Homework \#3 - Convergence of sequences, Finite limits, monotone sequences

Exercise 1. Determine whether the given sequence $\left\{a_{n}\right\}$ converges or diverges. In each case, prove your conclusion.

1. $a_{n}=\frac{1}{2 n-3}$
2. $a_{n}=\frac{n}{n^{2}-2}$
3. $a_{n}=(-1)^{n}$
4. $a_{n}=\sqrt{n+1}-\sqrt{n}$
5.

$$
a_{n}= \begin{cases}1 & \text { if } n \text { is odd } \\ \frac{1}{n} & \text { if } n \text { is even }\end{cases}
$$

Exercise 2.

1. Consider the sequence $\left\{a_{n}\right\}$, where $a_{n}=\frac{1+2+3+\cdots+n}{n^{2}}$. Show that $\left\{a_{n}\right\}$ converges to $\frac{1}{2}$.
2. Consider the sequence $\left\{a_{n}\right\}$, where $a_{n}=\frac{1}{n^{3}}+\frac{2^{2}}{n^{3}}+\frac{3^{2}}{n^{3}}+\cdots+\frac{n^{2}}{n^{3}}$. What value does this sequence converge to? Explain.

Exercise 3. Prove that if $\left\{a_{n}\right\}$ converges to A, then $\left\{\left|a_{n}\right|\right\}$ converges to $|A|$. Is the converse true? Explain.

Exercise 4. If $\left\{a_{n}\right\}$ is a sequence of real numbers, and if $\lim _{n \rightarrow \infty} a_{2 n}=A$ and $\lim _{n \rightarrow \infty} a_{2 n+1}=$ A, prove that $\left\{a_{n}\right\}$ converges to A.

Exercise 5. Suppose that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two sequences with $\lim _{n \rightarrow \infty} b_{n}=0$. If there exist constants A and k and a positive integer n^{*} such that $\left|a_{n}-A\right| \leq k\left|b_{n}\right|$ for all $n \geq n^{*}$, prove that $\left\{a_{n}\right\}$ converges to A.

Exercise 6. Give an example of a sequence that is bounded but not convergent.
Exercise 7. If $\left\{a_{n}\right\}$ converges to A and there exists n_{1} such that $a_{n}>0$ for all $n \geq n_{1}$, prove that $A \geq 0$.

Exercise 8. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ converge to A and B respectively, and if there exists n_{1} such that $a_{n}<b_{n}$ for all $n \geq n_{1}$, does it necessarily imply that $A<B$? Explain.

Exercise 9. Prove that the limit of a convergent sequence is unique.
Exercise 10. If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequences such that $\left\{a_{n}\right\}$ converges to 0 , is it true that the sequence $\left\{a_{n} b_{n}\right\}$ converges to 0 ? Explain.

Exercise 11. Give an example of a sequence that diverges to $+\infty$ but is not eventually increasing.

Exercise 12. Give an example of a convergent sequence that does not attain a maximum value.
Exercise 13. Prove that the following sequences are monotone, or eventually monotone.

1. $a_{n}=\frac{n}{2^{n}}$
2. $a_{n}=\frac{n^{2}}{2^{n}}$
3. $a_{n}=\frac{3^{n}}{1+3^{2 n}}$
4. $a_{n}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n} n!}$

Exercise 14. Determine whether the following sequences are convergent by deciding on monotonicity and boundedness.

1. $a_{n}=\frac{n+1}{2 n+1}$
2. $a_{n}=\frac{n^{2}}{2^{n}}$
3. $a_{n}=\sum_{k=1}^{n} \frac{1}{2^{k}}$
4. $a_{n}=\frac{(-1)^{n+1}}{n}$
5. $a_{n}=\frac{2^{n}}{n!}$

Exercise 15. Consider the sequence $\left\{a_{n}\right\}$, where

$$
a_{n}=\sum_{k=1}^{n} \frac{1}{n^{2}}=1+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}
$$

Prove that $\left\{a_{n}\right\}$ converges to a limit A, where $1 \leq A \leq 2$. Is it true that $\frac{5}{4} \leq A \leq 2$? Explain.
Exercise 16. Let $A>0$. Consider the sequence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ defined recursively by

$$
a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{A}{a_{n}}\right), \quad a_{0}>0 \text { arbitrary } .
$$

Determine the limit of a_{n}.

