Lecture Notes

Monday, March 30

1 Brownian motion

Recall that a filtered space $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{n}\right\}, \mathbb{P}\right)$ is given.

1.1 Definitions

Definition 1.1 (Standard Brownian motion). A continuous-time stochastic process $\left\{B_{t}\right\}_{t \in[0,+\infty}$) is a standard Brownian motion if

1. $B_{0}=0$ a.s.
2. $\forall 0 \leq s<t, B_{t}-B_{s} \sim \mathcal{N}(0, t-s)$ (Gaussian of mean 0 and variance $\left.t-s\right)$.
3. $\forall 0 \leq s<t, B_{t}-B_{s}$ is independent of \mathcal{F}_{s}.
4. With probability 1 , the trajectories are continuous. Precisely:

$$
\exists A \subset \Omega, \mathbb{P}(A)=1, \forall \omega \in \Omega, t \mapsto B_{t}(\omega) \text { is continuous on }[0,+\infty) .
$$

Remark 1.2. One may ask whether all the assumptions are necessary in the definition of the Brownian motion. Or, in other words, does one or several assumptions imply another one.

- The continuity assumption is a necessity. To see this, let $\left\{B_{t}\right\}$ be a Brownian motion and let U be uniformly distributed on $[0,1]$. Define, for $\omega \in \Omega$ and $t \geq 0$,

$$
\widetilde{B}_{t}(\omega)=B_{t}(\omega) 1_{\{t \neq U(\omega)\}}+\left(1+B_{t}(\omega)\right) 1_{\{t=U(\omega)\}} .
$$

In this case, for all $t \geq 0, \mathbb{P}\left(\widetilde{B}_{t}=B_{t}\right)=1$, and hence \widetilde{B}_{t} satisfies properties 1-3. of the definition. However, for all $\omega \in \Omega, t \mapsto \widetilde{B}_{t}(\omega)$ is discontinuous (at $t=U(\omega)$).

- It can be shown that if $3-4$. hold, then 2 . necessary hold.
- Property 1 . is just a normalization. A brownian motion can start at any point.
- We will always consider the natural filtration $\mathcal{F}_{t}=\sigma\left(B_{s}: s \leq t\right)$.

Model: Brownian motions are used to model the trajectories of small particles in a fluid, or the evolution of the stock market. Generally speaking, it is used to model erratic motions.

Remark 1.3. When we say "Let $\left\{B_{t}\right\}_{t \geq 0}$ be a Brownian motion", we implicitly assume the existence of a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and a family of random variables $\left\{B_{t}\right\}$ on (Ω, \mathcal{F}) such that \mathbb{P} makes $\left\{B_{t}\right\}$ a Brownian motion (that is, such that $\left\{B_{t}\right\}$ satisfies the definitions 1-4. with respect to \mathbb{P}).

Question: Does such a probability space exist?
Answer: Yes, but technical to prove. This is the goal of the next section.

1.2 Construction of the Brownian motion

We will restrict the construction to $[0,1]$. For $n \geq 0$, denote

$$
\mathcal{D}_{n}=\left\{\frac{k}{2^{n}}: k \in\left\{0, \ldots, 2^{n}\right\}\right\} .
$$

For example,

$$
D_{0}=\{0,1\}, \quad D_{1}=\left\{0, \frac{1}{2}, 1\right\}, \quad \mathcal{D}_{2}=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\} .
$$

Denote

$$
\mathcal{D}=\cup_{n \geq 0} D_{n},
$$

the dyadic of $[0,1]$. Before starting, first note that \mathcal{D} is dense in $[0,1]$, and that $\left\{\mathcal{D}_{n}\right\}$ is increasing ($\mathcal{D}_{n} \subset \mathcal{D}_{n+1}$).

The process will follow the following steps:
Step 1: For each $n \in \mathbb{N}$, build a continuous process $\left\{B_{t}^{(n)}\right\}_{t \in[0,1]}$ that satisfies the properties of the Brownian motion on \mathcal{D}_{n}.
Step 2: With probability $1, t \mapsto B_{t}^{(n)}$ converges uniformly on $[0,1]$.
Step 3: $\lim _{n \rightarrow+\infty} B_{t}^{(n)}$ is a Brownian motion.

Step 1: [Construction on the dyadic]

Let $\left\{Z_{q}\right\}_{q \in \mathcal{D}}$ be a sequence of i.i.d. standard Gaussian. In particular, for all $q \neq r \in \mathcal{D}, Z_{q}$ is independent of Z_{r}, and $Z_{q} \sim \mathcal{N}(0,1)$.

Main Lemma: If X, Y are i.i.d. $\mathcal{N}(0,1)$, then $\frac{X+Y}{\sqrt{2}}$ and $\frac{X-Y}{\sqrt{2}}$ are i.i.d. $\mathcal{N}(0,1)$.
Proof: Exercise.

For each $\omega \in \Omega$, we are going to build $B_{t}^{(n)}(\omega)$ by induction on $n \in \mathbb{N}$, for $t \in \mathcal{D}_{n}$, and then interpolate linearly. We drop the variable ω next.

For $n=0$:
Set $B_{0}^{(0)}=0$ and $B_{1}^{(0)}=Z_{1}$. Then, we interpolate linearly between $B_{0}^{(0)}$ and $B_{1}^{(0)}$:

$$
B_{t}^{(0)}=(1-t) B_{0}^{(0)}+t B_{1}^{(0)}=t Z_{1}, \quad t \in[0,1] .
$$

For $n=1$:

Set

$$
B_{0}^{(1)}=B_{0}^{(0)}=0, \quad B_{1}^{(1)}=B_{1}^{(0)}=Z_{1}, \quad B_{\frac{1}{2}}^{(1)}=\frac{1}{2}\left(B_{0}^{(0)}+B_{1}^{(0)}\right)+\frac{1}{2} Z_{\frac{1}{2}}=\frac{1}{2} Z_{1}+\frac{1}{2} Z_{\frac{1}{2}} .
$$

Then, define $B_{t}^{(1)}$ by linear interpolation:

$$
B_{t}^{(1)}=(1-2 t) B_{0}^{(1)}+2 t B_{\frac{1}{2}}^{(1)}=2 t B_{\frac{1}{2}}^{(1)}, \quad t \in\left[0, \frac{1}{2}\right],
$$

$$
B_{t}^{(1)}=(2-2 t) B_{\frac{1}{2}}^{(1)}+(2 t-1) B_{1}^{(1)} \quad t \in\left[\frac{1}{2}, 1\right] .
$$

We continue this process for each $n \geq 0$.
For $n+1$:
Let $n \geq 0$. Assume $B_{t}^{(n)}$ built. For $k \in\left\{0, \ldots, 2^{n}-1\right\}$, define

$$
B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}=\frac{1}{2}\left(B_{\frac{k}{2^{n}}}^{(n)}+B_{\frac{k+1}{2^{n}}}^{(n)}\right)+\frac{1}{2^{\frac{n+2}{2}}} Z_{\frac{2 k+1}{2^{n+1}}}
$$

and for $t \in D_{n}$, define

$$
B_{t}^{(n+1)}=B_{t}^{(n)}
$$

Then, interpolate linearly to build $B_{t}^{(n+1)}$ for all $t \in[0,1]$.
Lemma 1.4. For all $k \in\left\{0, \ldots, 2^{n}-1\right\}, B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{k}{2^{n}}}^{(n)}$ is independent of $B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}$, and $B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{k}{2^{n}}}^{(n)} \sim \mathcal{N}\left(0, \frac{1}{2^{n+1}}\right)$.

Proof. By induction. For $n=0$. Let us first check that $B_{\frac{1}{2}}^{(1)}-B_{0}^{(0)}$ is independent of $B_{1}^{(1)}-B_{\frac{1}{2}}^{(1)}$. Note that

$$
\begin{aligned}
& B_{\frac{1}{2}}^{(1)}-B_{0}^{(0)}=\frac{1}{2} Z_{1}+\frac{1}{2} Z_{\frac{1}{2}}=\frac{1}{\sqrt{2}} \frac{Z_{1}+Z_{\frac{1}{2}}}{\sqrt{2}} \\
& B_{1}^{(1)}-B_{\frac{1}{2}}^{(1)}=\frac{1}{2} Z_{1}-\frac{1}{2} Z_{\frac{1}{2}}=\frac{1}{\sqrt{2}} \frac{Z_{1}-Z_{\frac{1}{2}}}{\sqrt{2}}
\end{aligned}
$$

Since $Z_{1}, Z_{\frac{1}{2}}$ are i.i.d. $\mathcal{N}(0,1)$, the Main Lemma (c.f. beginning of the proof) tells us that $B_{\frac{1}{2}}^{(1)}-B_{0}^{(0)}$ is independent of $B_{1}^{(1)}-B_{\frac{1}{2}}^{(1)}$ and that $B_{\frac{1}{2}}^{(1)}-B_{0}^{(0)}$ is $\mathcal{N}\left(0, \frac{1}{2}\right)$.
${ }^{2}$ Now, let $n \geq 1$, and assume that the property holds for $n-1$. We have

$$
\begin{aligned}
B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{k}{2^{n}}}^{(n)} & =\frac{1}{2}\left(B_{\frac{k}{2^{n}}}^{(n)}+B_{\frac{k+1}{2^{n}}}^{(n)}\right)+\frac{1}{2^{\frac{n+2}{2}}} Z_{\frac{2 k+1}{2^{n+1}}}-B_{\frac{k}{2^{n}}}^{(n)} \\
& =\frac{1}{2} B_{\frac{k+1}{2^{n}}}^{(n)}-\frac{1}{2} B_{\frac{k}{2^{n}}}^{(n)}+\frac{1}{2^{\frac{n+2}{2}}} Z_{\frac{2 k+1}{2^{n+1}}} \\
& =\frac{1}{2} \frac{1}{\sqrt{2^{n}}}\left[\sqrt{2^{n}}\left(B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{k}{2^{n}}}^{(n)}\right)+Z_{\frac{2 k+1}{2^{n+1}}}\right]
\end{aligned}
$$

By induction, $\left(B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{k}{2^{n}}}^{(n)}\right) \sim \mathcal{N}\left(0, \frac{1}{2^{n}}\right)$. Also, $\left(B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{k}{2^{n}}}^{(n)}\right)$ and $Z_{\frac{2 k+1}{2^{n+1}}}$ are independent (since the Z_{q} 's are independent). Thus, by the Main Lemma again,

$$
\frac{1}{\sqrt{2}}\left[\sqrt{2^{n}}\left(B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{k}{2^{n}}}^{(n)}\right)+Z_{\frac{2 k+1}{2^{n+1}}}\right]
$$

is standard Gaussian. It follows that $B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{k}{2^{n}}}^{(n)} \sim \mathcal{N}\left(0, \frac{1}{2^{n+1}}\right)$. Similarly, noting that

$$
B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}=\frac{1}{\sqrt{2^{n+1}}} \frac{1}{\sqrt{2}}\left[\sqrt{2^{n}}\left(B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{k}{2^{n}}}^{(n)}\right)-Z_{\frac{2 k+1}{2^{n+1}}}\right]
$$

we deduce the result by the Main Lemma again.
Lemma 1.5. For all $n \geq 0$, for all $p<q \in \mathcal{D}_{n}$,

1. $B_{q}^{(n)}-B_{p}^{(n)} \sim \mathcal{N}(0, q-p)$.
2. $B_{q}^{(n)}-B_{p}^{(n)}$ is independent of $B_{r}^{(n)}$, for all $r \leq p, r \in \mathcal{D}_{n}$.

Proof. This is a consequence of Lemma 1.4.

1. Let $p, q \in \mathcal{D}_{n}$. Then there exists $k<l$ such that $p=\frac{k}{2^{n}}$ and $q=\frac{l}{2^{n}}$. Hence,

$$
B_{q}^{(n)}-B_{p}^{(n)}=B_{\frac{l}{2^{n}}}^{(n)}-B_{\frac{k}{2^{n}}}^{(n)}=B_{\frac{l}{2^{n}}}^{(n)}-B_{\frac{l-1}{2^{n}}}^{(n)}+\cdots+B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{k}{2^{n}}}^{(n)} .
$$

One can see that each term of sum are mutually independent (proof similar to Lemma 1.4). By Lemma 1.4 each term is a Gaussian $\mathcal{N}\left(0, \frac{1}{2^{n}}\right)$, hence $B_{q}^{(n)}-B_{p}^{(n)} \sim \mathcal{N}(0, q-p)$.
2. Same argument.

Lemma 1.6. Lemma 1.5 holds for all $p<q \in \mathcal{D}$.
Proof. If $p, q \in \mathcal{D}$, then there exists $n \in \mathbb{N}$ such that $p, q \in \mathcal{D}_{n}$. Apply then Lemma 1.5.

Friday, April 3

Step 2: [Almost sure uniform convergence]

Let us denote, for $\omega \in \Omega$,

$$
\Delta^{(n)}(\omega)=\max _{t \in[0,1]}\left|B_{t}^{(n+1)}(\omega)-B_{t}^{(n)}(\omega)\right|=\max _{k \in\left\{0, \ldots, 2^{n}-1\right\}} \max _{t \in\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]}\left|B_{t}^{(n+1)}(\omega)-B_{t}^{(n)}(\omega)\right|
$$

We drop the variable ω next. Since, by definition, $B_{t}^{(n)}$ is defined by linear interpolation and $B_{t}^{(n+1)}=B_{t}^{(n)}$ when $t \in \mathcal{D}_{n}$, we see that

$$
\max _{t \in\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right]}\left|B_{t}^{(n+1)}-B_{t}^{(n)}\right|
$$

is attained at the midpoint $t=\frac{2 k+1}{2^{n+1}}$ (draw a picture). Hence,

$$
\begin{gathered}
\Delta^{(n)}=\max _{k \in\left\{0, \ldots, 2^{n}-1\right\}}\left|B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{2 k+1}{2^{n+1}}}^{(n)}\right|=\max _{k \in\left\{0, \ldots, 2^{n}-1\right\}}\left|B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-\frac{1}{2}\left(B_{\frac{k}{2^{n}}}^{(n)}+B_{\frac{k+1}{2^{n}}}^{(n)}\right)\right| \\
=\frac{1}{2} \max _{k \in\left\{0, \ldots, 2^{n}-1\right\}}\left|\left(B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{k}{2^{n}}}^{(n)}\right)-\left(B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}\right)\right|
\end{gathered}
$$

Note that $B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{k}{2^{n}}}^{(n)}$ and $B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}$ are i.i.d. Gaussian $\mathcal{N}\left(0, \frac{1}{2^{n+1}}\right)$. Hence, for all k,

$$
W_{k}^{(n)}=\left(B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}-B_{\frac{k}{2^{n}}}^{(n)}\right)-\left(B_{\frac{k+1}{2^{n}}}^{(n)}-B_{\frac{2 k+1}{2^{n+1}}}^{(n+1)}\right)
$$

is Gaussian $\mathcal{N}\left(0, \frac{1}{2^{n}}\right)$. Let $\alpha \geq 1$. One has,

$$
\mathbb{P}\left(\Delta^{(n)} \geq \frac{\alpha}{2 \sqrt{2^{n}}}\right)=\mathbb{P}\left(\frac{1}{2} \max _{k \in\left\{0, \ldots, 2^{n}-1\right\}}\left|W_{k}^{(n)}\right| \geq \frac{\alpha}{2 \sqrt{2^{n}}}\right) \leq 2^{n} \mathbb{P}\left(\frac{1}{2}\left|W_{0}^{(n)}\right| \geq \frac{\alpha}{2 \sqrt{2^{n}}}\right)
$$

where the inequality comes from the union bound. Note that for $Z \sim \mathcal{N}(0,1)$,

$$
\mathbb{P}(Z \geq \alpha) \leq \frac{e^{-\frac{\alpha^{2}}{2}}}{\alpha \sqrt{2 \pi}}
$$

hence, by symmetry of Gaussian and the fact that $\sqrt{2^{n}} W_{0}^{(n)} \sim \mathcal{N}(0,1)$,

$$
\mathbb{P}\left(\Delta^{(n)} \geq \frac{\alpha}{2 \sqrt{2^{n}}}\right)=2^{n+1} \mathbb{P}\left(\sqrt{2^{n}} W_{0}^{(n)} \geq \alpha\right) \leq 2^{n+1} \frac{e^{-\frac{\alpha^{2}}{2}}}{\alpha \sqrt{2 \pi}}
$$

Now, take $\alpha=2 \sqrt{n}$. Then,

$$
\mathbb{P}\left(\Delta^{(n)} \geq \frac{\sqrt{n}}{\sqrt{2^{n}}}\right) \leq \frac{1}{\sqrt{2 \pi n}}\left(\frac{2}{e^{2}}\right)^{n}
$$

Hence,

$$
\sum_{n \geq 1} \mathbb{P}\left(\Delta^{(n)} \geq \frac{\sqrt{n}}{\sqrt{2^{n}}}\right)<+\infty
$$

By Borel-Cantelli,

$$
\mathbb{P}\left(\lim \sup \left\{\Delta^{(n)} \geq \frac{\sqrt{n}}{\sqrt{2^{n}}}\right\}\right)=0
$$

In other words, there exists $A \subset \Omega, \mathbb{P}(A)=1$, such that for all $\omega \in \Omega$, there exists $N \in \mathbb{N}$, such that for all $n \geq N$,

$$
\Delta^{(n)}(\omega) \leq \frac{\sqrt{n}}{\sqrt{2^{n}}}
$$

Recalling the definition of $\Delta^{(n)}(\omega)$, we thus proved that for all ω in a set A of probability 1 ,

$$
\sum_{n \geq 1}\left\|B^{n+1}(\omega)-B^{n}(\omega)\right\|_{L^{\infty}([0,1])}<+\infty
$$

A standard result of analysis allows us to conclude that, almost surely, $\left\{B^{(n)}(\omega)\right\}_{n \geq 1}$ converges uniformly on $[0,1]$. We then define

$$
B(\omega)=\left\{\begin{array}{ll}
\lim _{n \rightarrow+\infty} B^{(n)}(\omega) & \text { if } \omega \in A \\
0 & \text { if } \omega \notin A
\end{array} .\right.
$$

Monday, April 6

Step 3: [The limit is a Brownian motion on $[0,1]$]

Coming soon!

