Lecture Notes

1 Brownian motion

1.1 Definitions

1.2 Construction of the Brownian motion

Monday, April 6

Step 3: [The limit is a Brownian motion on [0, 1]]

- Continuity: By construction, for all $\omega \in \Omega$, for all $n \in \mathbb{N}, t \mapsto B_{t}^{(n)}(\omega)$ is continuous on $[0,1]$. Since, almost surely, $\left\{B_{n}\right\}$ converges uniformly on $[0,1]$ to B, we deduce that, almost surely, $t \mapsto B_{t}(\omega)$ is continuous.
- Since for all $n \in \mathbb{N}, B_{0}^{(n)}=0$, we deduce that $B_{0}=0$.
- Stationary increments: Let $t, s \in \mathcal{D}$. Then, there exists $m \in \mathbb{N}$ such that $t, s \in \mathcal{D}_{m}$. Hence, $B_{t}^{(m)}-B_{s}^{(m)} \sim \mathcal{N}(0, t-s)$. By construction, for all $t \in \mathcal{D}_{m}$, for all $n \geq m, B_{t}^{(n)}=B_{t}^{(m)}$. Hence

$$
B_{t}-B_{s}=\lim _{n \rightarrow+\infty} B_{t}^{(n)}-B_{s}^{(n)}=\lim _{n \rightarrow+\infty} B_{t}^{(m)}-B_{s}^{(m)}=B_{t}^{(m)}-B_{s}^{(m)},
$$

where the limit is understood as "almost sure convergence". Since $B_{t}^{(m)}-B_{s}^{(m)} \sim \mathcal{N}(0, t-s)$, we have $B_{t}-B_{s} \sim \mathcal{N}(0, t-s)$. Now, assume that $t, s \in[0,1]$. By density of \mathcal{D} in $[0,1]$, there exist sequences $\left\{t_{k}\right\},\left\{s_{k}\right\} \in \mathcal{D}$ such that $t=\lim _{k} t_{k}$ and $s=\lim _{k} s_{k}$. Since, almost surely, $t \mapsto B_{t}$ is continuous, we have, almost surely, $B_{t}=\lim _{k} B_{t_{k}}$ and $B_{s}=\lim _{k} B_{s_{k}}$. Since, for all $k, B_{t_{k}}-B_{s_{k}} \sim \mathcal{N}\left(0, t_{k}-s_{k}\right)$, we can conclude that $B_{t}-B_{s} \sim \mathcal{N}(0, t-s)$ (use, for example, characteristic functions).

- Independent increments: Same argument.

1.3 Simulation of Brownian motion

Fix an integer $n \in \mathbb{N}$. Given times $0=t_{0}<t_{1}<\cdots<t_{n}$, generate Z_{1}, \ldots, Z_{n} i.i.d. $\mathcal{N}(0,1)$. Define

$$
\begin{aligned}
B_{0} & =0 \\
B_{t_{1}} & =\sqrt{t_{1}} Z_{1}, \\
B_{t_{2}} & =B_{t_{1}}+\sqrt{t_{2}-t_{1}} Z_{2}=\sqrt{t_{1}} Z_{1}+\sqrt{t_{2}-t_{1}} Z_{2}, \\
& \vdots \\
B_{t_{n}} & =B_{t_{n-1}}+\sqrt{t_{n}-t_{n-1}} Z_{n}=\sum_{i=1}^{n} \sqrt{t_{i}-t_{i-1}} Z_{i}
\end{aligned}
$$

Using this construction, $\left\{B_{t}\right\}$ is a Brownian motion at times $0=t_{0}<t_{1}<\cdots<t_{n}$. Indeed, it starts at 0 , and for all $l \leq m<n$,

$$
B_{t_{n}}-B_{t_{m}}=\sum_{i=1}^{n} \sqrt{t_{i}-t_{i-1}} Z_{i}-\sum_{i=1}^{m} \sqrt{t_{i}-t_{i-1}} Z_{i}=\sum_{i=m+1}^{n} \sqrt{t_{i}-t_{i-1}} Z_{i},
$$

which is Gaussian $\mathcal{N}\left(0, t_{n}-t_{m}\right)$, and is independent of $B_{t_{l}}$.

Wednesday, April 8

1.4 Properties of the Brownian motion

Definition 1.1. $\left\{X_{t}\right\}_{t \geq 0}$ is a Gaussian process if for all $n \in \mathbb{N}$, for all $t_{1}<\cdots<t_{n}$, the random vector $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ is multivariate Gaussian.

Theorem 1.1. $\left(X_{1}, \ldots, X_{n}\right)$ is multivariate Gaussian \Longleftrightarrow every linear combination of the X_{i} 's is Gaussian, that is, for all $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}, \lambda_{1} X_{1}+\cdots+\lambda_{n} X_{n}$ is Gaussian \Longleftrightarrow

$$
\exists \mu \in \mathbb{R}^{n}, \exists A \in \mathbb{R}^{n \times m},\left(X_{1}, \ldots, X_{n}\right)=\mu+A\left(Z_{1}, \ldots, Z_{n}\right),
$$

where Z_{1}, \ldots, Z_{n} are i.i.d. $\mathcal{N}(0,1)$.
Theorem 1.2. A Brownian motion is a Gaussian process.
Proof. Define

$$
Z_{j}=\frac{B_{t_{j}}-B_{t_{j-1}}}{\sqrt{t_{j}-t_{j-1}}}, \quad j=1, \ldots, n
$$

In particular, the Z_{j} 's are i.i.d. standard Gaussian $\mathcal{N}(0,1)$. Note that

$$
\left(\begin{array}{c}
B_{t_{1}} \\
\vdots \\
\vdots \\
B_{t_{n}}
\end{array}\right)=\left(\begin{array}{cccc}
\sqrt{t_{1}} & 0 & \cdots & 0 \\
\sqrt{t_{1}} & \sqrt{t_{2}-t_{1}} & \ddots & \vdots \\
\vdots & & \ddots & 0 \\
\sqrt{t_{1}} & \sqrt{t_{2}-t_{1}} & \cdots & \sqrt{t_{n}-t_{n-1}}
\end{array}\right)\left(\begin{array}{c}
Z_{1} \\
\vdots \\
\vdots \\
Z_{n}
\end{array}\right)
$$

Hence $\left\{B_{t}\right\}$ is a Gaussian process.
Definition 1.2. Let $\left\{\mathcal{F}_{t}\right\}$ be a filtration. The germ σ-algebra is

$$
\mathcal{F}_{s}^{+}=\cap_{t>s} \mathcal{F}_{t}
$$

Remark 1.3. 1. In general $\mathcal{F}_{s}^{+} \neq \mathcal{F}_{s}$. Indeed, let X be a non-constant random variable. Define $X_{t}=t X, t \geq 0$, and $\mathcal{F}_{t}=\sigma\left(X_{s}: 0 \leq s \leq t\right)$. Note that for all $t>0, \mathcal{F}_{t}=\sigma(X)$. However,

$$
\{\emptyset, \Omega\}=\mathcal{F}_{0} \neq \cap_{t>0} \mathcal{F}_{t}=\sigma(X)
$$

2. \mathcal{F}_{s}^{+}represents an infinitesimal additional information into the future.

Theorem 1.3 (Blumenthal 0-1 Law). Let $\left\{B_{t}\right\}$ be a Brownian motion. If $A \in \mathcal{F}_{0}^{+}$, then $\mathbb{P}(A)=0$ or 1.

Corollary 1.4. Let $\left\{B_{t}\right\}$ be a standard Brownian motion. Define

$$
T_{1}=\inf \left\{t>0: B_{t}>0\right\}, \quad T_{2}=\inf \left\{t>0: B_{t}=0\right\}, \quad T_{3}=\inf \left\{t>0: B_{t}<0\right\} .
$$

Then, $\mathbb{P}\left(T_{1}=0\right)=\mathbb{P}\left(T_{2}=0\right)=\mathbb{P}\left(T_{3}=0\right)=1$.
Proof. One has

$$
\left\{T_{1}=0\right\}=\cap_{n \geq 1} \cup_{\varepsilon \in\left(0, \frac{1}{n}\right)}\left\{B_{\varepsilon}>0\right\}
$$

Hence, $\left\{T_{1}=0\right\} \in \mathcal{F}_{0}^{+}$. Note that for all $t>0$,

$$
\left\{B_{t}>0\right\} \subset\left\{T_{1} \leq t\right\}
$$

hence

$$
\mathbb{P}\left(T_{1} \leq t\right) \geq \mathbb{P}\left(B_{t}>0\right)=\frac{1}{2}
$$

We deduce that

$$
\mathbb{P}\left(T_{1}=0\right)=\mathbb{P}\left(\cap_{n}\left\{T_{1} \leq \frac{1}{n}\right\}\right)=\lim _{n} \mathbb{P}\left(T_{1} \leq \frac{1}{n}\right) \geq \frac{1}{2}
$$

Since $\left\{T_{1}=0\right\} \in \mathcal{F}_{0}^{+}$, by Blumenthal 0-1 law, we conclude that $\mathbb{P}\left(T_{1}=0\right)=1$.
By symmetry, (that is, $\left\{-B_{t}\right\}$ is a Brownian motion), $\mathbb{P}\left(T_{3}=0\right)=1$.
With probability $1, t \mapsto B_{t}$ is continuous and satisfies $\mathbb{P}\left(T_{1}=0\right)=\mathbb{P}\left(T_{3}=0\right)=1$, hence by the intermediate value theorem, $\mathbb{P}\left(T_{2}=0\right)=1$.

Remark 1.5. In particular, Corollary 1.4 tells us that with proba 1 , for all $\varepsilon>0, B_{t}$ hits 0 infinitely many times in the interval $(0, \varepsilon)$.

Theorem 1.4 (Long term behavior of Brownian motion). Let $\left\{B_{t}\right\}$ be a Brownian motion, then

$$
\limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}=+\infty \text { and } \liminf _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}=-\infty
$$

Proof. Fix $M>0$.

$$
\mathbb{P}\left(\limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}>M\right)=\mathbb{P}\left(\limsup _{t \rightarrow 0^{+}} \sqrt{t} B_{\frac{1}{t}}>M\right)=\mathbb{P}\left(\cap_{t>0} \cup_{0 \leq s \leq t}\left\{\sqrt{s} B_{\frac{1}{s}}>M\right\}\right)
$$

Fact: $\left\{s B_{\frac{1}{s}}\right\}$ is a Brownian motion (Time inversion - see later).
Fact: $\left\{\lim \sup f_{t}>M\right\}=\lim \sup \left\{f_{t}>M\right\}$.
Note that $\sqrt{s} B_{\frac{1}{s}}=\frac{X_{s}}{\sqrt{s}}$, where $X_{s}=s B_{\frac{1}{s}}$ being a Brownian motion. Hence,

$$
\cap_{t>0} \cup_{0 \leq s \leq t}\left\{\sqrt{s} B_{\frac{1}{s}}>M\right\}=\cap_{t>0} \cup_{0 \leq s \leq t}\left\{X_{s}>M \sqrt{s}\right\} \in \mathcal{F}_{0}^{+}
$$

By Blumenthal 0-1 law,

$$
\mathbb{P}\left(\limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}>M\right)=0 \text { or } 1
$$

Now, note that

$$
\begin{gathered}
\mathbb{P}\left(\limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}>M\right) \geq \mathbb{P}\left(\limsup _{n \rightarrow+\infty} \frac{B_{n}}{\sqrt{n}}>M\right)=\mathbb{P}\left(\cap_{n \geq 1} \cup_{k \geq n}\left\{\frac{B_{k}}{\sqrt{k}}>M\right\}\right) \\
=\lim _{n \rightarrow+\infty} \mathbb{P}\left(\cup_{k \geq n}\left\{\frac{B_{k}}{\sqrt{k}}>M\right\}\right) \geq \lim _{n \rightarrow+\infty} \mathbb{P}\left(\left\{\frac{B_{n}}{\sqrt{n}}>M\right\}\right)=\lim _{n \rightarrow+\infty} \mathbb{P}\left(\left\{B_{1}>M\right\}\right)=\mathbb{P}\left(B_{1}>M\right)>0 .
\end{gathered}
$$

We conclude that

$$
\mathbb{P}\left(\limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}>M\right)=1
$$

It follows that

$$
\mathbb{P}\left(\limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}=+\infty\right)=\mathbb{P}\left(\cap_{M>0} \limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}>M\right)=\lim _{M \rightarrow+\infty} \mathbb{P}\left(\limsup _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}>M\right)=1
$$

By symmetry $\left(\left\{-B_{t}\right\}\right.$ is a Brownian motion), we deduce that

$$
\mathbb{P}\left(\liminf _{t \rightarrow+\infty} \frac{B_{t}}{\sqrt{t}}=-\infty\right)=1
$$

Remark 1.6. In other words, a Brownian motion is recurrent (each value $a \in \mathbb{R}$ is visited infinitely many often).

Friday, April 10

Definition 1.7. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Recall that a filtration $\left\{F_{t}\right\}_{t \geq 0}$ is a familly of sigma-algebras such that for all $s \leq t, \mathcal{F}_{s} \subset \mathcal{F}_{t} \subset \mathcal{F}$.

A process $\left\{M_{t}\right\}_{t \geq 0}$ is a $\left\{F_{t}\right\}$ continuous-time martingale if
i) For all $t \geq 0, M_{t}$ is \mathcal{F}_{t}-measurable.
ii) For all $t \geq 0, \mathbb{E}\left[\left|M_{t}\right|\right]<+\infty$.
iii) For all $s \leq t, \mathbb{E}\left[M_{t} \mid \mathcal{F}_{s}\right]=M_{s}$.

Proposition 1.8. A Brownian motion is a continuous-time martingale.
Proof.

$$
\mathbb{E}\left[B_{t} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[B_{t}-B_{s}+B_{s} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[B_{t}-B_{s} \mid \mathcal{F}_{s}\right]+B_{s}=B_{s}
$$

because $B_{t}-B_{s}$ is independent of \mathcal{F}_{s} and has expectation 0 .
Theorem 1.5 (Law of Large Numbers for Brownian motion). For a Brownian motion $\left\{B_{t}\right\}$, $\lim _{t \rightarrow+\infty} \frac{B_{t}}{t}=0$ almost surely.

Proof. Step 1: Note that $B_{n}=B_{1}-B_{0}+\cdots+B_{n}-B_{n-1}$, so we can write

$$
B_{n}=\sum_{k=1}^{n} X_{k}
$$

where $X_{k}=B_{k}-B_{k-1}$. Note that $\left\{X_{k}\right\}$ is a sequence of i.i.d. $\mathcal{N}(0,1)$ random variable. Hence, by the strong LLN, $\frac{B_{n}}{n} \rightarrow \mathbb{E}\left[B_{1}\right]=0$ almost surely.

Step 2: We will prove that

$$
\sum_{n \geq 0} \mathbb{P}\left(\sup _{t \in[n, n+1]}\left|B_{t}-B_{n}\right|>n^{\frac{2}{3}}\right)<+\infty
$$

Fix $n \geq 0$. Define, for $m \geq 0$ and $k \in\left\{0, \ldots, 2^{m}\right\}$,

$$
X_{k}=B_{n+\frac{k}{2^{m}}}-B_{n}
$$

Since $\left\{B_{n+t}-B_{n}\right\}_{t \geq 0}$ is a Brownian motion, it is a martingale. It follows that $\left\{X_{k}\right\}$ is a discrete time martingale. We can thus apply Doob's inequality and obtain

$$
\mathbb{P}\left(\sup _{0 \leq k \leq 2^{m}}\left|X_{k}\right|>n^{\frac{2}{3}}\right) \leq \frac{\mathbb{E}\left[\left|X_{2^{m}}\right|^{2}\right]}{n^{\frac{4}{3}}}=\frac{\mathbb{E}\left[\left|B_{n+1}-B_{n}\right|^{2}\right]}{n^{\frac{4}{3}}}=\frac{1}{n^{\frac{4}{3}}}
$$

Because $t \mapsto B_{t}$ is continuous, we have

$$
\left\{\sup _{t \in[n, n+1]}\left|B_{t}-B_{n}\right|>n^{\frac{2}{3}}\right\}=\cup_{m \geq 1}\left\{\sup _{0 \leq k \leq 2^{m}}\left|X_{k}\right|>n^{\frac{2}{3}}\right\}
$$

Hence,

$$
\mathbb{P}\left(\sup _{t \in[n, n+1]}\left|B_{t}-B_{n}\right|>n^{\frac{2}{3}}\right)=\lim _{m \rightarrow+\infty} \mathbb{P}\left(\sup _{0 \leq k \leq 2^{m}}\left|X_{k}\right|>n^{\frac{2}{3}}\right) \leq \frac{1}{n^{\frac{4}{3}}}
$$

Step 3: Define, for $n \geq 0$,

$$
A_{n}=\left\{\sup _{t \in[n, n+1]}\left|B_{t}-B_{n}\right|>n^{\frac{2}{3}}\right\} .
$$

Since $\sum \mathbb{P}\left(A_{n}\right)<+\infty$, by Borel-Cantelli we have $\mathbb{P}\left(\lim \sup A_{n}\right)=0$. This means that, for all ω in a set of probability 1 ,
$\exists n_{0} \geq 1, \forall n \geq n_{0}, \forall t \in[n, n+1],\left|\frac{B_{t}(\omega)}{t}\right| \leq \frac{n}{t}\left(\left|\frac{B_{t}(\omega)-B_{n}(\omega)}{n}\right|+\left|\frac{B_{n}(\omega)}{n}\right|\right) \leq \frac{1}{n^{\frac{1}{3}}}+\left|\frac{B_{n}(\omega)}{n}\right|$,
which goes to 0 as $n \rightarrow+\infty$.
Corollary 1.9 (Time Inversion). Let $\left\{B_{t}\right\}$ be a Brownian motion. The process $\left\{X_{t}\right\}_{t \geq 0}$ defined by $X_{t}=t B_{\frac{1}{t}}$ for $t>0$ and $X_{0}=0$, is a Brownian motion, for the natural filtration $\widetilde{\mathcal{F}}_{t}=\sigma\left(X_{s}\right.$: $s \leq t$).

Proof. Continuity at 0: From Theorem 1.5, we have

$$
\lim _{t \rightarrow 0^{+}} X_{t}=\lim _{t \rightarrow+\infty} X_{\frac{1}{t}}=\lim _{t \rightarrow+\infty} \frac{B_{t}}{t}=0=X_{0}
$$

Gaussian Increments: Note that, for $s \leq t$,

$$
X_{t}-X_{s}=(t-s) B_{\frac{1}{t}}-s\left(B_{\frac{1}{s}}-B_{\frac{1}{t}}\right)
$$

which is $\mathcal{N}(0, t-s)$.
Independent Increments: Since $\left(X_{t}-X_{s}, X_{s}\right)$ is a bivariate Gaussian, we can conclude independence because $\mathbb{E}\left[\left(X_{t}-X_{s}\right) X_{s}\right]=0$.

