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Abstract—The entropy power inequality (EPI) has a fundamen-
tal role in Information Theory, and has deep connections with
famous geometric inequalities. In particular, it is often compared
to the Brunn-Minkowski inequality in convex geometry. In this
article, we further strengthen the relationships between the EPI
and geometric inequalities. Specifically, we establish an equiva-
lence between a strong form of reverse EPI and the hyperplane
conjecture, which is a long-standing conjecture in high-dimensional
convex geometry. We also provide a simple proof of the hyperplane
conjecture for a certain class of distributions, as a straightforward
consequence of the EPI.
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I. INTRODUCTION

Since the pioneering work of Costa and Cover [9],
and Dembo, Cover and Thomas [13], several rela-
tionships have been developed between information
theory and convex geometry.

We explore in this article an intimate connection
between the entropy power inequality (EPI), funda-
mental in information theory, and the hyperplane con-
jecture, a major unsolved problem in high-dimensional
geometry.

Let us recall that the entropy power inequality of
Shannon [26] states that for all independent continuous
random vectors X, Y in Rn,

N(X + Y ) ≥ N(X) +N(Y ), (1)

where N(X) , 1
2πe
e

2
n
h(X) denotes the entropy power

of X . Furthermore, the hyperplane conjecture, raised
by Bourgain [8], can be stated as follows.

Conjecture 1 (Hyperplane Conjecture [8]). There
exists a universal constant c > 0 such that for every
n ≥ 1, for every convex body K ⊂ Rn of volume 1,
there exists a hyperplane H such that

Voln−1 (K ∩H) ≥ c, (2)
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where Voln−1(·) denotes the (n − 1)-dimensional
volume.

There are several equivalent formulations of the
hyperplane conjecture, mainly expressed in geometric
or probabilistic language. One of particular interest
is an information-theoretic formulation developed by
Bobkov and Madiman [4]. Let us recall that a random
vector X in Rn is isotropic if X is centered and
if KX = E

[
XXT

]
, the covariance matrix of X , is

the identity matrix In, and that X is log-concave if
X ∼ fX with log(fX) concave.

Conjecture 2 (Entropic Hyperplane Conjecture [4]).
There exists a universal constant c > 0 such that for
every n ≥ 1, for every isotropic log-concave random
vector X in Rn,

D(X||Z) ≤ cn, (3)

where D(X||Z) denotes the relative entropy between
X and the standard Gaussian Z ∼ N (0, In).

Although the isotropicity condition is not assumed
in the formulation of [4], the above formulation of
Conjecture 2 is actually equivalent. This is because
the quantity

D(X||ZX) = h(ZX)− h(X), (4)

where ZX ∼ N (0, KX), is affine invariant, and we can
always find for arbitrary X an affine transformation
T such that T (X) is isotropic. Hence, we can assume
without loss of generality that we work with isotropic
random vectors.

Let us briefly explain the equivalence between
Conjectures 1 and 2. The isotropic constant of a
random vector X ∼ fX in Rn is defined as

L2
X , ‖fX‖

2
n
∞|KX |

1
n , (5)

where ‖fX‖∞ denotes the essential supremum of fX ,
and |KX | denotes the determinant of KX . A convex
body K is isotropic if K is centered, Vol(K) = 1,



and its covariance matrix
(∫

K
xixj dx

)
1≤i,j≤n is a

multiple of the identity. Hensley [15] proved that
there exist universal constants d1, d2 > 0 such that
for any isotropic convex body K, for any hyperplane
H passing through the origin,

d1 ≤ L2
KVoln−1(K ∩H) ≤ d2. (6)

Here, LK , LX with X uniformly distributed on
K. Hence, lower bounding Voln−1(K ∩ H) by a
universal constant (Conjecture 1) is equivalent to upper
bounding LK by a universal constant. Ball [1] proved
that upper bounding LK by a universal constant for
any isotropic convex body K is equivalent to upper
bounding LX by a universal constant for any isotropic
log-concave random vector X . Finally, Bobkov and
Madiman [4] proved that the Rényi entropies of a
log-concave random vector X in Rn are comparable,

h∞(X) ≤ h(X) ≤ h∞(X) + n, (7)

where h∞(X) , − log (‖fX‖∞) is the ∞-Rényi
entropy of X. Using (7), they [4] showed that up-
per bounding LX by a universal constant for any
isotropic log-concave random vector X is equivalent
to Conjecture 2.

Information-theoretic formulations have seen an
increasing interest over the past few years, mainly
due to the simplicity of the formulations, and due to
the simplicity of the ensuing proofs. For example, an
information-theoretic argument easily yields the mono-
tonicity of entropy (see [28], [22], [10]), properties of
the maximal correlation between sums of random vari-
ables (see [17]), and important functional inequalities
in mathematics (see [27]). Furthermore, the validity
of the hyperplane conjecture has several applications
to information theory. For example, bounds can be
obtained for the entropy rate of log-concave random
processes (see [5]), as well as for the capacity and rate-
distortion function under log-concavity assumptions
(see [24]).

The goal of this article is to develop a new
information-theoretic formulation of the hyperplane
conjecture (Section II), and to show that the EPI
immediately implies the hyperplane conjecture for a
class of random vectors more general than the class of
(c1, c2)-regular distributions introduced by Polyanskiy
and Wu [25], hence simplifying and extending a result
of Dörpinghaus [14], who implicitly showed that
Conjecture 2 holds for isotropic log-concave (c1, c2)-
regular distributions, as long as c1 ≤ c and c2 ≤ c

√
n

for some universal constant c > 0 (Sections III and
IV).

II. EQUIVALENCE BETWEEN REVERSE ENTROPY POWER
INEQUALITY AND HYPERPLANE CONJECTURE

In this section, we establish a new information-
theoretic formulation of the hyperplane conjecture as
a reverse form of the EPI. We introduce the following
conjecture.

Conjecture 3. There exists a universal constant c′ > 0
such that for every n ≥ 1, for every k ≥ 1, for i.i.d.
isotropic log-concave random vectors X1, . . . , Xk in
Rn,
N(X1 + · · ·+Xk) ≤ c′ (N(X1) + · · ·+N(Xk))

= c′kN(X1).
(8)

Theorem 1. Conjectures 2 and 3 are equivalent.

Proof. Assume first that Conjecture 3 is true. Let
X1, . . . , Xk be i.i.d. isotropic log-concave random
vectors. Then,

N(X1 + · · ·+Xk) ≤ c′kN(X1). (9)

It follows that

N

(
X1 + · · ·+Xk√

k

)
≤ c′N(X1). (10)

By letting k go to +∞, and using the entropic central
limit theorem developed by Barron [3] (valid in any
dimension, see [16]), we obtain

N(Z) ≤ c′N(X1), (11)

where Z is standard Gaussian. Hence,

1 ≤ c′N(X1). (12)

To conclude, we note that

1 ≤ c′N(X1)⇐⇒ log(2πe) ≤ log(c′) +
2

n
h(X1)

⇐⇒ D(X1||Z) ≤ cn,
(13)

where c = log(c′)
2

, which is the hyperplane conjecture
in the equivalent version of Conjecture 2.

Now, assume that Conjecture 2 is true. Let k ≥
1, and let X1, . . . , Xk be i.i.d. isotropic log-concave
random vectors. Since Xi’s are i.i.d. and isotropic, we
have

|KX1+···+Xk
|
1
n = |KX1 + · · ·+KXk

|
1
n = k. (14)

It is well known that Gaussian distributions maximize
entropy under covariance matrix constraint (see, e.g.,
[16]), hence we have the following upper bound for
any X with finite covariance matrix KX ,

h(X) ≤ h(ZX) =
n

2
log(2πe|KX |

1
n ). (15)



Thus, using (14),

h(X1 + · · ·+Xk) ≤
n

2
log(2πe|KX1+···+Xk

|
1
n )

=
n

2
log(2πe) +

n

2
log(k).

(16)
Using (4), Conjecture 2 tells

n

2
log(2πe) ≤ h(X1) + cn, (17)

hence

h(X1 + · · ·+Xk) ≤ h(X1) + cn+
n

2
log(k). (18)

We conclude that

N(X1 + · · ·+Xk) ≤ c′kN(X1), (19)

where c′ = e2c.

Several reverse entropy power inequalities exist in
literature (see, e.g., [12], [6], [2], [11]), but none of
them solve Conjecture 3. For example, Bobkov and
Madiman [6] established that for all independent log-
concave random vectors X, Y in Rn, there exist linear
volume-preserving maps u, v such that

N(u(X) + v(Y )) ≤ c(N(X) +N(Y )), (20)

where c > 0 is a universal constant. By induction,
one deduces the existence of a universal constant
c > 0 such that for every k ≥ 1, for all independent
log-concave random vectors X1, . . . , Xk, there exist
volume-preserving maps u1, . . . , uk such that

N(u1(X1) + · · ·+ uk(Xk))

≤ ck−1(N(X1) + · · ·+N(Xk)).
(21)

Inequality (21) yields a dependence in k which is
exponential, while Conjecture 3 asks for a linear
dependence in k. However, inequality (21) is valid for
independent non-identically distributed log-concave
random vectors, while Conjecture 3 is restricted to
i.i.d isotropic log-concave random vectors. In the i.i.d.
case, a slower growth with k can be demonstrated.
For example, the following reverse EPI, due to Cover
and Zhang [12] (see also [29], [23]), holds for i.i.d.
log-concave random vectors Xi,

N(X1 + · · ·+Xk) ≤ k2N(X1). (22)

Currently the best known bound to the hyperplane
conjecture, due to Klartag [19] (see also [21]), is
equivalent (via Theorem 1) to the following reverse
EPI

N(X1 + · · ·+Xk) ≤ c
√
n kN(X1), (23)

which holds for i.i.d. log-concave random vectors Xi,
and strengthens (22) when k is large. Conjecture 3
asks whether k2 in (22) and c

√
n k in (23) can be

replaced with ck, for some universal constant c > 0.

III. A SIMPLE PROOF FOR THE ENTROPIC HYPERPLANE
CONJECTURE FOR (c1, c2)-REGULAR RANDOM VECTORS

In what follows, X denotes an isotropic random
vector in Rn (not necessarily log-concave). Following
the terminology of [25], we say that X ∼ fX is
(c1, c2)-regular if

‖∇ log fX(x)‖2 ≤ c1‖x‖2 + c2, ∀x ∈ Rn, (24)

for some non-negative constants c1, c2 ≥ 0. Here, ‖·‖2
denotes the Euclidean norm in Rn.

As a straightforward consequence of the EPI, we
will show that Conjecture 2 holds whenever X is
(c1, c2)-regular as long as c1 ≤ c and c2 ≤ c

√
n for

some universal constant c > 0.

Proof. It is well known that the EPI implies the follow-
ing inequality, sometimes referred to as isoperimetric
inequality for entropies, which is equivalent to the
log-Sobolev inequality,

N(X)I(X) ≥ N(Z)I(Z) = n, (25)

where Z is standard Gaussian (see, e.g., [13]). Here,

I(X) , E
[
‖∇ log fX(X)‖22

]
, (26)

denotes the Fisher information of X . Hence,
I(X)

n
=
I(X)

I(Z)
≥ N(Z)

N(X)
= e

2
n
D(X||Z). (27)

Taking the logarithm, we deduce that

D(X||Z) ≤ n

2
log

(
I(X)

n

)
. (28)

In view of (28), to establish (3) it is enough to show
that

I(X) ≤ c′n, (29)

for some universal constant c′ > 0. But since X is
(c1, c2)-regular, we have

‖∇ log fX(x)‖22 ≤ c21‖x‖22 + 2c1c2‖x‖2 + c22. (30)

Hence,

I(X) = E
[
‖∇ log fX(X)‖22

]
≤ c21E

[
‖X‖22

]
+ 2c1c2E [‖X‖2] + c22.

(31)

We have by Jensen inequality and the isotropicity of
X ,

E [‖X‖2] ≤
√

E [‖X‖22] =
√
n. (32)



As c1 ≤ c and c2 ≤ c
√
n for some universal constant

c > 0 by assumption, we conclude that

I(X) ≤ c′n, (33)

for some universal constant c′ > 0.

Remark 1. As shown in [25], random vectors of the
form X + Zσ2 , where X ⊥⊥ Zσ2 ∼ N (0, σ2In), are
(c1, c2)-regular, with c1 = 3

σ2 and c2 = 4
σ2E [‖X‖2]. In

particular, the entropic hyperplane conjecture holds for
the random vector X+Z√

2
, where Z is standard Gaussian,

and X is an isotropic random vector independent of
Z.
Remark 2. We do not know whether the assumption
of (c1, c2)-regularity combined with isotropicity nec-
essarily implies that c1 ≤ c and c2 ≤ c

√
n, for some

universal constant c > 0.
IV. THE ENTROPIC HYPERPLANE CONJECTURE FOR

(c1‖x‖qp + c2)-REGULAR LOG-CONCAVE RANDOM VECTORS

Let p > 1 and q > 0. Following the terminology of
[20], we say that a random vector X ∼ fX in Rn is
(c1‖x‖qp + c2)-regular if for almost all x ∈ Rn,

‖∇ log fX(x)‖2 ≤ c1‖x‖qp + c2, (34)

for some non-negative constants c1, c2 ≥ 0. Here,

‖x‖p ,

(
n∑
i=1

|xi|p
) 1

p

. (35)

Note that (c1, c2)-regular distributions correspond
to (c1‖x‖2 + c2)-regular distributions.

A typical example is the distribution with density

Ce−
‖x‖qp

q , p, q > 1, C > 0 is the normalizing constant,
which is ‖x‖q−1min{p,2(p−1)}-regular.

Theorem 2. Let p ≥ 1 be independent of the
dimension n. The entropic hyperplane conjecture
holds for (c1‖x‖qp + c2)-regular isotropic log-concave
random vectors in Rn, whenever q ≤ p

2
, c1 ≤ c, and

c2 ≤ c
√
n, for some universal constant c > 0.

In order to prove Theorem 2, we need the following
reverse Jensen inequality valid for log-concave random
variables.

Lemma 1 ( [18], [7]). Let X be a centered log-
concave random variable. Then, for every 1 ≤ q ≤
r < +∞,

E [|X|r]
1
r ≤ C(q, r)E [|X|q]

1
q , (36)

where C(q, r) is a constant depending on q and r
only. Moreover, one may take

C(q, r) = 2Γ(r + 1)
1
r /Γ(q + 1)

1
q . (37)

Proof of Theorem 2. As seen in Section III, it is
enough to show that

I(X) ≤ c′n, (38)

for some universal constant c′ > 0. Since X is
(c1‖x‖qp + c2)-regular, we deduce that

I(X) ≤ c21E
[
‖X‖2qp

]
+ 2c1c2E

[
‖X‖qp

]
+ c22. (39)

Using Jensen inequality, we have

E
[
‖X‖qp

]
≤ E

[
‖X‖pp

] q
p , (40)

E
[
‖X‖2qp

]
≤ E

[
‖X‖pp

] 2q
p . (41)

On the other hand, using the reverse Jensen inequality
(36), we have

E
[
‖X‖pp

]
=

n∑
i=1

E [|Xi|p] ≤ C(p)p
n∑
i=1

E
[
|Xi|2

] p
2 ,

(42)
for some constant C(p) depending on p only. Since
X is isotropic, we have for every i ∈ {1, . . . , n},

E
[
|Xi|2

]
= 1. (43)

Hence,
E
[
‖X‖pp

]
≤ C(p)pn. (44)

As p is independent of n, 2q ≤ p, c1 ≤ c, and c2 ≤
c
√
n, for some universal constant c > 0, we conclude

that

I(X) ≤ c21C(p)2qn
2q
p + 2c1c2C(p)qn

q
p + c22 ≤ c′n,

(45)
for some universal constant c′ > 0.

We end this section with a criterion for regularity,
which extends [25, Proposition 2] applicable to
convolutions of (c1, c2)-regular random vectors with
Gaussians.

Proposition 1. Let V = X + Z, where X ⊥⊥ Z,
E [‖X‖r] <∞, and Z has density

fZ(z) = cnr,de−
‖z‖rr
rd , z ∈ Rn, (46)

with r ≥ 2, where d = E [‖Z‖rr] /n, and cr,d is the
normalizing constant. Then, V is (c1‖x‖r−1r + c2)-
regular with

c1 =
3 · 2r−2

d
, c2 =

2r−1(1 + 2r−2)

d
E [‖X‖r]r−1 .

(47)

Proof. We follow the proof of [25, Proposition 2]. Let
fV be the density of V . One has,

∇ log fV (v) = E [∇ log fZ(v −X)|V = v] . (48)



Hence,
‖∇ log fV (v)‖2 ≤ E [‖∇ log fZ(v −X)‖2|V = v]

=
1

d
E
[
‖v −X‖r−12(r−1)|V = v

]
.

(49)
Since r ≥ 2, one has ‖v− x‖2(r−1) ≤ ‖v− x‖r. Thus

‖∇ log fV (v)‖2 ≤
1

d
E
[
‖v −X‖r−1r |V = v

]
. (50)

Let us denote

a(X, v) , fZ(v −X)/fV (v). (51)

We have
E
[
‖v −X‖r−1r |V = v

]
= E

[
‖v −X‖r−1r a(X, v)

]
≤ 2E

[
‖v −X‖r−1r 1{a(X,v)≤2}

]
+E

[
‖v −X‖r−1r a(X, v)1{a(X,v)>2}

]
.

(52)
Note that

{a(x, v) > 2} =

{
‖v − x‖rr < rd log

(
cnr,d

2fV (v)

)}
.

(53)
Hence,

E
[
‖v −X‖r−1r a(X, v)1{a(X,v)>2}

]
(54)

≤
[
rd log

(
cnr,d

2fV (v)

)] r−1
r

+

,

where [x]+ , max{0, x}. We have

fV (v) = E [fZ(v −X)]

≥ E
[
fZ(v −X)1{‖X‖r≤2E[‖X‖r]}

]
≥ P [‖X‖r ≤ 2E [‖X‖r]] cnr,de−

(‖v‖r+2E[‖X‖r ])r
rd

≥
cnr,d
2

e−
(‖v‖r+2E[‖X‖r ])r

rd ,

(55)
where the last inequality follows from Markov in-
equality. We deduce that

E
[
‖v −X‖r−1r a(X, v)1{a(X,v)>2}

]
≤ (‖v‖r + 2E [‖X‖r])r−1

≤ 2r−2
(
‖v‖r−1r + 2r−1E [‖X‖r]r−1

)
,

where the last inequality follows from convexity of
x 7→ xr−1. We conclude that

‖∇ log fV (v)‖2 ≤
2r−1

d

(
‖v‖r−1r + E [‖X‖r]r−1

)
+

2r−2

d

(
‖v‖r−1r + 2r−1E [‖X‖r]r−1

)
=

3 · 2r−2

d
‖v‖r−1r +

2r−1(1 + 2r−2)

d
E [‖X‖r]r−1 .

(56)
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