Exercise 1. Let \(\{X_n\} \) be a sequence of i.i.d. random variables such that \(\mathbb{E}[X_1^2] < +\infty \). Take \(\mathcal{F}_n = \sigma\{X_1, \ldots, X_n\} \), and denote \(S_n = \sum_{k=1}^n X_k, S_0 = 0 \).

1. Define \(M_n = (S_n - n\mathbb{E}[X_1])^2 - n\text{Var}(X_1), n \geq 1 \). Prove that \(\{M_n\} \) is an \(\mathcal{F}_n \)-martingale.

2. Assume that \(\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = \frac{1}{2} \). For \(u \in \mathbb{R} \), define \(M_n^u = \cosh(u) - ne^{uS_n} \). Prove that \(\{M_n^u\} \) is an \(\mathcal{F}_n \)-martingale.

Exercise 2. Let \(\{X_n\} \) be an \(\mathcal{F}_n \)-sub-martingale (resp. super-martingale) such that all \(X_n \) have same distribution.

1. Prove that \(\{X_n\} \) is an \(\mathcal{F}_n \)-martingale.

2. Deduce that for all \(a \in \mathbb{R} \), \(X_n \wedge a \) and \(X_n \vee a \) are martingales.

Exercise 3. (Wald’s identity)

Let \(\{X_n\} \) be a sequence of i.i.d. random variables in \(L^1 \). Take \(\mathcal{F}_n = \sigma\{X_1, \ldots, X_n\}, n \geq 1 \), and denote \(S_n = \sum_{k=1}^n X_k, S_0 = 0 \).

1. Let \(\tau \) be an \(\mathcal{F}_n \)-integrable stopping time. Prove that \(S_{\tau} \) is integrable, and
 \[\mathbb{E}[S_{\tau}] = \mathbb{E}[X_1|\mathbb{E}[\tau]]. \]

2. Prove that if \(\mathbb{E}[X_1] \neq 0 \) and if \(\tau \) is an \(\mathcal{F}_n \)-stopping time such that \(\sup_n |\mathbb{E}[S_{n\wedge \tau}]| < +\infty \), then \(\tau \) is integrable.

Exercise 4.

Let \(\{X_n\} \) be a sequence of i.i.d. random variables such that \(\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = \frac{1}{2} \). Denote \(S_n = \sum_{k=1}^n X_k, S_0 = 0 \), and \(T = \inf\{n \geq 0 : S_n = 1\} \). Prove that \(\mathbb{E}[T] = +\infty \).

Hint: One may use the Wald identity.

Exercise 5. (Doob’s inequality)

Let \(\{X_n\} \) be a non-negative \(\{\mathcal{F}_n\} \)-martingale. Denote \(\tau = \inf\{n \geq 0 : X_n \geq c\} \), where \(c > 0 \).

1. Prove that \(\tau \) is an \(\{\mathcal{F}_n\} \)-stopping time.

2. Prove that for all \(j \leq n \), \(\mathbb{E}[X_{j\tau=j}] = \mathbb{E}[X_{n\tau=j}] \).

3. Deduce that \(\mathbb{E}[X_{\tau\tau\leq n}] = \mathbb{E}[X_{n\tau\leq n}], \) and that \(c\mathbb{P}(\tau \leq n) \leq \mathbb{E}[X_{n\tau\leq n}] \).

4. Prove that \(\mathbb{P}(\sup_{k\leq n} X_k \geq c) \leq \frac{\mathbb{E}|X_n|}{c} \).
Exercise 6.

Let \(\{X_n\}_{n \geq 0} \) be a sequence of random variables in \(L^1 \), adapted to a filtration \(\{F_n\}_{n \geq 0} \). Prove that \(\{X_n\}_{n \geq 0} \) is an \(\{F_n\}_{n \geq 0} \)-martingale if and only if for all \(\{F_n\}_{n \geq 0} \)-stopping time \(T \) bounded, one has \(E[X_T] = E[X_0] \).

Hint: One may consider for all \(n \in \mathbb{N} \) and \(B \in F_n \), \(T = n1_B + (n+1)1_B \).

Exercise 7. (The gambler)

In a favorable game, given \(p \in \left(\frac{1}{2}, 1 \right) \) and a sequence of i.i.d. random variables \(\{\varepsilon_n\} \) such that \(P(\varepsilon_n = 1) = p \), \(P(\varepsilon_n = -1) = 1 - p \), where \(\varepsilon_n = 1 \) if the gambler wins at the \(n \)-th game and \(\varepsilon_n = -1 \) if he loses. The initial wealth of the gambler is \(x_0 > 0 \). Let \(X_n \) be his wealth at time \(n \), and let \(C_n \) be the amount of money he bets at the \((n+1) \)-th game. The gambler cannot ask for a loan.

The model is as follows: for each \(n \in \mathbb{N} \), the gambler chooses \(C_n \) measurable with respect to \(F_n = \sigma(\varepsilon_1, \ldots, \varepsilon_n) \), with \(0 \leq C_n \leq X_n \) and \(X_{n+1} = X_n + C_n\varepsilon_{n+1} \).

1. (A risky strategy.) Here, we take \(C_n = X_n \) for all \(n \in \mathbb{N} \).
 (a) Prove that this strategy maximize \(E[X_n] \) for all \(n \).
 (b) Define \(T = \inf\{n \in \mathbb{N} : X_n = 0\} \). Determine the distribution of \(T \), and deduce that \(T < +\infty \) a.s.
 (c) Prove that \(X_n = 0 \) for all \(n \geq T \), and that \(\{X_n\} \) converges to \(0 \) a.s.

2. (A cautious strategy.) Here, we take \(C_n = \gamma_nX_n \), with \(0 < \gamma_n < 1 \).
 (a) For \(n \geq 1 \), define \(M_n = \log(X_n) - \sum_{k=0}^{n-1} (p\log(1 + \gamma_k) + (1 - p)\log(1 - \gamma_k)) \) and \(M_0 = \log(x_0) \). Prove that \(\{M_n\} \) is an \(\{F_n\} \)-martingale.
 (b) Prove that the choice \(\gamma_n = 2p - 1 \), for all \(n \), maximize \(E[\log(X_n)] \).
 (c) For this strategy, that is \(\gamma_n = 2p - 1 \), compute the increasing process \(< M >_n \) and study the limit in \(L^2 \) and almost sure of the sequence \(\{\frac{\log(X_n)}{n}\} \).