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Abstract—Using a sharp version of the reverse Young inequality,
and a Rényi entropy comparison result due to Fradelizi, Madiman,
and Wang, the authors derive a Rényi entropy power inequality for
log-concave random vectors when Rényi parameters belong to [0, 1].
A discussion of symmetric decreasing rearrangements of random
variables strengthens the inequality and guides the exploration as
to its sharpness.
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I. INTRODUCTION

The Rényi entropy [31] of parameter r ∈ [0,∞] is
defined for continuous random vectors X with density
fX as

hr(X) =
1

1− r
log

(∫
Rn
f rX(x) dx

)
.

We take the Rényi entropy power of X to be

Nr(X) = e
2
n
hr(X) =

(∫
Rn
fX(x)r dx

)− 2
n

1
r−1

.

Three important cases are handled by continuous
limits,

N0(X) = Vol
2
n (supp(X)),

N∞(X) = ‖fX‖−2/n∞ ,

and N1(X) corresponds to the usual Shannon entropy
power N1(X) = N(X) = e−

2
n

∫
fX log fX . Here,

Vol(A) denotes the volume of A, and supp(X)
denotes the support of X .

The entropy power inequality [32], [33] (EPI) is the
statement that Shannon entropy power of independent
random vectors X and Y is super-additive

N(X + Y ) ≥ N(X) +N(Y ).

In this language we interpret the Brunn-Minkowski
inequality of Convex Geometry, classically stated as
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the fact that

Vol
1
n (A+B) ≥ Vol

1
n (A) + Vol

1
n (B)

for any pair of compact sets of Rn, as a Rényi-EPI
corresponding to r = 0. That is, the Brunn-Minkowski
inequality is equivalent to the fact that for X and Y
independent random vectors, the square root of the
0-th Rényi entropy is super-additive,

N
1
2
0 (X + Y ) ≥ N

1
2
0 (X) +N

1
2
0 (Y ).

The sharp version of Young’s inequality was used
by Brascamp and Lieb [12] to derive a proof of
the Brunn-Minkowski inequality, and soon after Lieb
alone used the same machinery again to give a proof
of the entropy power inequality [24]. In [13] Costa
and Cover brought attention to the analogies between
the two inequalities and Dembo, Cover and Thomas
[15] observed that the two Young’s inequality proofs
of [12], [24] could be unified.

The authors give a more thorough narration of
the developments that inspired this work in [29],
interesting results in this direction can be found in
[1], [2], [7], [8], [13], [15], [17], [18], [20], [23], [25],
[36], [38]. Previous work on Rényi EPIs in the case
that r ∈ {0} ∪ [1,∞] can be found in [5], [6], [9],
[22], [27], [30], [39]–[42].

The existence of super-additivity properties of
the Rényi entropy power for r ∈ (0, 1) had been
mentioned as an open problem in [6], [22], [26], [30].
In this article, we summarize the contributions of a
recent work by the authors in [29], where a Rényi
EPI is derived in the log-concave case (see Definition
3) for a modified exponent. This main result is the
following.

Theorem 1. Let r ∈ (0, 1). Let X, Y be log-concave
random vectors in Rn. Then,

Nr(X + Y )α ≥ Nr(X)α +Nr(Y )α, (1)



where

α = α(r) ,
(1− r) log 2

(1 + r) log(1 + r) + r log 1
4r

.

It would be of interest to extend Theorem 1 to
general independent X and Y , and to determine the
sharp exponent αopt = αopt(r), the infimum over all
α that satisfy

Nr(X + Y )α ≥ Nr(X)α +Nr(Y )α, (2)

for any pair of independent random vectors X and
Y .

However even under the restriction to log-concave
random variables, Theorem 1 cannot be significantly
improved. Indeed we will show by computations on
a pair of independent Laplace distributed random
variables that we must have

α(r) ≥ αopt(r) ≥ max

(
1,

(1− r) log 2

2(logE(r)− r log 2)

)
.

(3)
where we have used the notation

E(r) ,
∫ ∞
0

(
1 +

x

r

)r
e−xdx. (4)

As we will argue this necessarily tightens the bound

(1− r) log 2

2 log Γ(1 + r) + 2r log 1
r

≤ αopt (5)

derived in [29]. Note that the above bounds imply
that

lim
r→1

α(r) = lim
r→1

αopt(r) = 1,

recovering the usual EPI, however as r → 0 the
behavior of general log-concave vectors is much worse
than convex bodies (r = 0), and

lim
r→0

α(r)r1−ε = lim
r→0

αopt(r)r
1−ε = +∞,

for any ε > 0. This gives a striking discontinuity
of αopt at r = 0, since αopt(0) = 1

2
by the

Brunn-Minkowski inequality. Although these bounds
preclude the possibility of a smooth interpolation
of Rényi entropy power inequalities between the
Classical EPI and the Brunn-Minkowski inequality
for general random variables, in the case that random
variables are uniform distributions on compact sets
(not necessarily convex) we have the following.

Theorem 2. Let r ∈ (0, 1). Let X, Y be uniformly
distributed random vectors on compact sets. Then,

Nr(X + Y )β ≥ Nr(X)β +Nr(Y )β,

where

β = β(r) ,
(1− r) log 2

2 log 2 + r log r − (r + 1) log(r + 1)
.

See [29] for proof. Notice that limr→0 β(r) = 1
2

recovering the Brunn-Minkowski inequality, while
predictably limr→1 β(r) = 1 gives a special case of
the entropy power inequality for uniform distributions.

In Section II, we present the main tools in estab-
lishing Theorems 1 and 2. The proof of Theorem 1
is given in Section III. In Section IV, we derive a
lower bound on the optimal exponent αopt that satisfies
(2). We compare our results with properties of the
symmetric decreasing rearrangements and improve
on previous lower bounds for αopt. The details of all
omitted proofs can be found in [29].

II. PRELIMINARIES

For p ∈ [0,∞], we denote by p′ the conjugate of p,

1

p
+

1

p′
= 1.

For a non-negative function f : Rn → [0,+∞) we
introduce the notation

‖f‖p =

(∫
Rn
fp(x)dx

)1/p

.

Definition 3. A random vector X in Rn is log-concave
if it possesses a log-concave density fX : Rn →
[0,+∞) with respect to Lebesgue measure. That is
that for all λ ∈ (0, 1) and x, y ∈ Rn,

fX((1− λ)x+ λy) ≥ f 1−λ
X (x)fλX(y).

Log-concave random vectors and functions are
important classes in many disciplines. In the context of
information theory, several nice properties involving
entropy of log-concave random vectors were recently
established (see, e.g., [7], [3], [34], [35], [14], [28]).
Significant examples are Gaussian and exponential
distributions as well as any uniform distribution on a
convex set. We direct the interested reader to [26] for
more background on their role in information theory
and convex geometry.

The main tool in establishing Theorems 1 and 2 is
the reverse form of the sharp Young inequality. The
reversal of Young’s inequality for parameters in [0, 1]
is due to Leindler [21], while sharp constants were
obtained independently by Beckner [4], and Brascamp
and Lieb [12]:



Theorem 4 ([4], [12]). Let 0 ≤ p, q, r ≤ 1 such that
1
p′

+ 1
q′

= 1
r′

. Then,

‖f ? g‖r ≥ C
n
2 ‖f‖p‖g‖q, (6)

where

C = C(p, q, r) =
cpcq
cr

, cm =
m1/m

|m′|1/m′
.

Given independent random vectors X with density
f and Y with density g, the random vector X + Y
will be distributed according to f ?g. Observe that the
Lp “norms” have the following expression as Rényi
entropy powers, ‖f‖r = Nr(X)−

n
2r′ . Hence, we can

rewrite (6) as follows,

Nr(X + Y )−
1
r′ ≥ CNp(X)

− 1
p′Nq(Y )

− 1
q′ . (7)

This is an information-theoretic interpretation of
Young’s inequality, which was developed in [15].

We also need a Rényi comparison result for log-
concave random vectors, implicit in [19], and with a
generalized version to appear in [16] for the s-concave
measures (see [10], [11] for more background on this
generalization of log-concavity).

Lemma 5 ([16]). Let 0 < p < q. Then, for every
log-concave random vector X ,

Nq(X) ≤ Np(X) ≤ p
2
p−1

q
2
q−1

Nq(X).

The first inequality is classical and holds for
general X , a consequence of the fact that Np(X)
can be expressed as the reciprocal of a p − 1 norm
(Efp−1(X))

−1/(p−1). The increasingness of norms
(which follows from Jensen’s inequality) implies the
decreasingness of Rényi entropy powers. The content
of Fradelizi, Madiman, and Wang’s result is thus the
second inequality, that this decrease is not too rapid
for log-concave random vectors. A proof of Lemma
5 can be found in the appendix of [29].

III. PROOF OF THEOREM 1

We first combine the information-theoretic formula-
tion of reverse Young’s inequality (7) and Lemma 5
to obtain,

Nr(X + Y )−
1
r′

≥ C

(
p

2
p−1

r
2
r−1

)− 1
p′
(
q

2
q−1

r
2
r−1

)− 1
q′

Nr(X)
− 1
p′Nr(Y )

− 1
q′

= A(p, q, r)Nr(X)
− 1
p′Nr(Y )

− 1
q′ ,

(8)

where

A(p, q, r) =
cpcq
cr

r
2
r

p
2
p q

2
q

.

Equivalently,

Nr(X + Y ) ≥ A(p, q, r)−r
′
Nr(X)

r′
p′Nr(Y )

r′
q′ . (9)

Thus to complete our proof of Theorem 1 it suffices
to obtain for a fixed r ∈ (0, 1), an α > 0 such that for
any given pair of independent log-concave random
vectors X and Y , there exist 0 ≤ p, q ≤ 1 such that
1
p′

+ 1
q′

= 1
r′

and

A(p, q, r)−αr
′
Nr(X)

αr′
p′ Nr(Y )

αr′
q′ (10)

≥ Nα
r (X) +Nα

r (Y ).

Let us observe that there is nothing probabilistic
about equation (10). If we write x = Nr(X)α,
y = Nr(Y )α, our Rényi entropy power inequality
is implied by the following algebraic inequality.

Proposition 6. Given r ∈ (0, 1) and taking

α =
(1− r) log 2

(1 + r) log(1 + r) + r log 1
4r

, (11)

then for any x, y > 0 there exist 0 < p, q < 1
satisfying 1

p′
+ 1

q′
= 1

r′
such that

A(p, q, r)−αr
′
x
r′
p′ y

r′
q′ ≥ x+ y. (12)

The proof of Proposition 6 can be found in [29].

IV. LOWER BOUND ON THE OPTIMAL EXPONENT

Recalling αopt = αopt(r) the infimum over all α
satisfying the Rényi entropy power inequality (2).
Theorem 1 gives upper bounds on the optimal α
satisfying the super-additivity condition when we
restrict to the class of log-concave random vectors.
Conversely, one can derive lower bounds on αopt by
testing well chosen examples.

By simply choosing Z1, Z2 i.i.d. standard Gaussians,
we have by homogeneity of Rényi entropy,

Nαopt
r (Z1 + Z2) = 2αoptNαopt

r (Z1),

while

Nαopt
r (Z1) +Nαopt

r (Z2) = 2Nαopt
r (Z1).

It follows that

αopt ≥ 1. (13)

Though this is already strictly greater than the
αopt(0) = 1/2 achievable by the Brunn-Minkowski



inequality, for other log-concave distributions the
behavior can be much worse. Indeed by direct com-
putation (see [29]) on X and Y i.i.d. exponential on
(0,∞) it follows that

αopt ≥
(1− r) log 2

2 log Γ(r + 1) + 2r log 1
r

. (14)

Let us mention that although all the computations
here are done on one-dimensional examples X and
Y , they can be easily extended to n-dimensions by
taking X̃ = (X1, . . . , Xn) and Ỹ = (Y1, . . . , Yn) with
Xi and Yj independent copies of X and Y respectively,
then Nr(X + Y ) = Nr(X̃ + Ỹ ), Nr(X) = Nr(X̃),
and Nr(Y ) = Nr(Ỹ ).

In what follows we establish a tighter lower bound
for αopt than (14). Due to Madiman and Wang [37] it
is known that the symmetric decreasing rearrangement
of independent random vectors never increases the
Rényi entropy of their sum, while preserving the Rényi
entropy of the individual random variables. To state
this more explicitly, we need a few definitions. For a
measurable set A, denote by A∗ the open origin sym-
metric Euclidean ball satisfying Vol(A) = Vol(A∗).
For a non-negative measurable function f , define its
symmetric decreasing rearrangement by

f ∗(x) =

∫ ∞
0

1{f>t}∗(x)dt.

Finally, we can define X∗.

Definition 7. For a random vector X with density f ,
we denote by X∗ a random vector with density f ∗.

Theorem 8 ( [37]). For X and Y independent, with
X∗ and Y ∗ drawn independently from the symmetric
decreasing rearrangements,

Nr(X + Y ) ≥ Nr(X
∗ + Y ∗).

Thus to prove a Rényi EPI for all independent
random vectors it suffices to prove the result for ran-
dom vectors with symmetrically decreasing densities.
Combining this with our results, it follows that the
conclusion of Theorem 1 actually holds for a more
general class of random vectors, namely those with
log-concave symmetrically decreasing rearrangement.

Theorem 9. Suppose X and Y are independent
random vectors such that X∗ and Y ∗ are log-concave,
then

Nα
r (X + Y ) ≥ Nα

r (X) +Nα
r (Y ).

Proof. Drawing X∗ and Y ∗ to be independent, we
have

Nα
r (X + Y ) ≥ Nα

r (X∗ + Y ∗)

≥ Nα
r (X∗) +Nα

r (Y ∗)

= Nα
r (X) +Nα

r (Y ).

The first inequality is by Theorem 8, and the second
by Theorem 1 applied to X∗ and Y ∗. The last equality
is due to the equimeasurability of densities and their
rearrangements.

Again with the rearrangement results of Madiman
and Wang in mind, it is more appropriate to replace
the exponential distributions leading to (14) with
their symmetric decreasing rearrangements, Laplace
distributions. Indeed, we will see that this does in
fact improve bounds on αopt. Take Yi, i = 1, 2, with
density

e−|x|/2 (x ∈ R).

In this case it is still straightforward to compute

Nr(Yi) =

(
21−r

r

) 2
1−r

,

while Y1 + Y2 has density

(1 + |x|)e−|x|/4 (x ∈ R)

when Yi are independent. Direct computation gives,

Nr(Y1 + Y2) =
(
21−2rE(r)/r

) 2
1−r .

where E(r) is defined as in (4). Since

Nαopt
r (Y1 + Y2) ≥ Nαopt

r (Y1) +Nαopt
r (Y2)

holds, it must be the case that(
21−2rE(r)/r

)2αopt/(1−r) ≥ 2

(
21−r

r

)2αopt/(1−r)

.

Taking logarithms, this rearranges to

αopt ≥
(1− r) log 2

2(logE(r)− r log 2)
.

We can summarize these bounds in the following
graphic, where the relationship α(r) in the Rényi EPI
derived here for log-concave vectors, is compared with
the lower bounds on αopt induced by the exponential
and Laplace distributions. These curves are cut off
at 1 where they no longer give improvement on the
Gaussian bounds derived earlier.
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