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Monday, April 13

1.5 Reflection Principle

Definition 1.1. Let (Ω,F , {Fn},P) be a filtered space. Let {Xt} be a stochastic process adapted
to {Ft}. We say that {Xt} is a Markov process if

∀A ∈ F ,∀h ≥ 0, ∀t ≥ 0, P(Xt+h ∈ A|Ft) = P(Xt+h ∈ A|Xt).

Notation:
P(Xt+h ∈ A|Xt) = P(Xt+h ∈ A|σ(Xt)) = E[1A(Xt+h)|σ(Xt)].

Theorem 1.1. A Brownian motion is a Markov process (w.r.t the same filtration).

Sketch of proof. We want to prove that

P(Bt+h ∈ A|Ft) = P(Bt+h ∈ A|Bt),

equivalently,
E[1A(Bt+h)|Ft] = E[1A(Bt+h)|σ(Bt)].

Let Φ: R→ R be measurable, then

E[Φ(Bt+h)|Ft] = E[Φ(Bt+h −Bt +Bt)|Ft] = E[g(X,Bt)|Ft],

where X = Bt+h −Bt, which is independent of Ft, and g(x, y) = Φ(x+ y).
SinceX is independent of Ft, andBt is σ(Bt)-measurable, E[g(X,Bt)|Ft] = E[g(X,Bt)|σ(Bt)].

To prove this, start with functions g of the form g(x, y) = 1C(x)1D(y), and use the fact that they
approximate any Borel function.

Definition 1.2. A random variable T is an {Ft}-stopping time if

∀t ≥ 0, {T ≤ t} ∈ Ft.

Proposition 1.3. 1. Every deterministic time is a stopping time.

2. If {Tn} is a sequence of stopping time, the supn Tn is a stopping time.
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Proof. 1. Exercise.
2. Fix t ≥ 0. Then,

{sup
n
Tn ≤ t} = ∩n{Tn ≤ t} ∈ Ft.

Remark 1.4. In general, infn Tn is not a stopping time. Indeed, recalling that if m = inf(A),
then for all ε > 0, there exists a ∈ A, such that m ≥ a− ε. In particular we have

{inf
n
Tn ≤ t} = ∩ε>0 ∪n≥1 {Tn ≤ t+ ε} ∈ ∩ε>0Ft+ε = F+

t .

Since in general Ft 6= F+
t , it follows that infn Tn is not a stopping time.

Similarly, note that, when Ft = σ(Bs : s ≤ t),
1. If F is a closed set, then T = inf{t ≥ 0 : Bt ∈ F} is a stopping time.
2. If O is open, then T = inf{t ≥ 0 : Bt ∈ O} is not a stopping time.

Definition 1.5. A filtration {Ft} is right-continuous if for all t ≥ 0, Ft = F+
t .

Example 1.6. The canonical filtration for a Brownian motion {Bt}:
Define

Ft = σ(Bs : s ≤ t), t ≥ 0,

and
F̃t = F+

t = ∩ε>0Ft+ε, t ≥ 0.

Then {F̃t} is a right-continuous filtration, and {Bt} is adapted to {F̃t}.

Proposition 1.7. 1. If {Tn} is a sequence of {F+
t }-stopping times, then infn Tn is an {F+

t }-
stopping time.

2. If O is open, then T = inf{t ≥ 0 : Bt ∈ O} is an {F̃t}-stopping time.

Definition 1.8. For a stopping time T , define

FT = {A ∈ F : A ∩ {T ≤ t} ∈ F+
t , ∀ t ≥ 0}.

Theorem 1.2. FT is a σ-algebra.

Proof. Same proof as in the discrete case.

Wednesday, April 15

Definition 1.9. Let (Ω,F , {Fn},P) be a filtered space. Let {Xt} be a stochastic process adapted
to {Ft}. We say that {Xt} is a strong Markov process if for all stopping time T finite almost
surely,

∀A ∈ F ,∀h ≥ 0, P(XT+h ∈ A|FT ) = P(XT+h ∈ A|XT ).

Theorem 1.3. The Brownian motion is a strong Markov process.
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Sketch of Proof. Note that {BT+t − BT }t≥0 is a standard Brownian motion independent of FT .

Theorem 1.4 (Reflection principle). Let T be a stopping time and {Bt} be a standard Brownian
motion.

If M = (x, y), then the reflection of M with respect to the line passing through (0, a) and
parallel to the x-axis is M∗ = (x, 2a− y) (draw a picture).

For t ≥ 0, define
B∗t = Bt1t≤T + (2BT −Bt)1t>T .

Then, {B∗t } is a standard Brownian motion.

Definition 1.10. The process B∗t defined in Theorem 1.4 is called reflected Brownian motion.

Corollary 1.11. Let {Bt} be a Brownian motion. Consider, for t ≥ 0,

Mt = sup
0≤s≤t

Bs.

Then, Mt ∼ |Z|, where Z ∼ N (0, t). This means that supremum of Brownian motion path has a
χ distribution.

Proof. First note that P(Mt ≥ 0) = 1 because B0 = 0 a.s.
Fix a > 0. Let us find P(Mt ≥ a). Consider {B∗t } the reflected Brownian motion with respect

to the stopping time Ta = inf{t ≥ 0 : Bt = a}. Note that
i) {Bt ≥ a} ⊂ {Mt ≥ a}.
ii) {Mt ≥ a} ∩ {Bt < a} = {B∗t > a}.
The point i) is clear. The inclusion ⊂ of the point ii) is clear from the picture (after reflection,
Bt < a if and only if B∗t > a). For the other inclusion ⊃, if {B∗t > a}, then either {Bt > a} either
{Bt < a}. The case {Bt > a} is impossible because Bt > a implies that Ta < t. Necessarily,
{Bt < a}. Since {Bt < a} and {B∗t > a}, we have Ta ≤ t and thus Mt ≥ a.

Thus, from ii) and Theorem 1.4,

P(Mt ≥ a,Bt < a) = P(B∗t > a) = P(Bt > a).

Hence,

P(Mt ≥ a) = P(Mt ≥ a,Bt < a) + P(Mt ≥ a,Bt ≥ a) = 2P(Bt ≥ a) = P(|Bt| ≥ a).

Friday, April 17

1.6 Differentiability of the paths of the Brownian motion

Theorem 1.5. With probability 1, the paths of the Brownian motion are nowhere differentiable.
Formally, let {Bt} be a Brownian motion, then

P
(
{ω ∈ Ω : ∃t0 ∈ [0,+∞), t 7→ Bt(ω) is differentiable at t0}

)
= 0.
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Proof. Step 1: [Setup]
Without loss of generality, let us prove the result on [0, 1]. Denote

A = {ω ∈ Ω : ∃t0 ∈ [0, 1], t 7→ Bt(ω) is differentiable at t0}.

We want to prove that P(A) = 0. For n ≥ 3 and k ∈ {1, . . . , n− 2}, define

Mk,n = max{|B k+2
n
−B k+1

n
|, |B k+1

n
−B k

n
|, |B k

n
−B k−1

n
|},

and
Mn = min(M1,n, . . . ,Mn−2,n).

Step 2: The goal of Step 2 is to prove that

∀ω ∈ A,∃M ∈ N, ∃n0 ∈ N, ∀n ≥ n0,Mn(ω) ≤ 5

n
(1 +M).

Let ω ∈ A (we drop the dependence on ω next). Then there exists t0 ∈ [0, 1] such that t 7→ Bt
is differentiable at t0. By definition of differentiability, there exists L ∈ R and δ > 0 such that
for all t ∈ [0, 1] \ {t0}, if |t− t0| ≤ δ, then |Bt −Bt0 − L(t− t0)| ≤ |t− t0| (taking ε = 1). Hence,
by triangular inequality, for all t such that |t− t0| ≤ δ,

|Bt −Bt0 | ≤ (1 + |L|)|t− t0|.

Now, note that there exists n0 ≥ 1 and k ∈ {1, . . . , n0}, such that

t0 ∈
[
k − 1

n0
,
k

n0

]
and

∣∣∣∣k + 2

n0
− k − 1

n0

∣∣∣∣ =
3

n0
≤ δ.

Let n ≥ n0. Then there exists k ∈ {1, . . . , n} such that the above holds. Hence,

|B k
n
−B k−1

n
| ≤ |B k

n
−Bt0 |+ |Bt0 −B k−1

n
| ≤ (1 + |L|)

(
|k
n
− t0|+ |t0 −

k − 1

n
|
)
≤ 2

n
(1 + |L|).

Similarly, we have

|B k+1
n
−B k

n
| ≤ 3

n
(1 + |L|) and |B k+2

n
−B k+1

n
| ≤ 5

n
(1 + |L|).

We thus proved that for all n ≥ n0, there exists k ∈ {1, . . . , n} such that

Mk,n ≤
5

n
(1 + |L|).

By definition of Mn, this tells us that for all n ≥ n0,

Mn ≤
5

n
(1 + |L|).

Now, just take any integer M greater than |L| to conclude that

∀ω ∈ A,∃M ∈ N, ∃n0 ∈ N, ∀n ≥ n0,Mn(ω) ≤ 5

n
(1 +M).

Equivalently,

A ⊂ ∪M∈N ∪n0∈N ∩n≥n0

{
Mn ≤

5

n
(1 +M)

}
.
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Step 3: The goal of Step 3 is to prove that

∀M ∈ N, lim
n→+∞

P(Mn ≤
5

n
(1 +M)) = 0.

Let n ≥ 3 and k ∈ {1, . . . , n− 2}. Denote,

X1 = |B k
n
−B k−1

n
|, X2 = |B k+1

n
−B k

n
|, X3 = |B k+2

n
−B k+1

n
|.

Since {Bt} is a Brownian motion, X1, X2, X3 are i.i.d. with same distribution as |Z| where
Z ∼ N (0, 1n). Thus, the CDF of Mk,n = max(X1, X2, X3) is

FMk,n
(x) = P(Mk,n ≤ x) = P(X1 ≤ x)3, x ∈ R.

Note that
P(X1 ≤ x) = P(|Z| ≤ x

√
n),

where Z ∼ N (0, 1). Hence,

P(X1 ≤ x) =
2√
2π

∫ x
√
n

0
e−

t2

2 dt ≤ 2x
√
n√

2π
.

We deduce that for all M ∈ N,

P(Mk,n ≤
5

n
(1 +M)) ≤

[
10√
2π

(1 +M)
1√
n

]3
=

C

n
3
2

,

where C =
[

10√
2π

(1 +M)
]3
. Hence, by union bound,

P
(
Mn ≤

5

n
(1 +M)

)
= P

(
∪n−2k=1

{
Mk,n ≤

5

n
(1 +M)

})
≤

n−2∑
k=1

P
(
Mk,n ≤

5

n
(1 +M)

)
≤ C√

n
.

We conclude that
∀M ∈ N, lim

n→+∞
P(Mn ≤

5

n
(1 +M)) = 0.

Step 4: [Conclusion]
From Step 2,

P(A) ≤ P
(
∪M∈N ∪n0∈N ∩n≥n0

{
Mn ≤

5

n
(1 +M)

})
.

Denote Bn0 = ∩n≥n0

{
Mn ≤ 5

n(1 + M)
}
, and note that {Bn0} is an increasing sequence of sets,

hence, from Step 3,

P
(
∪n0∈N ∩n≥n0

{
Mn ≤

5

n
(1 +M)

})
= lim

n0→+∞
P
(
∩n≥n0

{
Mn ≤

5

n
(1 +M)

})
≤ lim

n0→+∞
P
({

Mn0 ≤
5

n0
(1 +M)

})
= 0.

We conclude that

P(A) ≤
∑
M∈N

P
(
∪n0∈N ∩n≥n0

{
Mn ≤

5

n
(1 +M)

})
= 0.
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