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Lecture Notes

1 Brownian motion

1.1 Definitions

1.2 Construction of the Brownian motion
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Step 3: [The limit is a Brownian motion on [0, 1]]

e Continuity: By construction, for all w € Q, for all n € N, ¢t — Bfn)(w) is continuous
on [0,1]. Since, almost surely, { By} converges uniformly on [0,1] to B, we deduce that, almost
surely, ¢ — By(w) is continuous.

e Since for all n € N, B(()n) = 0, we deduce that By = 0.

e Stationary increments: Let t,s € D. Then, there exists m € N such that t,s € D,,.
Hence, Bt(m) — Bgm) ~ N(0,t — s). By construction, for all ¢t € D,,, for all n > m, Bgn) = Bgm).
Hence

B, —By= lim B™ —B™ = lim B™ — B™ = "™ _ p(m)

n—-+o0o n—+o0o s s

where the limit is understood as “almost sure convergence”. Since Bim) — Bgm) ~ N(0,t — s),
we have By — B; ~ N(0,t — s). Now, assume that ¢,s € [0,1]. By density of D in [0, 1], there
exist sequences {t;},{sx} € D such that ¢ = limyt; and s = limy s;. Since, almost surely,
t — By is continuous, we have, almost surely, B; = limy By, and B, = limy, B,,. Since, for all
k, By, — Bs, ~ N(0,t; — si), we can conclude that B; — By ~ N(0,t — s) (use, for example,
characteristic functions).

e Independent increments: Same argument.

1.3 Simulation of Brownian motion

Fix an integer n € N. Given times 0 = tg < t; < -+ < t,, generate Z1,...,Z, i.id. N(0,1).
Define

BO = 05
VtiZy,
By, = By +Vta—t1Zs =121 +\ts—t1 2o,

&
[

n
Bi, = B, +Vth —th-1Zn = Z ti —tic1Z;
i=1



Using this construction, {B;} is a Brownian motion at times 0 = tg < t; < --- < t,. Indeed, it
starts at 0, and for all [ < m < n,

n m n
By, — By, = Z Vit —tic1Z; — Z Viti—ti1Z; = Z Vit —tic17Z;,
i=1 i=1 t=m+1

which is Gaussian N (0, ¢, — ¢,,,), and is independent of By,.
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1.4 Properties of the Brownian motion

Definition 1.1. {X;}+>0 is a Gaussian process if for all n € N, for all ¢; < --- < t,,, the random
vector (Xy,, ..., Xy, ) is multivariate Gaussian.

Theorem 1.1. (Xi,...,X,) is multivariate Gaussian <= every linear combination of the X;’s
is Gaussian, that is, for all Aq,..., A, € R, A\ X1 + -+ - + A\ X, is Gaussian <>

EIM S RnaaA € Rnxm’(Xlw"aXn) :M_FA(Zl?aZn)?
where Zy,. .., Z, are i.i.d. N(0,1).
Theorem 1.2. A Brownian motion is a Gaussian process.

Proof. Define
_ By — By,

NI T

In particular, the Z;’s are i.i.d. standard Gaussian N (0,1). Note that

Zj

By, v 0 o 0 Z
_ | vVt V-t .
: : 0 :
Btn \/E \Y% 752 - tl e vV tn - tnfl Zn
Hence {B;} is a Gaussian process. O

Definition 1.2. Let {F;} be a filtration. The germ o-algebra is

fs+ = Ni>sFt

Remark 1.3. 1. In general F # F;. Indeed, let X be a non-constant random variable.
Define X; = tX,t >0, and F; = 0(Xs : 0 < s <t). Note that for all ¢ > 0, F; = o(X).
However,

{@,Q} = Fo 75 NesoFt = (T(X)

2. F; represents an infinitesimal additional information into the future.

Theorem 1.3 (Blumenthal 0-1 Law). Let {B;} be a Brownian motion. If A € F, then P(A) =0
or 1.



Corollary 1.4. Let {B;} be a standard Brownian motion. Define
= inf{t > 0: By > 0}, Ty = inf{t > 0: By = 0}, T3 =inf{t > 0: By < 0}.
Then, ]P(Tl = 0) = P(TQ = 0) = P(Tg = 0) =1.

Proof. One has

{Tl :O}:ﬂnzlu %) {Ba >0}.

e€(0,
Hence, {T} = 0} € F,". Note that for all ¢ > 0,
{B; >0} C {11 < t},

hence
P(T) < t) > P(B, > 0) = =

We deduce that

N—
IV
N

P(Tl = 0) = P(ﬂn{Tl < %}) = 1171111 P(Tl <

S|

Since {T} = 0} € F;", by Blumenthal 0-1 law, we conclude that P(T} = 0) = 1.

By symmetry, (that is, {—B;} is a Brownian motion), P(75 = 0) = 1.

With probability 1, ¢ — By is continuous and satisfies P(T7 = 0) = P(T5 = 0) = 1, hence by
the intermediate value theorem, P(7> = 0) = 1. O

Remark 1.5. In particular, Corollary 1.4 tells us that with proba 1, for all ¢ > 0, B; hits 0
infinitely many times in the interval (0, ).

Theorem 1.4 (Long term behavior of Brownian motion). Let {B;} be a Brownian motion, then

B
lim sup — L = 400 and hmlnf— —0Q.

t—+o00 \/i +oo \[
Proof. Fix M > 0.
B
P(lim sup — > M) = P(lim sup v/t By > M) = P(Nz0 Up<s<t {VsB1L > M})
t—too VE t—0+ o s
Fact: {sB1} is a Brownian motion (Time inversion — see later).
Fact: {lim~sup fe > M} = limsup{ f; > M}.

Note that /s B1 = where X = sB1 being a Brownian motion. Hence,

\/77
Ne>0 Up<s<t {\/EB% > M} = N4> Up<s<t {Xs > My/s} € Ff.

By Blumenthal 0-1 law,
B
P(lim sup —

>M)=0or 1.
t—)—i—oo\/i )

Now, note that

P(limsup — > M) > P(limsup — > M) = P(Np>1 Ug>p {—= > M
(t_>+oop\/i ) > (n_>+£\/ﬁ ) =P(Mn>1 Up> {\/E 1y

= RETOOP(Uk>n{f > M}) > nETooP({T >M}) = lim P({By>M})=F(Bi > M) >0.

We conclude that

By
P(limsup — > M) = 1.
(tHJroop\/i )
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It follows that

. By . B, . . B,
P(limsup — = +o0) = P(N limsup — > M) = lim Plimsup— > M) =1.
( t—>+oop \/Z ) ( M=0 t—>+oop \/i ) M—+o00 ( t—>+oop \/Z )

By symmetry ({—B;} is a Brownian motion), we deduce that

B
P(lim inf —- = —o0) = 1.
t—+o0 ﬁ

O

Remark 1.6. In other words, a Brownian motion is recurrent (each value a € R is visited
infinitely many often).
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Definition 1.7. Let (2, F,P) be a probability space. Recall that a filtration {F}}:>0 is a familly
of sigma-algebras such that for all s <t, Fs C F; C F.
A process {M;}+>0 is a {F}} continuous-time martingale if

i) For all t > 0, M, is Fy-measurable.
ii) For all ¢t > 0, E[|M;|] < +o0.
iii) For all s <t, E[M;|Fs] = Ms.

Proposition 1.8. A Brownian motion is a continuous-time martingale.

Proof.
E[B,|Fs] = E[B, — Bs + Bs|Fs] = E[B, — Bs|.Fs] + Bs = Bs,

because B; — B, is independent of F; and has expectation 0. ]

Theorem 1.5 (Law of Large Numbers for Brownian motion). For a Brownian motion {B},
limy 400 % = 0 almost surely.

Proof. Step 1: Note that B, = By — By +---+ B,, — B_1, S0 we can write

n
B, = ZXka
k=1

where X = By — B_1. Note that {Xj} is a sequence of i.i.d. N(0,1) random variable. Hence,
by the strong LLN, % — E[B1] = 0 almost surely.
Step 2: We will prove that

P( sup |B;— By|> n%) < +o0.
n>0 te[n,n+1]

Fix n > 0. Define, for m > 0 and k € {0,...,2™},
X, =B,

i~ B



Since {By++ — Bp }+>0 is a Brownian motion, it is a martingale. It follows that {X}} is a discrete
time martingale. We can thus apply Doob’s inequality and obtain

E[|Xom|*] _ E[|Bpy1—Ba] _ 1
: -

P( sup |Xk\>n%)§ = - -
0<k<2m n3 ns3 n3

Because t — B; is continuous, we have

{ sup |B;— By| >n§}:Um21{ sup | Xk >n%}
te[n,n+1] 0<k<2m™
Hence,

P( sup |B;— Bu|>ni)= lim P( sup |Xi|>n3)<
te[n,n+1] m—+00 g <Lom

Step 3: Define, for n > 0,

S
cole| T

Ap,={ sup |B:— By|> n%}
te[n,n+1]

Since Y P(A,) < 400, by Borel-Cantelli we have P(limsup A,,) = 0. This means that, for all w
in a set of probability 1,

dng > 1,Yn > ng, vVt € [n,n + 1],

Bn<w>'> S ’an)

1
n3

which goes to 0 as n — +00. O

Corollary 1.9 (Time Inversion). Let {B;} be a Brownian motion. The process { X;}:>0 defined
by Xy =tBi1 for t > 0 and Xy = 0, is a Brownian motion, for the natural filtration F; = o(Xj :
t

s <t).
Proof. Continuity at 0: From Theorem 1.5, we have

B
lim X; = lim X: = lim =X =0=X,.
t

t—0+ t——+o00 t—+oo t

Gaussian Increments: Note that, for s <,

X;— X, =(t—s)B1 — s(B
t

W =
|

&

~—

which is MV (0,¢ — s).
Independent Increments: Since (X; — X, X;) is a bivariate Gaussian, we can conclude
independence because E[(X; — X;)X;] = 0. O



