t ∈ Dn, and then

interpolate linearly. We drop the variable ω next.

For n = 0:
Set B(0)

0 = 0 and B(0)
1 = Z1. Then, we interpolate linearly between B(0)

0 and B(0)
1 :

B
(0)
t = (1− t)B(0)

0 + tB
(0)
1 = tZ1, t ∈ [0, 1].

For n = 1:
Set

B
(1)
0 = B

(0)
0 = 0, B

(1)
1 = B

(0)
1 = Z1, B

(1)
1
2

=
1

2

(
B

(0)
0 +B

(0)
1

)
+

1

2
Z 1

2
=

1

2
Z1 +

1

2
Z 1

2
.

Then, define B(1)
t by linear interpolation:

B
(1)
t = (1− 2t)B

(1)
0 + 2tB

(1)
1
2

= 2tB
(1)
1
2

, t ∈ [0,
1

2
],
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B
(1)
t = (2− 2t)B

(1)
1
2

+ (2t− 1)B
(1)
1 t ∈ [

1

2
, 1].

We continue this process for each n ≥ 0.

For n+ 1:
Let n ≥ 0. Assume B(n)

t built. For k ∈ {0, . . . , 2n − 1}, define

B
(n+1)
2k+1

2n+1

=
1

2

(
B

(n)
k
2n

+B
(n)
k+1
2n

)
+

1

2
n+2
2

Z 2k+1

2n+1
,

and for t ∈ Dn, define
B

(n+1)
t = B

(n)
t .

Then, interpolate linearly to build B(n+1)
t for all t ∈ [0, 1].

Lemma 1.4. For all k ∈ {0, . . . , 2n − 1}, B(n+1)
2k+1

2n+1

− B(n)
k
2n

is independent of B(n)
k+1
2n
− B(n+1)

2k+1

2n+1

, and

B
(n+1)
2k+1

2n+1

−B(n)
k
2n
∼ N (0, 1

2n+1 ).

Proof. By induction. For n = 0. Let us first check that B(1)
1
2

−B(0)
0 is independent of B(1)

1 −B
(1)
1
2

.
Note that

B
(1)
1
2

−B(0)
0 =

1

2
Z1 +

1

2
Z 1

2
=

1√
2

Z1 + Z 1
2√

2
,

B
(1)
1 −B

(1)
1
2

=
1

2
Z1 −

1

2
Z 1

2
=

1√
2

Z1 − Z 1
2√

2
.

Since Z1, Z 1
2
are i.i.d. N (0, 1), the Main Lemma (c.f. beginning of the proof) tells us that

B
(1)
1
2

−B(0)
0 is independent of B(1)

1 −B
(1)
1
2

and that B(1)
1
2

−B(0)
0 is N (0, 12).

Now, let n ≥ 1, and assume that the property holds for n− 1. We have

B
(n+1)
2k+1

2n+1

−B(n)
k
2n

=
1

2

(
B

(n)
k
2n

+B
(n)
k+1
2n

)
+

1

2
n+2
2

Z 2k+1

2n+1
−B(n)

k
2n

=
1

2
B

(n)
k+1
2n
− 1

2
B

(n)
k
2n

+
1

2
n+2
2

Z 2k+1

2n+1

=
1

2

1√
2n

[√
2n
(
B

(n)
k+1
2n
−B(n)

k
2n

)
+ Z 2k+1

2n+1

]
.

By induction,
(
B

(n)
k+1
2n
−B(n)

k
2n

)
∼ N (0, 1

2n ). Also,
(
B

(n)
k+1
2n
−B(n)

k
2n

)
and Z 2k+1

2n+1
are independent

(since the Zq’s are independent). Thus, by the Main Lemma again,

1√
2

[√
2n
(
B

(n)
k+1
2n
−B(n)

k
2n

)
+ Z 2k+1

2n+1

]
is standard Gaussian. It follows that B(n+1)

2k+1

2n+1

−B(n)
k
2n
∼ N (0, 1

2n+1 ). Similarly, noting that

B
(n)
k+1
2n
−B(n+1)

2k+1

2n+1

=
1√

2n+1

1√
2

[√
2n
(
B

(n)
k+1
2n
−B(n)

k
2n

)
− Z 2k+1

2n+1

]
,

we deduce the result by the Main Lemma again.

Lemma 1.5. For all n ≥ 0, for all p < q ∈ Dn,

1. B(n)
q −B(n)

p ∼ N (0, q − p).
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2. B(n)
q −B(n)

p is independent of B(n)
r , for all r ≤ p, r ∈ Dn.

Proof. This is a consequence of Lemma 1.4.

1. Let p, q ∈ Dn. Then there exists k < l such that p = k
2n and q = l

2n . Hence,

B(n)
q −B(n)

p = B
(n)
l

2n
−B(n)

k
2n

= B
(n)
l

2n
−B(n)

l−1
2n

+ · · ·+B
(n)
k+1
2n
−B(n)

k
2n
.

One can see that each term of sum are mutually independent (proof similar to Lemma 1.4). By
Lemma 1.4 each term is a Gaussian N (0, 1

2n ), hence B(n)
q −B(n)

p ∼ N (0, q − p).

2. Same argument.

Lemma 1.6. Lemma 1.5 holds for all p < q ∈ D.

Proof. If p, q ∈ D, then there exists n ∈ N such that p, q ∈ Dn. Apply then Lemma 1.5.

Friday, April 3

Step 2: [Almost sure uniform convergence]

Let us denote, for ω ∈ Ω,

∆(n)(ω) = max
t∈[0,1]

|B(n+1)
t (ω)−B(n)

t (ω)| = max
k∈{0,...,2n−1}

max
t∈[ k

2n
, k+1
2n

]
|B(n+1)

t (ω)−B(n)
t (ω)|.

We drop the variable ω next. Since, by definition, B(n)
t is defined by linear interpolation and

B
(n+1)
t = B

(n)
t when t ∈ Dn, we see that

max
t∈[ k

2n
, k+1
2n

]
|B(n+1)

t −B(n)
t |

is attained at the midpoint t = 2k+1
2n+1 (draw a picture). Hence,

∆(n) = max
k∈{0,...,2n−1}

|B(n+1)
2k+1

2n+1

−B(n)
2k+1

2n+1

| = max
k∈{0,...,2n−1}

|B(n+1)
2k+1

2n+1

− 1

2

(
B

(n)
k
2n

+B
(n)
k+1
2n

)
|

=
1

2
max

k∈{0,...,2n−1}
|
(
B

(n+1)
2k+1

2n+1

−B(n)
k
2n

)
−
(
B

(n)
k+1
2n
−B(n+1)

2k+1

2n+1

)
|.

Note that B(n+1)
2k+1

2n+1

−B(n)
k
2n

and B(n)
k+1
2n
−B(n+1)

2k+1

2n+1

are i.i.d. Gaussian N (0, 1
2n+1 ). Hence, for all k,

W
(n)
k =

(
B

(n+1)
2k+1

2n+1

−B(n)
k
2n

)
−
(
B

(n)
k+1
2n
−B(n+1)

2k+1

2n+1

)
is Gaussian N (0, 1

2n ). Let α ≥ 1. One has,

P(∆(n) ≥ α

2
√

2n
) = P(

1

2
max

k∈{0,...,2n−1}
|W (n)

k | ≥
α

2
√

2n
) ≤ 2nP(

1

2
|W (n)

0 | ≥
α

2
√

2n
),
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where the inequality comes from the union bound. Note that for Z ∼ N (0, 1),

P(Z ≥ α) ≤ e−
α2

2

α
√

2π
,

hence, by symmetry of Gaussian and the fact that
√

2nW
(n)
0 ∼ N (0, 1),

P(∆(n) ≥ α

2
√

2n
) = 2n+1P(

√
2nW

(n)
0 ≥ α) ≤ 2n+1 e

−α
2

2

α
√

2π
.

Now, take α = 2
√
n. Then,

P(∆(n) ≥
√
n√
2n

) ≤ 1√
2πn

(
2

e2

)n

.

Hence, ∑
n≥1

P(∆(n) ≥
√
n√
2n

) < +∞.

By Borel-Cantelli,

P(lim sup{∆(n) ≥
√
n√
2n
}) = 0.

In other words, there exists A ⊂ Ω, P(A) = 1, such that for all ω ∈ Ω, there exists N ∈ N, such
that for all n ≥ N ,

∆(n)(ω) ≤
√
n√
2n
.

Recalling the definition of ∆(n)(ω), we thus proved that for all ω in a set A of probability 1,∑
n≥1
‖Bn+1(ω)−Bn(ω)‖L∞([0,1]) < +∞.

A standard result of analysis allows us to conclude that, almost surely, {B(n)(ω)}n≥1 converges
uniformly on [0, 1]. We then define

B(ω) =

{
limn→+∞B

(n)(ω) if ω ∈ A
0 if ω /∈ A .

Monday, April 6

Step 3: [The limit is a Brownian motion on [0, 1]]

Coming soon!
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