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Lecture Notes

1 Brownian motion

1.1 Definitions

1.2 Construction of the Brownian motion

Monday, April 6

Step 3: [The limit is a Brownian motion on [0, 1]]

• Continuity: By construction, for all ω ∈ Ω, for all n ∈ N, t 7→ B
(n)
t (ω) is continuous

on [0, 1]. Since, almost surely, {Bn} converges uniformly on [0, 1] to B, we deduce that, almost
surely, t 7→ Bt(ω) is continuous.

• Since for all n ∈ N, B(n)
0 = 0, we deduce that B0 = 0.

• Stationary increments: Let t, s ∈ D. Then, there exists m ∈ N such that t, s ∈ Dm.
Hence, B(m)

t −B(m)
s ∼ N (0, t− s). By construction, for all t ∈ Dm, for all n ≥ m, B(n)

t = B
(m)
t .

Hence
Bt −Bs = lim

n→+∞
B

(n)
t −B(n)

s = lim
n→+∞

B
(m)
t −B(m)

s = B
(m)
t −B(m)

s ,

where the limit is understood as “almost sure convergence”. Since B(m)
t − B(m)

s ∼ N (0, t − s),
we have Bt − Bs ∼ N (0, t − s). Now, assume that t, s ∈ [0, 1]. By density of D in [0, 1], there
exist sequences {tk}, {sk} ∈ D such that t = limk tk and s = limk sk. Since, almost surely,
t 7→ Bt is continuous, we have, almost surely, Bt = limk Btk and Bs = limk Bsk . Since, for all
k, Btk − Bsk ∼ N (0, tk − sk), we can conclude that Bt − Bs ∼ N (0, t − s) (use, for example,
characteristic functions).

• Independent increments: Same argument.

1.3 Simulation of Brownian motion

Fix an integer n ∈ N. Given times 0 = t0 < t1 < · · · < tn, generate Z1, . . . , Zn i.i.d. N (0, 1).
Define

B0 = 0,

Bt1 =
√
t1Z1,

Bt2 = Bt1 +
√
t2 − t1Z2 =

√
t1Z1 +

√
t2 − t1Z2,

...

Btn = Btn−1 +
√
tn − tn−1Zn =

n∑
i=1

√
ti − ti−1Zi
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Using this construction, {Bt} is a Brownian motion at times 0 = t0 < t1 < · · · < tn. Indeed, it
starts at 0, and for all l ≤ m < n,

Btn −Btm =
n∑

i=1

√
ti − ti−1Zi −

m∑
i=1

√
ti − ti−1Zi =

n∑
i=m+1

√
ti − ti−1Zi,

which is Gaussian N (0, tn − tm), and is independent of Btl .

Wednesday, April 8

1.4 Properties of the Brownian motion

Definition 1.1. {Xt}t≥0 is a Gaussian process if for all n ∈ N, for all t1 < · · · < tn, the random
vector (Xt1 , . . . , Xtn) is multivariate Gaussian.

Theorem 1.1. (X1, . . . , Xn) is multivariate Gaussian ⇐⇒ every linear combination of the Xi’s
is Gaussian, that is, for all λ1, . . . , λn ∈ R, λ1X1 + · · ·+ λnXn is Gaussian ⇐⇒

∃µ ∈ Rn, ∃A ∈ Rn×m, (X1, . . . , Xn) = µ+A(Z1, . . . , Zn),

where Z1, . . . , Zn are i.i.d. N (0, 1).

Theorem 1.2. A Brownian motion is a Gaussian process.

Proof. Define

Zj =
Btj −Btj−1√
tj − tj−1

, j = 1, . . . , n.

In particular, the Zj ’s are i.i.d. standard Gaussian N (0, 1). Note that
Bt1
...
...
Btn

 =


√
t1 0 · · · 0
√
t1
√
t2 − t1

. . .
...

...
. . . 0√

t1
√
t2 − t1 · · ·

√
tn − tn−1




Z1
...
...
Zn

 .

Hence {Bt} is a Gaussian process.

Definition 1.2. Let {Ft} be a filtration. The germ σ-algebra is

F+
s = ∩t>sFt.

Remark 1.3. 1. In general F+
s 6= Fs. Indeed, let X be a non-constant random variable.

Define Xt = tX, t ≥ 0, and Ft = σ(Xs : 0 ≤ s ≤ t). Note that for all t > 0, Ft = σ(X).
However,

{∅,Ω} = F0 6= ∩t>0Ft = σ(X).

2. F+
s represents an infinitesimal additional information into the future.

Theorem 1.3 (Blumenthal 0-1 Law). Let {Bt} be a Brownian motion. If A ∈ F+
0 , then P(A) = 0

or 1.
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Corollary 1.4. Let {Bt} be a standard Brownian motion. Define

T1 = inf{t > 0 : Bt > 0}, T2 = inf{t > 0 : Bt = 0}, T3 = inf{t > 0 : Bt < 0}.

Then, P(T1 = 0) = P(T2 = 0) = P(T3 = 0) = 1.

Proof. One has
{T1 = 0} = ∩n≥1 ∪ε∈(0, 1

n
) {Bε > 0}.

Hence, {T1 = 0} ∈ F+
0 . Note that for all t > 0,

{Bt > 0} ⊂ {T1 ≤ t},

hence
P(T1 ≤ t) ≥ P(Bt > 0) =

1

2
.

We deduce that
P(T1 = 0) = P(∩n{T1 ≤

1

n
}) = lim

n
P(T1 ≤

1

n
) ≥ 1

2
.

Since {T1 = 0} ∈ F+
0 , by Blumenthal 0-1 law, we conclude that P(T1 = 0) = 1.

By symmetry, (that is, {−Bt} is a Brownian motion), P(T3 = 0) = 1.
With probability 1, t 7→ Bt is continuous and satisfies P(T1 = 0) = P(T3 = 0) = 1, hence by

the intermediate value theorem, P(T2 = 0) = 1.

Remark 1.5. In particular, Corollary 1.4 tells us that with proba 1, for all ε > 0, Bt hits 0
infinitely many times in the interval (0, ε).

Theorem 1.4 (Long term behavior of Brownian motion). Let {Bt} be a Brownian motion, then

lim sup
t→+∞

Bt√
t

= +∞ and lim inf
t→+∞

Bt√
t

= −∞.

Proof. Fix M > 0.

P(lim sup
t→+∞

Bt√
t
> M) = P(lim sup

t→0+

√
tB 1

t
> M) = P(∩t>0 ∪0≤s≤t {

√
sB 1

s
> M})

Fact: {sB 1
s
} is a Brownian motion (Time inversion — see later).

Fact: {lim sup ft > M} = lim sup{ft > M}.

Note that
√
sB 1

s
= Xs√

s
, where Xs = sB 1

s
being a Brownian motion. Hence,

∩t>0 ∪0≤s≤t {
√
sB 1

s
> M} = ∩t>0 ∪0≤s≤t {Xs > M

√
s} ∈ F+

0 .

By Blumenthal 0-1 law,

P(lim sup
t→+∞

Bt√
t
> M) = 0 or 1.

Now, note that

P(lim sup
t→+∞

Bt√
t
> M) ≥ P(lim sup

n→+∞

Bn√
n
> M) = P(∩n≥1 ∪k≥n {

Bk√
k
> M})

= lim
n→+∞

P(∪k≥n{
Bk√
k
> M}) ≥ lim

n→+∞
P({Bn√

n
> M}) = lim

n→+∞
P({B1 > M}) = P(B1 > M) > 0.

We conclude that
P(lim sup

t→+∞

Bt√
t
> M) = 1.
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It follows that

P(lim sup
t→+∞

Bt√
t

= +∞) = P(∩M>0 lim sup
t→+∞

Bt√
t
> M) = lim

M→+∞
P(lim sup

t→+∞

Bt√
t
> M) = 1.

By symmetry ({−Bt} is a Brownian motion), we deduce that

P(lim inf
t→+∞

Bt√
t

= −∞) = 1.

Remark 1.6. In other words, a Brownian motion is recurrent (each value a ∈ R is visited
infinitely many often).
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Definition 1.7. Let (Ω,F ,P) be a probability space. Recall that a filtration {Ft}t≥0 is a familly
of sigma-algebras such that for all s ≤ t, Fs ⊂ Ft ⊂ F .

A process {Mt}t≥0 is a {Ft} continuous-time martingale if

i) For all t ≥ 0, Mt is Ft-measurable.
ii) For all t ≥ 0, E[|Mt|] < +∞.
iii) For all s ≤ t, E[Mt|Fs] = Ms.

Proposition 1.8. A Brownian motion is a continuous-time martingale.

Proof.
E[Bt|Fs] = E[Bt −Bs +Bs|Fs] = E[Bt −Bs|Fs] +Bs = Bs,

because Bt −Bs is independent of Fs and has expectation 0.

Theorem 1.5 (Law of Large Numbers for Brownian motion). For a Brownian motion {Bt},
limt→+∞

Bt
t = 0 almost surely.

Proof. Step 1: Note that Bn = B1 −B0 + · · ·+Bn −Bn−1, so we can write

Bn =
n∑

k=1

Xk,

where Xk = Bk −Bk−1. Note that {Xk} is a sequence of i.i.d. N (0, 1) random variable. Hence,
by the strong LLN, Bn

n → E[B1] = 0 almost surely.
Step 2: We will prove that∑

n≥0
P( sup

t∈[n,n+1]
|Bt −Bn| > n

2
3 ) < +∞.

Fix n ≥ 0. Define, for m ≥ 0 and k ∈ {0, . . . , 2m},

Xk = Bn+ k
2m
−Bn.

4



Since {Bn+t−Bn}t≥0 is a Brownian motion, it is a martingale. It follows that {Xk} is a discrete
time martingale. We can thus apply Doob’s inequality and obtain

P( sup
0≤k≤2m

|Xk| > n
2
3 ) ≤ E[|X2m |2]

n
4
3

=
E[|Bn+1 −Bn|2]

n
4
3

=
1

n
4
3

.

Because t 7→ Bt is continuous, we have

{ sup
t∈[n,n+1]

|Bt −Bn| > n
2
3 } = ∪m≥1{ sup

0≤k≤2m
|Xk| > n

2
3 }.

Hence,

P( sup
t∈[n,n+1]

|Bt −Bn| > n
2
3 ) = lim

m→+∞
P( sup

0≤k≤2m
|Xk| > n

2
3 ) ≤ 1

n
4
3

.

Step 3: Define, for n ≥ 0,

An = { sup
t∈[n,n+1]

|Bt −Bn| > n
2
3 }.

Since
∑

P(An) < +∞, by Borel-Cantelli we have P(lim supAn) = 0. This means that, for all ω
in a set of probability 1,

∃n0 ≥ 1, ∀n ≥ n0,∀t ∈ [n, n+ 1],

∣∣∣∣Bt(ω)

t

∣∣∣∣ ≤ n

t

(∣∣∣∣Bt(ω)−Bn(ω)

n

∣∣∣∣+

∣∣∣∣Bn(ω)

n

∣∣∣∣) ≤ 1

n
1
3

+

∣∣∣∣Bn(ω)

n

∣∣∣∣ ,
which goes to 0 as n→ +∞.

Corollary 1.9 (Time Inversion). Let {Bt} be a Brownian motion. The process {Xt}t≥0 defined
by Xt = tB 1

t
for t > 0 and X0 = 0, is a Brownian motion, for the natural filtration F̃t = σ(Xs :

s ≤ t).

Proof. Continuity at 0: From Theorem 1.5, we have

lim
t→0+

Xt = lim
t→+∞

X 1
t

= lim
t→+∞

Bt

t
= 0 = X0.

Gaussian Increments: Note that, for s ≤ t,

Xt −Xs = (t− s)B 1
t
− s(B 1

s
−B 1

t
),

which is N (0, t− s).
Independent Increments: Since (Xt − Xs, Xs) is a bivariate Gaussian, we can conclude

independence because E[(Xt −Xs)Xs] = 0.
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