
MAA 4102/5104 – Introduction to Advanced Calculus I

Notes on Proof Techniques

• The study of sets is fundamental to any area of mathematics. By a set we mean
a collection of well-defined objects called elements, and by well-defined we mean that
there is a definite way of determining whether or not a given element belongs to the set.

To write a set it is customary to use brackets {}, with elements of the set listed or
described. Lowercase letters are generally used to represent the elements, whereas capital
letters denote sets themselves.

If an element x belongs to the set A, then we write x ∈ A. If x is not an element of
the set A, then we write x /∈ A. For example, if A = {1, 2, 3}, then 1 ∈ A, but 4 /∈ A.

There are many ways of describing any one particular set. For example, D = {2, 3}
can also be written as

D = {x : x2 − 5x+ 6 = 0}, or
D = {x : x is a prime number less than 4}.

The first set read as “x such that x2 − 5x+ 6 = 0”, and the second as “x such that x is a
prime number less than 4”.

Sets of numbers encountered in this course are

N = set of all natural numbers = {0, 1, 2, . . . },
Z = set of all integers = {. . . ,−2,−1, 0, 1, 2, . . . },
Q = set of all rational numbers = {x : x =

p

q
, p ∈ Z, q ∈ Z \ {0}},

R = set of all real numbers.

One may wonder whether all real numbers are rationals. We will prove below that
√
2

is not rational. Real numbers that are not rationals are called irrationals.

• In mathematics we rarely say that some property is true most of the time. An
expression is defined, and properties that will require proof are proposed. Those properties
are either right or wrong. If we can demonstrate one situation, called a counterexample,
in which the property in question is not true, then that property is false. Being unable
to find a counterexample leads us to believe that a statement is true, but it remains a
conjecture until we prove or disprove it. By axiom (or postulate) we mean a statement
that is accepted without proof from which other propositions can be derived.

Results in mathematics are constructed from two parts. One part is made up of
assumptions called hypotheses (plural for “hypothesis”). The second part is what must be
proven. Of course, all previously proven results can be used to prove new problem. Results
that are proven are usually called theorems or propositions. If some preliminary steps
exist in preparation for the main statement, we call those preliminary results lemmas.
Thus, we can say that every result can be made up of a sequence of lemmas or steps
that require verification. Often, one can draw a few conclusions or consequences, called
corollaries, from the main theorem. A corollary, like theorems and lemmas, requires a
proof.

Suppose that P and Q represents statements, and we wish to prove that P implies
Q (that is, assume P and prove Q). We write this as P =⇒ Q. Several ways exist to
accomplish this task:
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1. Mathematical induction can be attempted if the statement involves natural numbers.

2. A direct proof would involve writing the hypotheses in different ways and linking the
ideas together. To complete these tasks successfully, knowledge of the definitions,
the meaning of the given statement, and having an intuitive idea of the task are all
necessary. So intuition and knowledge of material play a major part in success with
proof writing.

3. A contrapositive proof, denoted by ¬Q =⇒ ¬P , involves proving that the negation
of Q, that is, ¬Q (not Q), implies the negation of P , that is, ¬P (not P ).

4. A proof by contraction involves assuming that P is true and Q is not. Since we
assume that the negation of Q is true and want to prove that Q is true, a contradic-
tion, that is, a statement that we know is false is expected. When a contradiction is
reached, the proof of P =⇒ Q is complete.

Writing proofs takes practice!

Let us illustrate the proof techniques with the following statements and their proofs:

Theorem 1. Let n ≥ 1. Then,
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

Proof. We use a proof by induction. For n ≥ 1, denote by P (n) the following statement

P (n) :
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

Let us show that P (1) is true. We have
∑1

k=1 k
2 = 12 = 1, and 1(1+1)(2·1+1)

6
= 6

6
= 1.

Hence, P (1) :
∑1

k=1 k
2 = 1(1+1)(2·1+1)

6
is true.

Now, let n ≥ 1, and assume that P (n) is true. We need to show that P (n+1) is true,
that is

P (n+ 1) :
n+1∑
k=1

k2 =
(n+ 1)(n+ 2)(2n+ 3)

6
.

By induction hypothesis, we know that
∑n

k=1 k
2 = n(n+1)(2n+1)

6
, it follows that

n+1∑
k=1

k2 =
n∑

k=1

k2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
n(n+ 1)(2n+ 1) + 6(n+ 1)2

6

=
(n+ 1)[n(2n+ 1) + 6(n+ 1)]

6

=
(n+ 1)[2n2 + 7n+ 6]

6

=
(n+ 1)(n+ 2)(2n+ 3)

6
.

Hence, P (n+ 1) is true. We conclude by induction that P (n) is true for all n ≥ 1.
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Theorem 2. The sum of two odd integers is even.

Proof. We use a direct proof. The statement can equivalently be written as: if m,n ∈ Z
are odd, then m+ n is even. Let m,n ∈ Z be odd integers. Since they are odd, they can
be written as m = 2k + 1 and n = 2k′ + 1 for some integers k, k′ ∈ Z. Hence,

m+ n = 2k + 1 + 2k′ + 1 = 2(k + k′) + 2 = 2(k + k′ + 1) = 2k′′,

where k′′ = (k + k′ + 1) ∈ Z. Thus, m + n is even, as it can be written as m + n = 2k′′,
with k′′ ∈ Z.

Theorem 3. Let m ∈ Z. If m2 is even, then m is even.

Proof. We use a proof by contrapositive. Writing P : m2 is even, and Q: m is even,
Theorem 3 can be stated as

∀m ∈ Z, P =⇒ Q.

To prove the theorem by contrapositive, we prove that ∀m ∈ Z, ¬Q =⇒ ¬P . We have

¬Q : m is odd,

¬P : m2 is odd.

Ifm is odd, thenm = 2k+1, for some k ∈ Z. Thus, m2 = (2k+1)2 = 4k2+4k+1 = 2k′+1,
where k′ = 2k2 + 2k ∈ Z. Hence, m2 is odd. We have shown ¬Q =⇒ ¬P , which is
equivalent to P =⇒ Q, and the theorem is thus proven.

Theorem 4.
√
2 is irrational.

Proof. We use a proof by contradiction. Assume that
√
2 is rational, then it can be written

as the quotient of two integers. After simplifying the fraction, we can write
√
2 = m

n
, where

m,n ∈ Z, n 6= 0, and m and n have no common factors.
Taking the square leads to

2 =
m2

n2
.

Hence, m2 = 2n2, and we deduce that m2 is even. Since m2 is even, we know from
Theorem 3 above that m is even. It follows that m = 2k, for some k ∈ Z. Thus,
2n2 = m2 = (2k)2 = 4k2, which leads to n2 = 2k2. Thus n2 is even. Again by Theorem 3
above, this implies that n is even. We conclude that m and n are even, and thus have 2
has a common factor, which is a contradiction. Since the statement “

√
2 is rational” leads

to a contradiction, we conclude that
√
2 is irrational.

Examples are used to illustrate given statements, but do not usually prove anything.
As stated previously, if a statement is false, a counterexample is enough. To prove a
statement it is often easier to prove an equivalent statement. Often, the negation of a
statement is needed. Some examples of a statement P and its negation ¬P are given
below:

1. P : ∀n ∈ N, n ≥ n2 − 1

¬P : ∃n ∈ N, such that n < n2 − 1

2. P : ∃x > 0, such that 1 ≤ |x| < 5

¬P : ∀x > 0, |x| < 1 or |x| ≥ 5
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3. P : ∀ε > 0, ∃δ > 0, ∀x ∈ D, |x− a| ≤ δ =⇒ |f(x)− f(a)| ≤ ε

¬P : ∃ε > 0, ∀δ > 0, ∃x ∈ D, |x− a| ≤ δ and |f(x)− f(a)| > ε

4. P : ∀m ∈ Z, A =⇒ B

¬P : ∃m ∈ Z, A and ¬B
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