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Abstract—We derive a lower bound on the differential entropy
for symmetric log-concave random variable X in terms of the
p-th absolute moment of X , which shows that entropy and p-th
absolute moment of a symmetric log-concave random variable are
comparable. We apply our bound to study the rate distortion
function under distortion measure |x − x̂|r for sources that
follow a log-concave probability distribution. In particular, we
establish that the difference between the rate distortion function
and the Shannon lower bound is at most log(

√
2e) ≈ 1.9 bits,

independently of r and d. For mean-square error distortion, the
difference is at most log

√
πe ≈ 1.55 bits, regardless of d. Our

results generalize to the case of vector X . Our proof technique
leverages tools from convex geometry.

Keywords. Differential entropy, rate-distortion func-
tion, Shannon lower bound, log-concave distribution.

I. INTRODUCTION

It is well known that the differential entropy among
all zero-mean random variables with the same second
moment is maximized by the Gaussian distribution:

h(X) ≤ log(
√

2πeE [|X|2]). (1)

More generally, the differential entropy under p-th
moment constraint is upper bounded as (see e.g. [1,
Appendix 2]), for p > 0,

h(X) ≤ log (αp‖X‖p) , (2)

where

αp , 2e
1
p Γ

(
1 +

1

p

)
p

1
p , (3)

‖X‖p , (E [|X|p])
1
p . (4)

Of course, if p = 2, αp =
√

2πe, and (2) reduces to
(1). A natural question to ask is whether a matching
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lower bound on h(X) can be found in terms of p-
norm of X , ‖X‖p. The quest is meaningless without
additional assumptions on the density of X , as
h(X) = −∞ is possible even if ‖X‖p is finite. In
this paper, we show that if the density of X , fX(x),
is symmetric (that is, fX(x) = fX(−x)) and log-
concave (that is, log fX(x) is concave), then h(X)
stays within a constant (dependent on p) from the
upper bound in (2) (see Theorem 1 in Section II
below):

h(X) ≥ log
2‖X‖p

Γ(p+ 1)
1
p

, (5)

where Γ denotes the Gamma function, and p > −1,
p 6= 0.

The class of log-concave random vectors is rich
and contains important distributions in probability,
statistics and analysis. Gaussian distribution, Laplace
distribution, uniform distribution on a convex set, chi
distribution are examples of log-concave distribution.
Furthermore, a famous result of Prékopa [2] states
that sums of log-concave random vectors, as well
as marginals of random vectors, are log-concave.
Thus, this class has good behavior under natural
probabilistic operations.

Together with the classical bound in (2), the new
bound in (5) tells us that entropy and moments of log-
concave symmetric random variables are comparable.

A simple corollary to (5) is that if X ≥ 0 has log-
concave density with maxx fX(x) = fX(0), then

h(X) ≥ log
‖X‖p

Γ(p+ 1)
1
p

. (6)

The bound in (6) follows from (5) and the obser-
vation that for symmetric X , h(X) = h(X|X ≥



0) + log 2.
For p = 2, (5) reads

h(X) ≥ 1

2
log
(
2‖X‖2

2

)
. (7)

Using a different proof technique, Bobkov and
Madiman [3] recently showed that the differential
entropy of a zero-mean non-symmetric log-concave
X satisfies,

h(X) ≥ 1

2
log

(
1

2
‖X‖2

2

)
. (8)

Our result in (7) tightens (8) in the case of symmetric
X , and our result in (6) tightens (8) in the case of
X with monotonic density.

The new bounds on the differential entropy are
essential in the study of the difference between
the rate-distortion function and the Shannon lower
bound that we describe next. Given a nonnegative
number d, the rate-distortion function RX(d) under
r-th moment distortion measure is defined as

RX(d) = inf
PX̂|X :

E [|X−X̂|r]≤d

I(X; X̂), (9)

where the infimum is over all transition probability
kernels R 7→ R satisfying the moment constraint.
The celebrated Shannon lower bound [4] states that
the rate-distortion function is lower bounded by

RX(d) ≥ RX(d) , h(X)− log
(
αrd

1
r

)
, (10)

and αr is defined in (3). For mean-square distortion
(r = 2), (10) simplifies as

RX(d) ≥ h(X)− 1

2
log(2πed). (11)

The Shannon lower bound states that the rate-
distortion function is lower bounded by the difference
between the differential entropy of the source and
the term that increases with target distortion d,
explicitly linking the storage requirements for X
to the information content of X (measured by
h(X)) and the desired reproduction distortion d. As
shown in [5]–[7] under progressively less stringent
assumptions,1 the Shannon lower bound is tight in
the limit of low distortion,

0 ≤ RX(d)− RX(d) −−→
d→0

0. (12)

1Koch [7] showed that (12) holds as long as H(bXc) <∞.

The speed of convergence in (12) and its finite
blocklength refinement were recently explored in [8],
[9]. Due to its simplicity and tightness in the high
resolution / low distortion limit, the Shannon lower
bound can serve as a proxy for the rate-distortion
function RX(d), which rarely has an explicit repre-
sentation. Furthermore, the tightness of the Shannon
lower bound at low d is linked to the optimality of
simple lattice quantizers [8], [9], an insight which
has evident practical significance. Gish and Pierce
[10] showed that for mean-square error distortion,
the difference between the entropy rate of a dithered
scalar quantizer, H1, and the rate-distortion function
RX(d) converges to 1

2
log 2πe

12
≈ 0.254 bit/sample in

the limit d ↓ 0. Ziv [11] proved that H1 − RX(d) is
bounded by 1

2
log 2πe

6
≈ 0.754 bit/sample, universally

in d.
In this paper, we show that the gap between RX(d)

and RX(d) is bounded universally in d, provided that
the source density is symmetric and log-concave: for
mean-square error distortion (r = 2 in (9)), we have

RX(d)− RX(d) ≤ log
√
πe ≈ 1.55 bits. (13)

Fig. 1 presents our bound for different values of r.
Regardless of r and d,

RX(d)− RX(d) ≤ log(
√

2e) ≈ 1.94 bits. (14)

The rest of the paper is organized as follows.
Section II presents and discusses our main results:
the lower bounds on differential entropy in Theo-
rem 1, and the upper bound on RX(d)− RX(d) in
Theorem 2. The convex geometry tools to prove
the bounds on differential entropy are developed in
Section III. The bound on the rate-distortion function
is proven in Section IV.

The results presented here are part of a work in
preparation [12]. In [12], we extend the results to
non-symmetric log-concave random variables, and
to higher dimension.

II. MAIN RESULTS

A function f : Rn → [0,+∞) is log-concave
if log(f) : Rn → [−∞,∞) is a concave function.
Equivalently, f is log-concave if for every λ ∈ [0, 1]
and for every x, y ∈ Rn, one has

f((1− λ)x+ λy) ≥ f(x)1−λf(y)λ. (15)

We say that a random vector X in Rn is log-
concave if it has a probability density function fX



Fig. 1. The bound on the difference between the rate-distortion function under
r-th moment constraint and the Shannon lower bound, stated in Theorem 2.

with respect to Lebesgue measure in Rn such that
fX is log-concave. Our first result is a lower bound
for the differential entropy of log-concave random
variable in terms of the moments of the distribution.

Theorem 1. Let X be a symmetric log-concave
random variable. Then, for every p > −1, p 6= 0,

h(X) ≥ log
2‖X‖p

Γ(p+ 1)
1
p

. (16)

The difference between the upper bound in (2) and
the lower bound in (16) grows as log(p) as p→ +∞,
as 1√

p
as p → 0, and is minimized at p = 1, the

value being log(e) ≈ 1.4 bits.
The next proposition shows that the moments

of a symmetric log-concave random variable are
comparable, and demonstrates that the bound in
Theorem 1 tightens as p ↓ −1.

Proposition 1. Let X be a symmetric log-concave
random variable. Then, for every −1 < p ≤ q,

‖X‖q
Γ(q + 1)

1
q

≤ ‖X‖p
Γ(p+ 1)

1
p

. (17)

Combining Proposition 1 with the well known fact
that ‖X‖p is non-decreasing in p, we deduce that
for every symmetric log-concave random variable
X , for every −1 < p < q,

‖X‖p
Γ(q + 1)

1
q

≤ ‖X‖q
Γ(q + 1)

1
q

≤ ‖X‖p
Γ(p+ 1)

1
p

. (18)

Using Theorem 1, we immediately obtain the
following upper bound for the relative entropy

D(X||GX) between a symmetric log-concave ran-
dom variable X and a Gaussian GX with same
variance as that of X .

Corollary 1. Let X be a symmetric log-concave
random variable. Then, for every p > −1, p 6= 0,

D(X||GX) ≤ log
√
πe+ ∆p, (19)

where GX ∼ N (0, ‖X‖2
2), and

∆p , log

(
Γ(p+ 1)

1
p

√
2

‖X‖2

‖X‖p

)
. (20)

Remark 1. The uniform distribution achieves equality
in (19) in the limit p ↓ −1. Indeed, if X is uniformly
distributed on a symmetric interval, then

∆p = log
Γ(p+ 2)

1
p

√
6

−−−→
p→−1

1

2
log

1

6
. (21)

Thus,

D(X||GX) ≤ 1

2
log

2πe

12
= D(X||GX). (22)

Note that 1
2πe

is the normalized second moment (i.e.
the second moment per dimension of a uniform
distribution divided by the volume raised to the
power of 2

n
) of an n-dimensional ball, in the limit

of large n, and 1
12

is the normalized second moment
of a hypercube.
Remark 2. For every symmetric log-concave random
variable X , and for every p ≤ 2, using Proposition
1, one has

∆p ≤ 0. (23)

Thus, we necessarily have

D(X||GX) ≤ 1

2
log(πe). (24)

For a given distribution of X , one can optimize over
p to further tighten (24), as seen in (21) for the
uniform distribution.

As an application of Theorem 1, we show in
Theorem 2 below that in the class of 1-dimensional
symmetric log-concave distributions, the rate distor-
tion function does not exceed Shannon’s lower bound
by more than log(e

√
2) ≈ 1.94 bits, independently

of d and r ≥ 1. Denote for brevity

βr ,

√
1 +

r
2
r Γ(3

r
)

Γ(1
r
)
. (25)



and recall the definition of αr in (3).

Theorem 2. Let d ≥ 0 and r ≥ 1. Let X be a
symmetric log-concave random variable.

1) Let r ∈ [1, 2]. If ‖X‖2 > d
1
r , then

RX(d)− RX(d) ≤ D(X||GX) + log
αr√
2πe

. (26)

If ‖X‖2 ≤ d
1
r , then RX(d) = 0.

2) Let r > 2. If ‖X‖2 ≥ d
1
r , then

RX(d)− RX(d) ≤ (27)

D(X||GX) + min

{
log

αrΓ(r + 1)
1
r

2
√
πe

, log βr

}
.

If ‖X‖r ≤ d
1
r or ‖X‖2 ≤

√
2

Γ(r+1)
1
r
d

1
r , then RX(d) =

0.
If ‖X‖r > d

1
r and ‖X‖2 ∈

(
√

2

Γ(r+1)
1
r
d

1
r , d

1
r

)
, then

RX(d) ≤ min

{
log

Γ(r + 1)
1
r

√
2

, log

√
2πeβr
αr

}
.

For Gaussian X and r = 2, the upper bound in
(26) is 0, as expected. To bound RX(d) − RX(d)
independently of the distribution of X , we apply the
bound (24) on D(X||GX) to Theorem 2:

Corollary 2. Let X be a symmetric log-concave
random variable. For r ∈ [1, 2], we have

RX(d)− RX(d) ≤ logαr −
1

2
log 2. (28)

For r > 2, we have

RX(d)− RX(d)

≤ min

{
log

αrΓ(r + 1)
1
r

2
, log

(√
πeβr

)}
. (29)

Please refer to Fig. 1 in Section I for a numerical
evaluation of the bounds of Corollary 2.

As mentioned in Remark 1, the bounds in Corol-
lary 2 can be tightened by applying Corollary 1 with
p < 2 to Theorem 2. For example, for mean-square
distortion (r = 2) and a uniformly distributed source,

RX(d)− RX(d) ≤ 1

2
log

2πe

12
≈ 0.254 bits. (30)

III. LOWER BOUNDS ON THE SHANNON ENTROPY

In this section, we develop the main tools of the
paper. The key to our development is the following
result for 1-dimensional log-concave distributions,
well known in convex geometry. It can be found in
[13], in a slightly different form.

Lemma 1 ([13]). The function

F (r) =
1

Γ(r + 1)

∫ +∞

0

xrf(x) dx (31)

is log-concave on [−1,+∞), whenever
f : [0; +∞)→ [0; +∞) is log-concave.

Lemma 1 has been applied to obtain reverse
entropy power inequalities [14], as well as to prove
optimal concentration of the information content
[15].

Proof of Theorem 1. Applying Lemma 1 to the val-
ues −1, 0, p, we have

F (0) = F

(
p

p+ 1
(−1) +

1

p+ 1
p

)
(32)

≥ F (−1)
p

p+1F (p)
1

p+1 . (33)

The bound in Theorem 1 will follow by computing
the values F (−1), F (0) and F (p) for f = fX .

One has

F (0) =
1

2
, (34)

F (p) =
‖X‖pp

2Γ(p+ 1)
. (35)

To compute F (−1), we first provide a different
expression for F (r). Notice that

F (r) =
1

Γ(r + 1)

∫ +∞

0

xr
∫ fX(x)

0

dt dx (36)

=
r + 1

Γ(r + 2)

∫ max fX

0

∫
{x≥0: fX(x)≥t}

xr dx dt.

(37)

Denote the generalized inverse of fX by

f−1
X (t) , sup{x ≥ 0: fX(x) ≥ t}, t ≥ 0. (38)

Since fX is log-concave and

fX(x) ≤ fX(0) = max fX , (39)

it follows that fX is non-increasing on [0,+∞).
Therefore,

{x ≥ 0: fX(x) ≥ t} = [0, f−1
X (t)]. (40)



Hence,

F (r) =
1

Γ(r + 2)

∫ fX(0)

0

(f−1
X (t))r+1 dt. (41)

We deduce that

F (−1) = fX(0). (42)

Plugging (34), (35) and (42) into (33), we obtain

fX(0) ≤ Γ(p+ 1)
1
p

2‖X‖p
. (43)

It follows immediately that

h(X) ≥ log
1

fX(0)
≥ log

2‖X‖p
Γ(p+ 1)

1
p

. (44)

For p ∈ (−1, 0), the bound is obtained similarly
by applying Lemma 1 to the values −1, p, 0.

Remark 3. From (43) and (39), we see that a
stronger statement than Theorem 1 holds: For every
symmetric log-concave random variable X ∼ fX ,
for every p > −1, and for every x ∈ R,

fX(x) ≤ Γ(p+ 1)
1
p

2‖X‖p
. (45)

Proof of Proposition 1. The proof is similar to the
proof of Theorem 1. For example when 0 < p < q,
the bound is obtained by applying Lemma 1 to the
values 0, p, q.

IV. BOUNDS ON THE RATE DISTORTION FUNCTION

We are now ready to prove Theorem 2. We will
show part 1) of Theorem 2; the details of part 2)
are carried out in [12].

Proof of Theorem 2. Denote for brevity σ = ‖X‖2.
1) Let r ∈ [1, 2]. Assume σ > d

1
r . We take

X̂ =

(
1− d

2
r

σ2

)
(X + Z) , (46)

where Z ∼ N
(

0, σ2d
2
r

σ2−d
2
r

)
is independent of X . This

choice of X̂ is admissible since

E [|X − X̂|r]
≤ E [|X − X̂|2]

r
2 (47)

≤

(d 2
r

σ2

)2

σ2 +

(
1− d

2
r

σ2

)2

E [|Z|2]

 r
2

(48)

= d, (49)

where we used r ≤ 2 and the left-hand side of
inequality (18). Hence,

RX(d) ≤ I(X; X̂) = h(X̂)− h(X̂|X) (50)
= h(X + Z)− h(Z), (51)

where we used homogeneity of entropy for the last
equality. Invoking the upper bound on the differential
entropy (1), we have

h(X + Z)− h(Z)

≤ 1

2
log

(
2πe

(
σ2 +

σ2d
2
r

σ2 − d 2
r

))
− h(Z) (52)

=
1

2
log

σ2

d
2
r

(53)

= RX(d) +D(X||GX) + log
αr√
2πe

, (54)

and (26) follows.
If ‖X‖2 ≤ d

1
r , then ‖X‖r ≤ ‖X‖2 ≤ d

1
r , and

setting X̂ ≡ 0 leads to RX(d) = 0.
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