Homework \#2 - Ordered field and a real number system Some properties of real numbers

Exercise 1. Suppose that $(F,+, \cdot)$ is a field and $a, b, c \in F$. Prove that

1. $(-a)(-b)=a b$.
2. If $a+b=c+b$ then $a=c$.
3. $-a-b=-(a+b)$.
4. if $a \neq 0$, then $a^{-1} \neq 0$ and $\left(a^{-1}\right)^{-1}=a$.

Exercise 2. Suppose that $(F,+, \cdot,<)$ is an ordered field. Prove that

1. If $a \in F$ and $a>0$, then $-a<0$.
2. $0<1$.
3. If $a, b \in F$ and $a b>0$, then a and b are of the same sign.
4. If $a, b \in F$ and $a b<0$, then a and b are of opposite sign.

Exercise 3. Prove that if $r \geq 1$ is a real number, then $r^{2} \geq r$ and $\frac{1}{r^{2}} \leq \frac{1}{r}$.
Exercise 4. If $S \neq \emptyset$ is a subset of real numbers that is bounded below, prove that $\inf (S)$ exists.

Exercise 5. Prove that if a set A has a $\operatorname{supremum}$, then $\sup (A)$ is unique.
Exercise 6. If possible, give an example of a nonempty bounded subset of \mathbb{Q} that

1. has a least upper bound and a maximum in \mathbb{Q}.
2. has a least upper bound but no maximum in \mathbb{Q}.
3. does not have a least upper bound in \mathbb{Q}.

Exercise 7. Prove that \mathbb{Q} is not a complete ordered field.
Exercise 8. Prove that $2^{1 / 3}+\sqrt{3}$ is an algebraic number.
Exercise 9. If x is rational, then prove that x is algebraic. Is the converse true? Explain.

Exercise 10.

1. Can you find two rational numbers a and b such that a^{b} is irrational?
2. Can you find two irrational numbers α and β such that α^{β} is rational?

Exercise 11. If $a, b \in \mathbb{R}$, and $a<b+\varepsilon$ for any $\varepsilon>0$, prove that $a \leq b$.
Exercise 12. Suppose that $a, b \in \mathbb{R}$. Prove that

1. If $b>0$, then $|a|<b$ if and only if $-b<a<b$.
2. If $b>0$, then $|a|>b$ if and only if $a<-b$ or $a>b$.
3. $|a|=\sqrt{a^{2}}$.
4. $|a b|=|a||b|$.
5. $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$, provided that $b \neq 0$.

Exercise 13.

1. If $a, b, c \in \mathbb{R}$, prove that $|a-b| \leq|a-c|+|c-b|$.
2. If $a, b, c \in \mathbb{R}$ such that $a<b<c$, prove that $|a-b|+|b-c|=|a-c|$.

Exercise 14. If $|f(x)| \leq M$ for all $x \in[a, b]$, prove that $-2 M \leq f\left(x_{1}\right)-f\left(x_{2}\right) \leq 2 M$ for any $x_{1}, x_{2} \in[a, b]$.

Exercise 15. If $a_{1}, \ldots, a_{n} \in \mathbb{R}$, with $n \in \mathbb{N}$, prove that $\left|a_{1}+\cdots+a_{n}\right| \leq\left|a_{1}\right|+\cdots+\left|a_{n}\right|$.

