Homework #2 – Ordered field and a real number system -Some properties of real numbers

Exercise 1. Suppose that $(F, +, \cdot)$ is a field and $a, b, c \in F$. Prove that

- 1. (-a)(-b) = ab.
- 2. If a + b = c + b then a = c.
- 3. -a b = -(a + b).
- 4. if $a \neq 0$, then $a^{-1} \neq 0$ and $(a^{-1})^{-1} = a$.

Exercise 2. Suppose that $(F, +, \cdot, <)$ is an ordered field. Prove that

- 1. If $a \in F$ and a > 0, then -a < 0.
- 2. 0 < 1.
- 3. If $a, b \in F$ and ab > 0, then a and b are of the same sign.
- 4. If $a, b \in F$ and ab < 0, then a and b are of opposite sign.

Exercise 3. Prove that if $r \ge 1$ is a real number, then $r^2 \ge r$ and $\frac{1}{r^2} \le \frac{1}{r}$.

Exercise 4. If $S \neq \emptyset$ is a subset of real numbers that is bounded below, prove that $\inf(S)$ exists.

Exercise 5. Prove that if a set A has a supremum, then $\sup(A)$ is unique.

Exercise 6. If possible, give an example of a nonempty bounded subset of \mathbb{Q} that

- 1. has a least upper bound and a maximum in \mathbb{Q} .
- 2. has a least upper bound but no maximum in \mathbb{Q} .
- 3. does not have a least upper bound in \mathbb{Q} .

Exercise 7. Prove that \mathbb{Q} is not a complete ordered field.

Exercise 8. Prove that $2^{1/3} + \sqrt{3}$ is an algebraic number.

Exercise 9. If x is rational, then prove that x is algebraic. Is the converse true? Explain.

Exercise 10.

- 1. Can you find two rational numbers a and b such that a^b is irrational?
- 2. Can you find two irrational numbers α and β such that α^{β} is rational?

Exercise 11. If $a, b \in \mathbb{R}$, and $a < b + \varepsilon$ for any $\varepsilon > 0$, prove that $a \le b$.

Exercise 12. Suppose that $a, b \in \mathbb{R}$. Prove that

- 1. If b > 0, then |a| < b if and only if -b < a < b.
- 2. If b > 0, then |a| > b if and only if a < -b or a > b.
- 3. $|a| = \sqrt{a^2}$.
- 4. |ab| = |a||b|.
- 5. $\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$, provided that $b \neq 0$.

Exercise 13.

- 1. If $a, b, c \in \mathbb{R}$, prove that $|a b| \le |a c| + |c b|$.
- 2. If $a, b, c \in \mathbb{R}$ such that a < b < c, prove that |a b| + |b c| = |a c|.

Exercise 14. If $|f(x)| \le M$ for all $x \in [a, b]$, prove that $-2M \le f(x_1) - f(x_2) \le 2M$ for any $x_1, x_2 \in [a, b]$.

Exercise 15. If $a_1, \ldots, a_n \in \mathbb{R}$, with $n \in \mathbb{N}$, prove that $|a_1 + \cdots + a_n| \le |a_1| + \cdots + |a_n|$.