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On the entropy power inequality for the Rényi entropy of order [0, 1]

Arnaud Marsiglietti∗ and James Melbourne†

Abstract

Using a sharp version of the reverse Young inequality, and a Rényi entropy comparison result
due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities
for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates
are shown to be sharp up to absolute constants.
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1 Introduction

Let r ∈ [0,∞]. The Rényi entropy [39] of parameter r is defined for continuous random vectors
X ∼ fX as

hr(X) =
1

1− r
log

(∫

Rn

f r
X(x)dx

)

. (1)

We take the Rényi entropy power of X to be

Nr(X) = e
2

n
hr(X) =

(
∫

Rn

f r
X(x) dx

)
2

n
1

1−r

. (2)

Three important cases are handled by continuous limits,

N0(X) = Vol
2

n (supp(X)), (3)

N∞(X) = ‖fX‖−2/n
∞ , (4)

and N1(X) corresponds to the usual Shannon entropy power N1(X) = N(X) = e−
2

n

∫
f log f .

Here, Vol(A) denotes the Lebesgue measure of a measurable set A, and supp(X) denotes the
support of X.

The entropy power inequality (EPI) is the statement that Shannon entropy power of inde-
pendent random vectors X and Y is super-additive

N(X + Y ) ≥ N(X) +N(Y ). (5)

In this language we interpret the Brunn-Minkowski inequality of Convex Geometry, classically
stated as the fact that

Vol(A+B) ≥
(

Vol
1

n (A) + Vol
1

n (B)
)n

(6)

for any pair of compact sets of Rn (see [25] for an introduction to the literature surrounding this
inequality), as a Rényi-EPI corresponding to r = 0. That is, the Brunn-Minkowski inequality
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is equivalent to the fact that for independent random vectors X and Y , the square root of the
0-th Rényi entropy is super-additive,

N
1

2

0 (X + Y ) ≥ N
1

2

0 (X) +N
1

2

0 (Y ). (7)

The parallels between the two famed inequalities had been observed in the 1984 paper of
Costa and Cover [17], and a unified proof using sharp Young’s inequality was given in 1991 by
Dembo, Cover, and Thomas [19]. Subsequently, analogs of further Shannon entropic inequalities
and properties in Convex Geometry have been pursued. For example the monotonicity of
entropy in the central limit theorem (see [1, 30, 42]), motivated the investigation of quantifiable
convexification of a general measurable set on repeated Minkowski summation with itself (see
[21, 22]). Motivated by Costa’s EPI improvement [16], Costa and Cover conjectured that the
volume of general sets when summed with a dilate of the Euclidean unit ball should have
concave growth in the dilation parameter [17]. Though this was disproved for general sets in
[24], open questions of this nature remain.

Conversely, V. Milman’s reversal of the Brunn-Minkowski inequality (for symmetric convex
bodies under certain volume preserving linear maps) [36] inspired Bobkov and Madiman to ask
and answer whether the EPI could be reversed for log-concave random vectors under analogous
mappings [6]. In [5] The authors also formulated an entropic version of Bourgain’s slicing
conjecture [13], a longstanding open problem in convex geometry that has attracted a lot of
attention.

A further example of an inequality at the interface of geometry and information theory
can be found in [2], where Ball, Nayar, and Tkocz conjectured the existence of an entropic
Busemann’s inequality [15] for symmetric log-concave random variables and prove some partial
results, see [44] for an extension to “s-concave” random variables.

We refer to the survey [31] for further details on the connections between convex geometry
and information theory.

Recently the super-additivity of more general Rényi functionals has seen significant activity,
starting with Bobkov and Chistyakov [8, 9] where it is shown (the former focusing on r = ∞
the latter on r ∈ (1,∞)) that for r ∈ (1,∞] there exist universal constants c(r) ∈ (1

e
, 1) such

that for Xi independent random vectors

Nr(X1 + · · ·+Xk) ≥ c(r)

k
∑

i=1

Nr(Xi). (8)

This was followed by Ram and Sason [38] who used optimization techniques to sharpen bounds
on the constant c(r), which should more appropriately be written c(r, k) as the authors were
able to clarify the dependency on the number of summands as well as the Rényi parameter
r. Bobkov and Marsiglietti [10] showed that for r ∈ (1,∞), there exists an α modification
of the Rényi entropy power that preserved super-additivity. More precisely taking α = r+1

2
,

r ∈ [1,∞), and X, Y independent random vectors

Nα
r (X + Y ) ≥ Nα

r (X) +Nα
r (Y ). (9)

This was sharpened by Li [28] who optimized the argument of Bobkov and Marsiglietti. The
case of r = ∞ was studied using functional analytic tools by Madiman, Melbourne, and Xu
[32, 45] who showed that the N∞ functional enjoys an analog of the matrix generalizations
of Brunn-Minkowski and the Shannon-Stam EPI due to Feder and Zamir [47, 48] and began
investigation into discrete versions of the inequality in [46].

Conspicuously absent from the discussion above, and mentioned as an open problem in
[9, 28, 31, 38] are super-additivity properties of the Rényi entropy power when r ∈ (0, 1).
In this paper, we address this problem, and provide a solution in the log-concave case (see
Definition 5). Our first main result is the following.
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Theorem 1. Let r ∈ (0, 1). Let X, Y be log-concave random vectors in R
n. Then,

Nα
r (X + Y ) ≥ Nr(X)α +Nr(Y )α, (10)

where

α , α(r) =
(1− r) log 2

(1 + r) log(1 + r) + r log 1
4r

. (11)

Furthermore, and in contrast to some previous optimism (see, e.g., [28]), these estimates
are somewhat sharp for log-concave random vectors. Indeed, letting αopt = αopt(r) denote the
infimum over all α satisfying the inequality (10) for log-concave random vectors, we have

max

{

1,
(1− r) log 2

2 log Γ(1 + r) + 2r log 1
r

}

≤ αopt ≤ α(r), (12)

(see Proposition 11 in Section 5). Unsurprisingly, the bounds (11) and (12) imply that

lim
r→1

α(r) = lim
r→1

αopt(r) = 1, (13)

recovering the usual EPI. In fact the ratio of the lower and upper bounds satisfies

2 log Γ(1 + r) + 2r log 1
r

(1 + r) log(1 + r) + r log 1
4r

→ 1

2
(14)

with r → 0 as can be seen by applying L’Hôpital’s rule and the strict convexity of log Γ(1+ r).
It can be verified numerically that the derivative of (14) is strictly positive on (0, 1). Thus the
α(r) derived cannot be improved beyond a factor of 2.

More strikingly, as r → 0 the bounds derived force both αopt and α to be of the order
(−r log r)−1. Thus, αopt(r) → +∞ for r → 0, while αopt(0) = 1/2 by the Brunn-Minkowski
inequality. Nevertheless, in the case that the random vectors are uniformly distributed we do
have better behavior.

Theorem 2. Let r ∈ (0, 1). Let X, Y be uniformly distributed random vectors on compact sets.
Then,

Nβ
r (X + Y ) ≥ Nβ

r (X) +Nβ
r (Y ), (15)

where

β , β(r) =
(1− r) log 2

2 log 2 + r log r − (r + 1) log(r + 1)
. (16)

Stated geometrically, Theorem 2 is the following generalization of the Brunn-Minkowski
inequality.

Theorem 3. Let r ∈ (0, 1). Let A,B be compact sets in R
n. Then, letting X and Y denote

independent random vectors distributed uniformly on the respective sets A and B,

ehr(X+Y ) ≥ (Volγ(A) + Volγ(B))
1

γ (17)

where γ , 2β/n.

Theorems 2 and 3 can be understood as a family of Rényi-EPIs for uniform distributions
interpolating between the Brunn-Minkowski inequality and EPI. Indeed limr→0 γ = 1/n, while
ehr(X+Y ) increases to Vol(A+B), and we recover the Brunn-Minkowski inequality (6). Observe,
limr→1 β = 1 gives the usual EPI in the special case that the random vectors are uniform
distributions. Note also that the exponent β in (16) is identical to the exponent obtained in
[28, Theorem 2.2] for r > 1.

We also approach the Rényi EPI of the form (8) and obtain the following result.
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Theorem 4. Let r ∈ (0, 1). For all independent log-concave random vectors X1, . . . , Xk in R
n,

Nr(X1 + · · ·+Xk) ≥ c(r, k)

k
∑

i=1

Nr(Xi) (18)

where

c(r, k) ≥ r
1

1−r

(

1 +
1

k|r′|

)1+k|r′|
. (19)

This bound is shown to be tight up to absolute constants as well. Indeed, we will see in
Proposition 14 in Section 6 that the largest constant copt(r) satisfying

Nr(X1 + · · ·+Xk) ≥ copt(r)

k
∑

i=1

Nr(Xi) (20)

for any k-tuples of independent log-concave random vectors satisfies

er
1

1−r ≤ copt(r) ≤ πr
1

1−r . (21)

2 Preliminaries

For p ∈ [0,∞], we denote by p′ the conjugate of p,

1

p
+

1

p′
= 1. (22)

For a non-negative function f : Rn → [0,+∞) we introduce the notation

‖f‖p =
(
∫

Rn

f p(x)dx

)1/p

. (23)

Definition 5. A random vector X in R
n is log-concave if it possesses a log-concave density

fX : Rn → [0,+∞) with respect to Lebesgue measure. In other words, for all λ ∈ (0, 1) and
x, y ∈ R

n,
fX((1− λ)x+ λy) ≥ f 1−λ

X (x)fλ
X(y). (24)

Equivalently fX can be written in the form e−V , where V is a proper convex function.

Log-concave random vectors and functions are important classes in many disciplines. In the
context of information theory, several nice properties involving entropy of log-concave random
vectors were recently established (see, e.g., [3, 5, 18, 33, 40, 41]). Significant examples are
Gaussian and exponential distributions as well as any uniform distribution on a convex set.

The main tool in establishing Theorems 1, 2 and 4 is the reverse form of the sharp Young
inequality. The reversal of Young’s inequality for parameters in [0, 1] is due to Leindler [27],
while sharp constants were obtained independently by Beckner, and Brascamp and Lieb:

Theorem 6 ([4, 14]). Let 0 ≤ p, q, r ≤ 1 such that 1
p′ +

1
q′ =

1
r′ . Then,

‖f ⋆ g‖r ≥ C
n
2 ‖f‖p‖g‖q, (25)

where

C = C(p, q, r) =
cpcq
cr

, cm =
m1/m

|m′|1/m′ . (26)
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Let us recall the information-theoretic interpretation of Young’s inequality. Given indepen-
dent random vectors X with density f and Y with density g, the random vector X +Y will be
distributed according to f ⋆ g. Observe that the Lp “norms” have the following expression as
Rényi entropy powers,

‖f‖r = Nr(X)−
n

2r′ = Nr(X)
n

2|r′| . (27)

Hence, we can rewrite (25) as follows,

Nr(X + Y )
1

|r′| ≥ CNp(X)
1

|p′|Nq(Y )
1

|q′| . (28)

This is an information-theoretic interpretation of the sharp Young inequality, which was devel-
oped in [19].

We also need a Rényi comparison result for log-concave random vectors that the authors
first learned from private communication [29]. Though the result is implicit in [23], we give a
derivation in the appendix for the convenience of the reader. A generalization of the result to
s-concave random variables (see [7, 12]) is planned to be included in a revised version of [20].

Lemma 7 (Fradelizi-Madiman-Wang [23, 29]). Let 0 < p < q. Then, for every log-concave
random vector X,

Nq(X) ≤ Np(X) ≤ p
2

p−1

q
2

q−1

Nq(X). (29)

The first inequality is classical and holds for general X, and follows from the expression

Np(X)n/2 = (Ef p−1(X))
−1/(p−1)

. Indeed, the increasingness of the function s 7→ (EY s)1/s for a
positive random variable Y and s ∈ (−∞,∞), which follows from Jensen’s inequality, implies
the decreasingness of Rényi entropy powers. The content of Fradelizi, Madiman, and Wang’s
result is thus the second inequality, that this decrease is not too rapid for log-concave random
vectors.

We will also have use for a somewhat technical but elementary Calculus result.

Lemma 8. Let c > 0. Let L, F : [0, c] → [0,∞) be twice differentiable on (0, c], continuous on
[0, c], such that L(0) = F (0) = 0 and L′(c) = F ′(c) = 0. Let us also assume that F (x) > 0 for
x > 0, that F is strictly increasing, and that F ′ is strictly decreasing. Then L′′

F ′′ increasing on

(0, c) implies that L
F

is increasing on (0, c) as well. In particular,

max
x∈[0,c]

L(x)

F (x)
=

L(c)

F (c)
. (30)

The proof is an exercise in Cauchy’s mean value theorem.

Proof. For 0 < u < v < c, by Cauchy’s mean value theorem

L′(c)− L′(v)

F ′(c)− F ′(v)
=

L′′(c1)

F ′′(c1)
, (31)

L′(v)− L′(u)

F ′(v)− F ′(u)
=

L′′(c0)

F ′′(c0)
, (32)

for some c0 ∈ (u, v) and c1 ∈ (v, c). Thus,

L′(v)

F ′(v)
=

L′(c)− L′(v)

F ′(c)− F ′(v)
(33)

=
L′′(c1)

F ′′(c1)
(34)

≥ L′′(c0)

F ′′(c0)
(35)

=
L′(v)− L′(u)

F ′(v)− F ′(u)
(36)
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where (33) holds by the assumption that L′(c) = F ′(c) = 0, (34) and (36) follow from (31)
and (32) respectively, and (35) holds by the assumption that L′′

F ′′ is monotonically increasing in
(0, c). The inequality

L′(v)

F ′(v)
≥ L′(v)− L′(u)

F ′(v)− F ′(u)
, (37)

is equivalent to
− L′(v)F ′(u) ≤ −L′(u)F ′(v), (38)

because F ′ is non-negative and strictly decreasing on (0, c). Thus L′(v)/F ′(v) ≥ L′(u)/F ′(u)
since F ′ ≥ 0. That is, L′/F ′ is non-decreasing on (0, c). Now we can apply a similar argument
to show that L/F is non-decreasing. Again Cauchy’s mean value theorem, for 0 < u < v < c
we have

L(u)− L(0)

F (u)− F (0)
=

L′(c0)

F ′(c0)
, (39)

L(v)− L(u)

F (v)− F (u)
=

L′(c1)

F ′(c1)
, (40)

for some c0 ∈ (0, u) and c1 ∈ (u, v). Thus by the proven non-decreasingness of L′

F ′ and the fact
that F (0) = L(0) = 0 the above implies

L(v)− L(u)

F (v)− F (u)
≥ L(u)

F (u)
. (41)

Since F is non-negative and strictly increasing on (0, c), we have

L(v)F (u) ≥ L(u)F (v). (42)

Thus it follows that L/F is indeed non-decreasing.

3 Proof of Theorem 1

We first combine Lemma 7 and the information-theoretic formulation of reverse Young’s in-
equality (28). Observe that for p, q, r ∈ (0, 1) satisfying the equation 1

p′ +
1
q′ =

1
r′ forces p, q > r.

Thus, our invocation of Lemma 7 is necessarily at the expense of the two constants below,

Nr(X + Y )
1

|r′| ≥ C

(

p
2

p−1

r
2

r−1

)
1

|p′|
(

q
2

q−1

r
2

r−1

)
1

|q′|

Nr(X)
1

|p′|Nr(Y )
1

|q′| . (43)

Since
1

|p′| = − 1

p′
=

1

p
− 1 =

1− p

p
, (44)

we deduce that
1

|p′|(p− 1)
= −1

p
. (45)

Also, we have
1

|p′| +
1

|q′| =
1

|r′| . (46)

Hence, we can rewrite (43) as,

Nr(X + Y )
1

|r′| ≥ C
p−

2

p q−
2

q

r−
2

r

Nr(X)
1

|p′|Nr(Y )
1

|q′| = A(p, q, r)Nr(X)
1

|p′|Nr(Y )
1

|q′| , (47)
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where

A(p, q, r) =
cpcq
cr

r
2

r

p
2

p q
2

q

. (48)

Equivalently,

Nr(X + Y ) ≥ A(p, q, r)|r
′|Nr(X)

|r′|
|p′|Nr(Y )

|r′|
|q′| . (49)

We collect these arguments to state the following result, actually stronger than Theorem 1.

Theorem 9. Let r ∈ (0, 1). Let X, Y be independent log-concave vectors in R
n. For 0 < p, q < 1

satisfying 1
p′ +

1
q′ =

1
r′ , we have

Nr(X + Y ) ≥ A(p, q, r)|r
′|Nr(X)

|r′|
|p′|Nr(Y )

|r′|
|q′| (50)

with A(p, q, r) as defined in (48).

Thus to complete our proof of Theorem 1 it suffices to obtain for a fixed r ∈ (0, 1), an α > 0
such that for any given pair of independent log-concave random vectors X and Y , there exist
0 ≤ p, q ≤ 1 such that 1

p′ +
1
q′ =

1
r′ and

A(p, q, r)α|r
′|Nr(X)

α|r′|
|p′| Nr(Y )

α|r′|
|q′| ≥ Nα

r (X) +Nα
r (Y ). (51)

Let us observe that there is nothing probabilistic about equation (51). If we write x =
Nr(X)α, y = Nr(Y )α, our Rényi-EPI is implied by the following algebraic inequality.

Proposition 10. Given r ∈ (0, 1) and taking

α =
(1− r) log 2

(1 + r) log(1 + r) + r log 1
4r

, (52)

then for any x, y > 0 there exist 0 < p, q < 1 satisfying 1
p′ +

1
q′ =

1
r′ such that

A(p, q, r)α|r
′|x

|r′|
|p′|y

|r′|
|q′| ≥ x+ y. (53)

Proof. Using the homogeneity of equation (53), we may assume without loss of generality that

x+ y =
1

|r′| . (54)

We then choose admissible p, q by selecting 1
p′ = −x and 1

q′ = −y. Hence, equation (53) becomes

A(p, q, r)α ≥ (x+ y)x+y

xxyy
. (55)

Let us note that A(p, q, r) ≥ 1 (we will prove this fact in the appendix based on the description
of A(p, q, r) in (62)), so that taking logarithms we can choose

α = sup
log
(

(x+y)x+y

xxyy

)

log(A(p, q, r))
, (56)

where the sup runs over all x, y > 0 satisfying x + y = 1
|r′| (recall that r ∈ (0, 1) is fixed).

We claim that this is exactly the α defined in (52). To establish this fact, let us first rewrite
A(p, q, r) in terms of x and y. From,

p =
1

x+ 1
, q =

1

y + 1
, r =

1

x+ y + 1
, (57)
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we can write,

cp =
p1/p

|p′|1/p′ =
1

(x+1)x+1

1
x−x

=
1

xx(x+ 1)x+1
, (58)

cq =
1

yy(y + 1)y+1
, (59)

cr =
1

(x+ y)x+y(x+ y + 1)x+y+1
. (60)

From (58) - (60) it follows that,

A(p, q, r) =
cpcq
cr

r
2

r

p
2

p q
2

q

(61)

=
(x+ y)x+y(x+ 1)x+1(y + 1)y+1

xxyy(x+ y + 1)(x+y+1)
. (62)

Let us denote

F (x) , log

(

(x+ y)x+y

xxyy

)

=
1

|r′| log
(

1

|r′|

)

− x log(x)−
(

1

|r′| − x

)

log

(

1

|r′| − x

)

, (63)

and

G(x) , log

(

(x+ y)x+y(x+ 1)x+1(y + 1)y+1

xxyy(x+ y + 1)(x+y+1)

)

= F (x)− L(x), (64)

where

L(x) ,

(

1

|r′| + 1

)

log

(

1

|r′| + 1

)

−(x+1) log(x+1)−
(

1

|r′| − x+ 1

)

log

(

1

|r′| − x+ 1

)

. (65)

Our claim is that

α = sup
F

G
= sup

F

F − L
=

(

1− sup
L

F

)−1

. (66)

We invoke Lemma 8, to prove that the ratio L/F is increasing on [0, 1/2|r′|]. Indeed, taking
derivatives it is easy to see that F is positive and increasing on (0, 1/2|r′|], and its derivative
F ′ is strictly decreasing on the same interval. Furthermore, L′′

F ′′ is non-decreasing on (0, 1
2|r′|).

Indeed,

L′′(x)

F ′′(x)
=

1
|r′| + 2

1
|r′|

x( 1
|r′| − x)

(x+ 1)( 1
|r′| − x+ 1)

, (67)

and one can see that this is non-decreasing when x ∈ (0, 1
2|r′|) again, by taking the derivative.

Now by Lemma 8 applied to F, L, and c = 1
2|r′| we have

sup

(

1− L(x)

F (x)

)−1

=

(

1− L(c)

F (c)

)−1

=

(

1− L(1/2|r′|)
F (1/2|r′|)

)−1

. (68)

Let us compute F (c) and L(c), with c = 1
2|r′| . We have

F (c) = 2c log 2c− 2c log(c) =
(1− r) log 2

r
, (69)

and

L(c) = (2c+ 1) log(2c+ 1)− 2(c+ 1) log(c+ 1) (70)

=
log
(

2
1+r

)

r
− log

(

r + 1

2r

)

. (71)
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Thus

α =

(

1− L(c)

F (c)

)−1

(72)

=



1−
log( 2

1+r )
r

− log
(

r+1
2r

)

(1−r) log 2
r





−1

(73)

=
(1− r) log 2

(1 + r) log(1 + r) + r log 1
4r

. (74)

4 Proof of Theorem 2

The proof is very similar to the proof of Theorem 1. The improvement is by virtue of the
fact that for U a random vector uniformly distributed on a set A ⊂ R

n, the Rényi entropy is
determined entirely by the volume of A, and is thus independent of parameter. Indeed,

Nr(U) =

(
∫

Rn

(1A(x)/Vol(A))
r dx

)2/n(1−r)

= Vol(A)2/n. (75)

We again use the information-theoretic version of the sharp Young inequality (see (28)):

Nr(X + Y )
1

|r′| ≥ CNp(X)
1

|p′|Nq(Y )
1

|q′| . (76)

Now, since X and Y are uniformly distributed, we have

Np(X) = Nr(X), Nq(Y ) = Nr(Y ). (77)

Hence,

Nr(X + Y ) ≥ C |r′|Nr(X)
|r′|
|p′|Nr(Y )

|r′|
|q′| . (78)

Let us raise (78) to the power β, and put x = Nr(X)β, y = Nr(Y )β. As before, we can assume
that x+ y = 1

|r′| . Thus, it is enough to show that

Cβ|r′|x
|r′|
|p′|y

|r′|
|q′| ≥ 1

|r′| , (79)

for some admissible (p, q). Let us choose p, q such that x = 1
|p′| and y = 1

|q′| . The inequality is

valid since

β = sup
log
(

(x+y)x+y

xxyy

)

log(C)
= sup

log
(

(x+y)x+y

xxyy

)

log
(

(x+y)x+y

xxyy
(x+y+1)x+y+1

(x+1)x+1(y+1)y+1

) , (80)

where the sup runs over all x, y > 0 satisfying x + y = 1
|r′| (recall that r ∈ (0, 1) is fixed).

Indeed, as in Section 3, it is a consequence of Lemma 8 that the sup is attained at x = 1
2|r′| and

from this the result follows.
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5 Lower bound on the optimal exponent

Proposition 11. The optimal exponent αopt that satisfies (10) verifies,

max

{

1,
(1− r) log 2

2 log Γ(r + 1) + 2r log 1
r

}

≤ αopt ≤
(1− r) log 2

(1 + r) log(1 + r) + r log 1
4r

. (81)

Let us remark that smooth interpolation of Brunn-Minkowski and the EPI as in Theorem
2, cannot hold for any class of random variables that contains the Gaussians. Indeed, let Z1

and Z2 be i.i.d. standard Gaussians. Hence, Z1 + Z2 ∼
√
2Z1, and by homogeneity of Rényi

entropy,
Nα

r (Z1 + Z2) = 2αNα
r (Z1), (82)

while
Nα

r (Z1) +Nα
r (Z2) = 2Nα

r (Z1). (83)

It follows that for a modified Rényi-EPI to hold, even when restricted to the class of log-concave
random vectors, we must have 2α ≥ 2. That is, α ≥ 1.

We now show by direct computation on the exponential distribution on (0,∞) the lower
bounds on αopt.

Let X ∼ fX be a random variable with exponential distribution, fX(x) = 1(0,∞)(x)e
−x. The

computation of the Rényi entropy of X is an obvious change of variables,

Nr(X) =

(
∫

f r
X

)
2

1−r

=

(
∫ ∞

0

e−rxdx

)
2

1−r

=

(

1

r

)
2

1−r

. (84)

Let Y be an independent copy of X. The density of X + Y is

f ∗ f(x) =

∫ ∞

−∞
1(0,∞)(x− y)e−(x−y)

1(0,∞)(y)e
−ydy (85)

= 1(0,∞)xe
−x. (86)

Hence,

Nr(X + Y ) =

(∫

1(0,∞)(x)x
re−rxdx

)
2

1−r

(87)

=

(

Γ(r + 1)

rr+1

)
2

1−r

. (88)

Since the optimal exponent αopt satisfies

Nαopt

r (X + Y ) ≥ 2Nαopt

r (X), (89)

we have
(

Γ(r + 1)

rr+1

)

2αopt

1−r

≥ 2

(

1

r

)

2αopt

1−r

. (90)

Canceling and taking logarithms, this rearranges to

log Γ(r + 1) + r log
1

r
≥ (1− r) log 2

2αopt
, (91)

which implies that we must have

αopt ≥
(1− r) log 2

2(log Γ(r + 1) + r log 1
r
)
. (92)

10



Note that by the log-convexity of Γ and the fact that Γ(1) = Γ(2) = 1, we have log(Γ(1+r)) ≤ 0,
which implies

αopt ≥
(1− r) log 2

2r log 1
r

. (93)

In particular we must have αoptr
1−ε → ∞ with r → 0, for any ε > 0.

6 Proof of Theorem 4

The reverse sharp Young inequality can be generalized to k ≥ 2 functions in the following way.

Theorem 12 ([14]). Let f1, . . . , fk : R
n → R and r, r1, . . . , rk ∈ (0, 1) such that 1

r′
1

+· · ·+ 1
r′
k

= 1
r′ .

Then,

‖f1 ∗ · · · ∗ fk‖r ≥ C
n
2

k
∏

i=1

‖fi‖ri. (94)

Here,

C = C(r, r1, . . . , rk) =

∏k
i=1 cri
cr

, (95)

where we recall that cm is defined in (26) as cm = m
1
m

|m′|
1

m′
.

We have the following information-theoretic reformulation for X1, . . . , Xk independent ran-
dom vectors,

Nr(X1 + · · ·+Xk) ≥ C |r′|
k
∏

i=1

N
|r′|/|r′i|
ri (Xi). (96)

Thus when we restrict to log-concave random vectors Xi, 1 ≤ i ≤ k, and invoke Lemma 7, we
can collect our observations as the following.

Theorem 13. Let r, r1, . . . , rk ∈ (0, 1) such that
∑k

i=1
1
r′i
= 1

r′ . Let X1, . . . , Xk be independent

log-concave random vectors. Then,

Nr(X1 + · · ·+Xk) ≥ A|r′|
k
∏

i=1

N ti
r (Xi), (97)

where ti = r′/r′i and A = A(r, r1, . . . , rn) =
∏k

i=1 Ari

Ar
with Am = |m′|

1

|m′|

m
1
m

.

Proof. By combining (96) with Lemma 7, we obtain

Nr(X1 + · · ·+Xk) ≥ C |r′|
k
∏

i=1



Nr(Xi)

(

r|r
′|/r

r
|r′i|/ri
i

)2




|r′|/|r′i|

(98)

= C |r′|
k
∏

i=1

(

r|r
′|/r

r
|r′i|/ri
i

)
2|r′|
|r′
i
| k
∏

i=1

N
r′
r′
i

r (Xi) (99)

= A(r, r1, . . . , rk)
|r′|

k
∏

i=1

N ti
r (Xi). (100)

11



Now let us show that Theorem 13 implies a super-additivity property for the Rényi entropy
and independent log-concave vectors.

Proof of Theorem 4. By the homogeneity of equation (18), we can assume without loss of gener-

ality that
∑k

i=1Nr(Xi) = 1. From Theorem 13, for every r1, . . . , rk ∈ (0, 1) such that
∑

i
1
r′i
= 1

r′

we have

Nr(X1 + · · ·+Xk) ≥ A|r′|
k
∏

i=1

N ti
r (Xi) (101)

=

r
|r′|
r

∏k
i=1

(

|r′i|
1

|r′
i
|

r
1
ri
i

)|r′|

N ti
r (Xi)

|r′| , (102)

where ti = r′/r′i. Thus,

logNr(X1 + · · ·+Xk) ≥
k
∑

i=1

(

ti log
|r′|
ti

− |r′| log ri
ri

)

(103)

+

( |r′| log r
r

− log |r′|
)

+

k
∑

i=1

ti logNr(Xi).

Since 1
ri
= 1 + ti

|r′| and ri = |r′i|/(1 + |r′i|), we deduce that

logNr(X1 + · · ·+Xk) ≥
|r′| log r

r
+

k
∑

i=1

|r′|
(

1 +
ti
|r′|

)

log

(

1 +
ti
|r′|

)

+

k
∑

i=1

ti log
Nr(Xi)

ti
.(104)

It follows that
Nr(X1 + · · ·+Xk) ≥ c(r, k), (105)

with

c(r, k) , inf
λ
sup
t

(

exp

{

|r′| log r
r

+
k
∑

i=1

|r′|
(

1 +
ti
|r′|

)

log

(

1 +
ti
|r′|

)

+
k
∑

i=1

ti log
λi

ti

})

, (106)

where the infimum runs over all λ = (λ1, . . . , λk) such that λi ≥ 0 and
∑k

i=1 λi = 1, and the

supremum runs over all t = (t1, . . . , tn) such that ti ≥ 0 and
∑k

i=1 ti = 1. For a fixed λ, we can
always choose t = λ, and thus

c(r, k) ≥ inf
t
exp

{

|r′| log r
r

+

k
∑

i=1

|r′|
(

1 +
ti
|r′|

)

log

(

1 +
ti
|r′|

)

}

. (107)

Due to the convexity of the function G(u) , u log(u), u > 0, we have

G

(

1 +
ti
|r′|

)

≥ G

(

1 +
1

k|r′|

)

+G′
(

1 +
1

k|r′|

)(

ti
|r′| −

1

k|r′|

)

. (108)

Using the fact that
∑k

i=1 ti = 1, inequality (108) yields

|r′|
k
∑

i=1

(

1 +
ti
|r′|

)

log

(

1 +
ti
|r′|

)

≥ (k|r′|+ 1) log

(

1 +
1

k|r′|

)

. (109)
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Since there is equality in (109) when ti =
1
k
, i = 1, . . . , k, we deduce that the infimum in (107)

is attained at ti =
1
k
, i = 1, . . . , k. As a consequence, we have

c(r, k) ≥ r
1

1−r

(

1 +
1

k|r′|

)1+k|r′|
. (110)

Proposition 14. The largest constant copt(r) satisfying

Nr(X1 + · · ·+Xk) ≥ copt(r)
k
∑

i=1

Nr(Xi) (111)

for any k-tuples of independent log-concave random vectors satisfies

er
1

1−r ≤ copt(r) ≤ πr
1

1−r . (112)

Proof. Note that the function k 7→
(

1 + 1
k|r′|

)1+k|r′|
decreases to e in k. Thus, taking the limit

in (110) we have

copt(r) ≥ c(r, k) ≥ er
1

1−r . (113)

On the other hand, specializing the inequality

Nr(X1 + · · ·+Xk) ≥ copt(r)
k
∑

i=1

Nr(Xi) (114)

to the case in which X1, . . . , Xk are i.i.d., we must have

lim inf
k→∞

Nr

(

X1 + · · ·+Xk√
k

)

≥ copt(r)Nr(X1). (115)

Notice that if X1 is a centered log-concave random variable of variance 1, then the X1+···+Xk√
k

are also log-concave random variables of variance 1, converging weakly by the central limit
theorem to a standard normal random variable Z. Moreover, letting fk denote the density of
X1+···+Xk√

k
one may apply the argument of [11, Theorem 1.1] to r ∈ (0, 1) when one has

lim
T→∞

∫

{|x|>T}
f r
k (x)dx = 0 (116)

uniformly in k, to conclude that

lim
k→∞

Nr

(

X1 + · · ·+Xk√
k

)

= Nr(Z) = 2πr
1

r−1 . (117)

Alternatively, one can arrive at (117) by invoking classical local limit theorems [26, 37] to obtain
pointwise convergence of the densities, and conclude with Lebesgue dominated convergence to
interchange the limit. Recall that the class of centered log-concave densities with a fixed
variance can be bounded uniformly by a single sub-exponential function Ce−c|x| for universal
constants C, c > 0 depending only on the variance. This gives the existence of all moments, in
particular a third moment requisite for the local limit theorem, additionally it gives domination
by an integrable function.

Inserting (117) into (115), we see that copt(r) must satisfy

2πr
1

r−1 ≥ copt(r)Nr(X1). (118)
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For X1 having a Laplace distribution of variance 1, its density is f(x) = e−
√
2|x|√
2

on (−∞,∞),

so that
Nr(X1) = 2r

2

r−1 . (119)

We conclude that
πr

1

1−r ≥ copt(r). (120)

Proposition 14 shows that there does not exist a universal constant C (independent of r
and k) such that the inequality

Nr(X1 + · · ·+Xk) ≥ C

k
∑

i=1

Nr(Xi) (121)

holds. Note that this is in contrast with the case r ≥ 1 when C = 1
e

suffices.

7 Concluding Remarks

We have shown that a Rényi EPI does hold for r ∈ (0, 1), at least for log-concave random
vectors, for the Rényi EPI of the form (8), as well as for the Rényi entropy power raised to
a power α as in (11). Let us comment on the sharpness of the α derived, and contrast this
behavior with that of the constant derived for uniform distributions β from (16).

Due to Madiman and Wang [43] the Rényi entropy of independent sums decreases on spheri-
cally symmetric decreasing rearrangement. Let us recall a few definitions. For a measurable set
A ⊂ R

n, denote by A∗ the open origin symmetric Euclidean ball satisfying Vol(A) = Vol(A∗).
For a non-negative measurable function f , define its symmetric decreasing rearrangement by

f ∗(x) =

∫ ∞

0

1{f>t}∗(x)dt. (122)

Theorem 15 ([43]). If fi are probability density functions and f ∗
i denote their spherically

symmetric decreasing rearrangements, then

Nr(X1 + · · ·+Xk) ≥ Nr(X
∗
1 + · · ·+X∗

k) (123)

for any r ∈ [0,∞], where Xi has density fi, and X∗
i has density f ∗

i , i = 1, . . . , k.

It follows that to prove inequality (9) it suffices to consider X and Y possessing spherically
symmetric decreasing densities. Indeed, using Theorem 15 we would have

Nα
r (X + Y ) ≥ Nα

r (X
∗ + Y ∗) ≥ Nα

r (X
∗) +Nα

r (Y
∗) = Nα

r (X) +Nα
r (Y ), (124)

where the last equality comes from the equimeasurability of a density and its rearrangement.
The same argument applies to inequality (8). Motivated by this fact the authors replaced the
exponential distribution in the example above with its spherically symmetric rearrangement,
the Laplace distribution, to yield a tighter lower bound in an announcement of this work [34].
Additionally, since spherically symmetric rearrangement is stable on the class of log-concave
random vectors (see [35, Corollary 5.2]), one can reduce to random vectors with spherically
symmetric decreasing densities, even under the log-concave restriction taken in this work.
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A Proof of Lemma 7

Theorem 16. ([23, Theorem 2.9])
For a log-concave function f on R

n, the map

ϕ(t) = tn
∫

Rn

f t, t > 0, (125)

is log-concave as well.

Proof of Lemma 7. The proof is a straightforward consequence of Theorem 16. What remains
is an algebraic computation. When X has density f , one has ϕ(1) = 1. Write 1, p, q in convex
combination, and unwind the implication of ϕ being log-concave. We will show the result in the
case that we need 0 < p < q < 1, the other arguments are similar. In this case, λp+(1−λ)1 = q
for λ = 1−q

1−p
∈ (0, 1). By log-concavity,

ϕ(q) ≥ ϕλ(p)ϕ1−λ(1), (126)

which is

qn
∫

f q ≥
(

pn
∫

f p

)
1−q
1−p

. (127)

Since 1− q > 0 raising both sides to the power 2/n(1− q) preserves the inequality, and we have

q2/(1−q)Nq(X) ≥ p2/(1−p)Np(X). (128)

which implies our result.

B Positivity of A(p, q, r)

By (62), it suffices to show that

W (x, y) = log

(

(x+ y)x+y(x+ 1)x+1(y + 1)y+1

xxyy(x+ y + 1)(x+y+1)

)

> 0, (129)

for x, y > 0. First observe that for y > 0,

lim
x→0

W (x, y) = 0. (130)

Computing,
∂

∂x
W (x, y) = log

(

(x+ y)(x+ 1)

(x+ y + 1)x

)

, (131)

which is always greater than 0, since

(x+ y)(x+ 1) > (x+ y + 1)x (132)

reduces to y > 0. Thus W (x, y) > W (0, y) = 0 for x, y > 0, and our result follows.
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