Lecture Notes

1 Brownian motion

1.1 Definitions

1.2 Construction of the Brownian motion

1.3 Simulation of Brownian motion

1.4 Properties of the Brownian motion

Monday, April 13

1.5 Reflection Principle

Definition 1.1. Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{n}\right\}, \mathbb{P}\right)$ be a filtered space. Let $\left\{X_{t}\right\}$ be a stochastic process adapted to $\left\{\mathcal{F}_{t}\right\}$. We say that $\left\{X_{t}\right\}$ is a Markov process if

$$
\forall A \in \mathcal{F}, \forall h \geq 0, \forall t \geq 0, \quad \mathbb{P}\left(X_{t+h} \in A \mid \mathcal{F}_{t}\right)=\mathbb{P}\left(X_{t+h} \in A \mid X_{t}\right)
$$

Notation:

$$
\mathbb{P}\left(X_{t+h} \in A \mid X_{t}\right)=\mathbb{P}\left(X_{t+h} \in A \mid \sigma\left(X_{t}\right)\right)=\mathbb{E}\left[1_{A}\left(X_{t+h}\right) \mid \sigma\left(X_{t}\right)\right] .
$$

Theorem 1.1. A Brownian motion is a Markov process (w.r.t the same filtration).
Sketch of proof. We want to prove that

$$
\mathbb{P}\left(B_{t+h} \in A \mid \mathcal{F}_{t}\right)=\mathbb{P}\left(B_{t+h} \in A \mid B_{t}\right),
$$

equivalently,

$$
\mathbb{E}\left[1_{A}\left(B_{t+h}\right) \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[1_{A}\left(B_{t+h}\right) \mid \sigma\left(B_{t}\right)\right] .
$$

Let $\Phi: \mathbb{R} \rightarrow \mathbb{R}$ be measurable, then

$$
\mathbb{E}\left[\Phi\left(B_{t+h}\right) \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[\Phi\left(B_{t+h}-B_{t}+B_{t}\right) \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[g\left(X, B_{t}\right) \mid \mathcal{F}_{t}\right],
$$

where $X=B_{t+h}-B_{t}$, which is independent of \mathcal{F}_{t}, and $g(x, y)=\Phi(x+y)$.
Since X is independent of \mathcal{F}_{t}, and B_{t} is $\sigma\left(B_{t}\right)$-measurable, $\mathbb{E}\left[g\left(X, B_{t}\right) \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[g\left(X, B_{t}\right) \mid \sigma\left(B_{t}\right)\right]$. To prove this, start with functions g of the form $g(x, y)=1_{C}(x) 1_{D}(y)$, and use the fact that they approximate any Borel function.

Definition 1.2. A random variable T is an $\left\{\mathcal{F}_{t}\right\}$-stopping time if

$$
\forall t \geq 0, \quad\{T \leq t\} \in \mathcal{F}_{t} .
$$

Proposition 1.3. 1. Every deterministic time is a stopping time.
2. If $\left\{T_{n}\right\}$ is a sequence of stopping time, the $\sup _{n} T_{n}$ is a stopping time.

Proof. 1. Exercise.
2. Fix $t \geq 0$. Then,

$$
\left\{\sup _{n} T_{n} \leq t\right\}=\cap_{n}\left\{T_{n} \leq t\right\} \in \mathcal{F}_{t}
$$

Remark 1.4. In general, $\inf _{n} T_{n}$ is not a stopping time. Indeed, recalling that if $m=\inf (A)$, then for all $\varepsilon>0$, there exists $a \in A$, such that $m \geq a-\varepsilon$. In particular we have

$$
\left\{\inf _{n} T_{n} \leq t\right\}=\cap_{\varepsilon>0} \cup_{n \geq 1}\left\{T_{n} \leq t+\varepsilon\right\} \in \cap_{\varepsilon>0} \mathcal{F}_{t+\varepsilon}=\mathcal{F}_{t}^{+}
$$

Since in general $\mathcal{F}_{t} \neq \mathcal{F}_{t}^{+}$, it follows that $\inf _{n} T_{n}$ is not a stopping time.
Similarly, note that, when $\mathcal{F}_{t}=\sigma\left(B_{s}: s \leq t\right)$,

1. If F is a closed set, then $T=\inf \left\{t \geq 0: B_{t} \in F\right\}$ is a stopping time.
2. If O is open, then $T=\inf \left\{t \geq 0: B_{t} \in O\right\}$ is not a stopping time.

Definition 1.5. A filtration $\left\{F_{t}\right\}$ is right-continuous if for all $t \geq 0, \mathcal{F}_{t}=\mathcal{F}_{t}^{+}$.
Example 1.6. The canonical filtration for a Brownian motion $\left\{B_{t}\right\}$:
Define

$$
\mathcal{F}_{t}=\sigma\left(B_{s}: s \leq t\right), \quad t \geq 0
$$

and

$$
\widetilde{\mathcal{F}}_{t}=\mathcal{F}_{t}^{+}=\cap_{\varepsilon>0} \mathcal{F}_{t+\varepsilon}, \quad t \geq 0
$$

Then $\left\{\widetilde{\mathcal{F}}_{t}\right\}$ is a right-continuous filtration, and $\left\{B_{t}\right\}$ is adapted to $\left\{\widetilde{\mathcal{F}}_{t}\right\}$.
Proposition 1.7. 1. If $\left\{T_{n}\right\}$ is a sequence of $\left\{\mathcal{F}_{t}^{+}\right\}$-stopping times, then $\inf _{n} T_{n}$ is an $\left\{\mathcal{F}_{t}^{+}\right\}$stopping time.
2. If O is open, then $T=\inf \left\{t \geq 0: B_{t} \in O\right\}$ is an $\left\{\widetilde{\mathcal{F}}_{t}\right\}$-stopping time.

Definition 1.8. For a stopping time T, define

$$
\mathcal{F}_{T}=\left\{A \in \mathcal{F}: A \cap\{T \leq t\} \in \mathcal{F}_{t}^{+}, \forall t \geq 0\right\}
$$

Theorem 1.2. \mathcal{F}_{T} is a σ-algebra.
Proof. Same proof as in the discrete case.

Wednesday, April 15

Definition 1.9. Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{n}\right\}, \mathbb{P}\right)$ be a filtered space. Let $\left\{X_{t}\right\}$ be a stochastic process adapted to $\left\{\mathcal{F}_{t}\right\}$. We say that $\left\{X_{t}\right\}$ is a strong Markov process if for all stopping time T finite almost surely,

$$
\forall A \in \mathcal{F}, \forall h \geq 0, \quad \mathbb{P}\left(X_{T+h} \in A \mid \mathcal{F}_{T}\right)=\mathbb{P}\left(X_{T+h} \in A \mid X_{T}\right)
$$

Theorem 1.3. The Brownian motion is a strong Markov process.

Sketch of Proof. Note that $\left\{B_{T+t}-B_{T}\right\}_{t \geq 0}$ is a standard Brownian motion independent of \mathcal{F}_{T}.

Theorem 1.4 (Reflection principle). Let T be a stopping time and $\left\{B_{t}\right\}$ be a standard Brownian motion.

If $M=(x, y)$, then the reflection of M with respect to the line passing through $(0, a)$ and parallel to the x-axis is $M^{*}=(x, 2 a-y)$ (draw a picture).

For $t \geq 0$, define

$$
B_{t}^{*}=B_{t} 1_{t \leq T}+\left(2 B_{T}-B_{t}\right) 1_{t>T} .
$$

Then, $\left\{B_{t}^{*}\right\}$ is a standard Brownian motion.
Definition 1.10. The process B_{t}^{*} defined in Theorem 1.4 is called reflected Brownian motion.
Corollary 1.11. Let $\left\{B_{t}\right\}$ be a Brownian motion. Consider, for $t \geq 0$,

$$
M_{t}=\sup _{0 \leq s \leq t} B_{s} .
$$

Then, $M_{t} \sim|Z|$, where $Z \sim \mathcal{N}(0, t)$. This means that supremum of Brownian motion path has a χ distribution.
Proof. First note that $\mathbb{P}\left(M_{t} \geq 0\right)=1$ because $B_{0}=0$ a.s.
Fix $a>0$. Let us find $\mathbb{P}\left(M_{t} \geq a\right)$. Consider $\left\{B_{t}^{*}\right\}$ the reflected Brownian motion with respect to the stopping time $T_{a}=\inf \left\{t \geq 0: B_{t}=a\right\}$. Note that
i) $\left\{B_{t} \geq a\right\} \subset\left\{M_{t} \geq a\right\}$.
ii) $\left\{M_{t} \geq a\right\} \cap\left\{B_{t}<a\right\}=\left\{B_{t}^{*}>a\right\}$.

The point i) is clear. The inclusion \subset of the point ii) is clear from the picture (after reflection, $B_{t}<a$ if and only if $\left.B_{t}^{*}>a\right)$. For the other inclusion \supset, if $\left\{B_{t}^{*}>a\right\}$, then either $\left\{B_{t}>a\right\}$ either $\left\{B_{t}<a\right\}$. The case $\left\{B_{t}>a\right\}$ is impossible because $B_{t}>a$ implies that $T_{a}<t$. Necessarily, $\left\{B_{t}<a\right\}$. Since $\left\{B_{t}<a\right\}$ and $\left\{B_{t}^{*}>a\right\}$, we have $T_{a} \leq t$ and thus $M_{t} \geq a$.

Thus, from ii) and Theorem 1.4,

$$
\mathbb{P}\left(M_{t} \geq a, B_{t}<a\right)=\mathbb{P}\left(B_{t}^{*}>a\right)=\mathbb{P}\left(B_{t}>a\right) .
$$

Hence,

$$
\mathbb{P}\left(M_{t} \geq a\right)=\mathbb{P}\left(M_{t} \geq a, B_{t}<a\right)+\mathbb{P}\left(M_{t} \geq a, B_{t} \geq a\right)=2 \mathbb{P}\left(B_{t} \geq a\right)=\mathbb{P}\left(\left|B_{t}\right| \geq a\right)
$$

Friday, April 17

1.6 Differentiability of the paths of the Brownian motion

Theorem 1.5. With probability 1 , the paths of the Brownian motion are nowhere differentiable. Formally, let $\left\{B_{t}\right\}$ be a Brownian motion, then

$$
\mathbb{P}\left(\left\{\omega \in \Omega: \exists t_{0} \in[0,+\infty), t \mapsto B_{t}(\omega) \text { is differentiable at } t_{0}\right\}\right)=0
$$

Proof. Step 1: [Setup]

Without loss of generality, let us prove the result on $[0,1]$. Denote

$$
A=\left\{\omega \in \Omega: \exists t_{0} \in[0,1], t \mapsto B_{t}(\omega) \text { is differentiable at } t_{0}\right\} .
$$

We want to prove that $\mathbb{P}(A)=0$. For $n \geq 3$ and $k \in\{1, \ldots, n-2\}$, define

$$
M_{k, n}=\max \left\{\left|B_{\frac{k+2}{n}}-B_{\frac{k+1}{n}}\right|,\left|B_{\frac{k+1}{n}}-B_{\frac{k}{n}}\right|,\left|B_{\frac{k}{n}}-B_{\frac{k-1}{n}}\right|\right\},
$$

and

$$
M_{n}=\min \left(M_{1, n}, \ldots, M_{n-2, n}\right) .
$$

Step 2: The goal of Step 2 is to prove that

$$
\forall \omega \in A, \exists M \in \mathbb{N}, \exists n_{0} \in N, \forall n \geq n_{0}, M_{n}(\omega) \leq \frac{5}{n}(1+M)
$$

Let $\omega \in A$ (we drop the dependence on ω next). Then there exists $t_{0} \in[0,1]$ such that $t \mapsto B_{t}$ is differentiable at t_{0}. By definition of differentiability, there exists $L \in \mathbb{R}$ and $\delta>0$ such that for all $t \in[0,1] \backslash\left\{t_{0}\right\}$, if $\left|t-t_{0}\right| \leq \delta$, then $\left|B_{t}-B_{t_{0}}-L\left(t-t_{0}\right)\right| \leq\left|t-t_{0}\right|$ (taking $\varepsilon=1$). Hence, by triangular inequality, for all t such that $\left|t-t_{0}\right| \leq \delta$,

$$
\left|B_{t}-B_{t_{0}}\right| \leq(1+|L|)\left|t-t_{0}\right| .
$$

Now, note that there exists $n_{0} \geq 1$ and $k \in\left\{1, \ldots, n_{0}\right\}$, such that

$$
t_{0} \in\left[\frac{k-1}{n_{0}}, \frac{k}{n_{0}}\right] \text { and }\left|\frac{k+2}{n_{0}}-\frac{k-1}{n_{0}}\right|=\frac{3}{n_{0}} \leq \delta .
$$

Let $n \geq n_{0}$. Then there exists $k \in\{1, \ldots, n\}$ such that the above holds. Hence,

$$
\left|B_{\frac{k}{n}}-B_{\frac{k-1}{n}}\right| \leq\left|B_{\frac{k}{n}}-B_{t_{0}}\right|+\left|B_{t_{0}}-B_{\frac{k-1}{n}}\right| \leq(1+|L|)\left(\left|\frac{k}{n}-t_{0}\right|+\left|t_{0}-\frac{k-1}{n}\right|\right) \leq \frac{2}{n}(1+|L|) .
$$

Similarly, we have

$$
\left|B_{\frac{k+1}{n}}-B_{\frac{k}{n}}\right| \leq \frac{3}{n}(1+|L|) \quad \text { and } \quad\left|B_{\frac{k+2}{n}}-B_{\frac{k+1}{n}}\right| \leq \frac{5}{n}(1+|L|) .
$$

We thus proved that for all $n \geq n_{0}$, there exists $k \in\{1, \ldots, n\}$ such that

$$
M_{k, n} \leq \frac{5}{n}(1+|L|) .
$$

By definition of M_{n}, this tells us that for all $n \geq n_{0}$,

$$
M_{n} \leq \frac{5}{n}(1+|L|) .
$$

Now, just take any integer M greater than $|L|$ to conclude that

$$
\forall \omega \in A, \exists M \in \mathbb{N}, \exists n_{0} \in N, \forall n \geq n_{0}, M_{n}(\omega) \leq \frac{5}{n}(1+M)
$$

Equivalently,

$$
A \subset \cup_{M \in \mathbb{N}} \cup_{n_{0} \in \mathbb{N}} \cap_{n \geq n_{0}}\left\{M_{n} \leq \frac{5}{n}(1+M)\right\} .
$$

Step 3: The goal of Step 3 is to prove that

$$
\forall M \in \mathbb{N}, \lim _{n \rightarrow+\infty} \mathbb{P}\left(M_{n} \leq \frac{5}{n}(1+M)\right)=0
$$

Let $n \geq 3$ and $k \in\{1, \ldots, n-2\}$. Denote,

$$
X_{1}=\left|B_{\frac{k}{n}}-B_{\frac{k-1}{n}}\right|, \quad X_{2}=\left|B_{\frac{k+1}{n}}-B_{\frac{k}{n}}\right|, \quad X_{3}=\left|B_{\frac{k+2}{n}}-B_{\frac{k+1}{n}}\right|
$$

Since $\left\{B_{t}\right\}$ is a Brownian motion, X_{1}, X_{2}, X_{3} are i.i.d. with same distribution as $|Z|$ where $Z \sim \mathcal{N}\left(0, \frac{1}{n}\right)$. Thus, the CDF of $M_{k, n}=\max \left(X_{1}, X_{2}, X_{3}\right)$ is

$$
F_{M_{k, n}}(x)=\mathbb{P}\left(M_{k, n} \leq x\right)=\mathbb{P}\left(X_{1} \leq x\right)^{3}, \quad x \in \mathbb{R}
$$

Note that

$$
\mathbb{P}\left(X_{1} \leq x\right)=\mathbb{P}(|Z| \leq x \sqrt{n})
$$

where $Z \sim \mathcal{N}(0,1)$. Hence,

$$
\mathbb{P}\left(X_{1} \leq x\right)=\frac{2}{\sqrt{2 \pi}} \int_{0}^{x \sqrt{n}} e^{-\frac{t^{2}}{2}} d t \leq \frac{2 x \sqrt{n}}{\sqrt{2 \pi}}
$$

We deduce that for all $M \in \mathbb{N}$,

$$
\mathbb{P}\left(M_{k, n} \leq \frac{5}{n}(1+M)\right) \leq\left[\frac{10}{\sqrt{2 \pi}}(1+M) \frac{1}{\sqrt{n}}\right]^{3}=\frac{C}{n^{\frac{3}{2}}}
$$

where $C=\left[\frac{10}{\sqrt{2 \pi}}(1+M)\right]^{3}$. Hence, by union bound,

$$
\mathbb{P}\left(M_{n} \leq \frac{5}{n}(1+M)\right)=\mathbb{P}\left(\cup_{k=1}^{n-2}\left\{M_{k, n} \leq \frac{5}{n}(1+M)\right\}\right) \leq \sum_{k=1}^{n-2} \mathbb{P}\left(M_{k, n} \leq \frac{5}{n}(1+M)\right) \leq \frac{C}{\sqrt{n}}
$$

We conclude that

$$
\forall M \in \mathbb{N}, \lim _{n \rightarrow+\infty} \mathbb{P}\left(M_{n} \leq \frac{5}{n}(1+M)\right)=0
$$

Step 4: [Conclusion]

From Step 2,

$$
\mathbb{P}(A) \leq \mathbb{P}\left(\cup_{M \in \mathbb{N}} \cup_{n_{0} \in \mathbb{N}} \cap_{n \geq n_{0}}\left\{M_{n} \leq \frac{5}{n}(1+M)\right\}\right)
$$

Denote $B_{n_{0}}=\cap_{n \geq n_{0}}\left\{M_{n} \leq \frac{5}{n}(1+M)\right\}$, and note that $\left\{B_{n_{0}}\right\}$ is an increasing sequence of sets, hence, from Step 3,

$$
\begin{aligned}
\mathbb{P}\left(\cup_{n_{0} \in \mathbb{N}} \cap_{n \geq n_{0}}\left\{M_{n} \leq \frac{5}{n}(1+M)\right\}\right) & =\lim _{n_{0} \rightarrow+\infty} \mathbb{P}\left(\cap_{n \geq n_{0}}\left\{M_{n} \leq \frac{5}{n}(1+M)\right\}\right) \\
& \leq \lim _{n_{0} \rightarrow+\infty} \mathbb{P}\left(\left\{M_{n_{0}} \leq \frac{5}{n_{0}}(1+M)\right\}\right) \\
& =0
\end{aligned}
$$

We conclude that

$$
\mathbb{P}(A) \leq \sum_{M \in \mathbb{N}} \mathbb{P}\left(\cup_{n_{0} \in \mathbb{N}} \cap_{n \geq n_{0}}\left\{M_{n} \leq \frac{5}{n}(1+M)\right\}\right)=0
$$

