Homework #1 – Algebra of sets, Mathematical induction, Proof techniques

Exercise 1. Suppose that $A = \{1, 3, 5\}, B = \{1, 2, 4\}$, and $C = \{1, 8\}$. Find the following:

- 1. $(A \cup B) \cap C$.
- 2. $A \cup (B \cap C)$.
- 3. $(A \setminus C) \cup B$.
- 4. $(A \cap B) \times C$.
- 5. $C \times C$.
- 6. $\emptyset \cap A$.

Exercise 2. If A, B, C are sets, prove that

- 1. $A \subset B$ if and only if $A \cap B = A$.
- 2. $A \cap B = A \setminus (A \setminus B)$.
- 3. $A \cap B$ and $A \setminus B$ are disjoint, and $A = (A \cap B) \cup (A \setminus B)$.

Exercise 3. If A = [1,3), B = (1,4), C = (2,5], D = [3,5], shade the region in \mathbb{R}^2 that represents

- 1. $(A \times B) \cap (C \times D)$.
- 2. $(A \cap C) \times (B \cap D)$.
- 3. $(A \times B) \cup (C \times D)$.
- 4. $(A \cup C) \times (B \cup D)$.

Exercise 4.

- 1. Prove that the sum of two odd integers is even.
- 2. Prove that the product of two odd integers is odd.

Exercise 5. Use mathematical induction to prove the given statements:

1.
$$n^2 + n$$
 is divisible by 2, for all $n \in \mathbb{N}$.
2. $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.
3. $\sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2$.

- 4. If $x \in (0, 1)$ is a fixed real number, then $0 < x^n < 1$ for all $n \in \mathbb{N}$.
- 5. $2^n < n!$ for all natural numbers $n \ge 4$.
- 6. $\cos(n\pi) = (-1)^n$ for all $n \in \mathbb{N}$.
- 7. $n^5 n$ is divisible by 5 for every $n \in \mathbb{N}$.
- 8. $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$ for all $n \in \mathbb{N}$.

Exercise 6. If x is some fixed real number, for each $n \in \mathbb{N}$, find the sum $1 - x - x^2 - \cdots - x^n$.

Exercise 7.

- 1. Prove the Pascal identity: $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$, for all $1 \le k \le n$.
- 2. Prove that $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$ for all $n \in \mathbb{N}$.

Exercise 8. Find the sum $\sum_{k=1}^{50} 2^k$.

Exercise 9. Negate the following statements:

- 1. There exists p > 0 such that for every x we have f(x + p) = f(x).
- 2. For all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x, t \in D$, if $|x t| < \delta$ then $|f(x) f(t)| < \varepsilon$.
- 3. For all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $x \in D$, if $0 < |x-a| < \delta$ then $|f(x) A| < \varepsilon$.

Exercise 10. Prove that if q^2 is divisible by 3, then so is q.

Exercise 11. Prove that if $x \neq 0$ is rational and y is irrational, then the product xy is irrational.

Exercise 12. Prove that the given numbers are irrational:

- 1. $\sqrt{3}$
- 2. $\sqrt{6}$
- $3. \ 2^{1/3}$
- 4. $\sqrt{2} + \sqrt{3}$

Exercise 13. Consider the statement P: the sum of two irrational numbers is irrational.

- 1. Give an example of a case in which P is true.
- 2. Prove or disprove P.