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Previous Homework

PARTIAL SOLUTIONS

Homework #3

Exercise 10.
False. Counterexample: Consider, for n ≥ 1,

an =
1

n
, bn = n.

Then, {an} converges to 0, but the product sequence {anbn} converges to 1 (because, for all
n ≥ 1, anbn = 1).

Exercise 11.
Consider, for n ∈ N,

an = n+ (−1)n.

Exercise 12.
Consider, for n ≥ 1,

an = 1− 1

n
.

Exercise 13.
4. For all n ≥ 0, we have

an+1

an
=

1 · 3 · 5 · · · (2n− 1)(2n+ 1)

2n+1(n+ 1)!

2nn!

1 · 3 · 5 · · · (2n− 1)
=

2n+ 1

2(n+ 1)
=

2n+ 1

2n+ 2
≤ 1.

Since an ≥ 0, we deduce that an+1 ≤ an. Hence, {an} is decreasing. Since {an} is decreasing
and lower bounded (by 0), a theorem in class allows us to conclude that {an} converges.

Homework #4

Exercise 3.
A theorem in class tells us that a sequence is Cauchy if and only if it is convergent (as we

work with sequences in R).

• 1., 2., 3., 5. are all convergent sequences, so they are Cauchy.
• 4. is not a Cauchy sequence (done in class).
• 6. Yes, it is a Cauchy sequence: Let m ≤ n. Then, using triangle inequality,

|an − am| = |an − an−1 + · · ·+ am+1 − am| ≤ |an − an−1|+ · · ·+ |am+1 − am|
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≤ rn−1 + · · ·+ rm = rm(1 + · · ·+ rn−m−1) ≤ rm
+∞∑
k=0

rk =
rm

1− r
,

which converges to 0 as n,m→ +∞.

Exercise 7.
1. a2n = 1−1

2 = 0, and a2n+1 =
1+1
2 = 1. The subsequential limits are 0 and 1.

2. a2n = sin(nπ) = 0, and a4n+1 = sin(2nπ + π
2 ) = 1, and a4n+3 = sin(2nπ + 3π

2 ) = −1. The
subsequential limits are -1,0,1.

3. a2n = 2n−1
2n , which converges to 1, and a2n+1 = − 2n

2n+1 , which converges to -1. The
subsequential limits are -1 and 1.

• The above sequences diverge because of the following theorem:

A sequence {an} converges to L if and only if all its subsequences converge to L.

Homework #5

Exercise 1.
2. We have for all x > 0,

√
x

x2 − 1
=

√
x

x2
1

1− 1
x2

=
1

x3/2
1

1− 1
x2

.

Since limx→+∞
1
x2

= 0, we have, using theorems on limits, limx→+∞
1

1− 1
x2

= 1. And since

limx→+∞
1

x3/2
= 0, we have, using theorems on limits,

lim
x→+∞

1

x3/2
1

1− 1
x2

=

(
lim

x→+∞

1

x3/2

)(
lim

x→+∞

1

1− 1
x2

)
= 0.

3. We have for all x > 0, ∣∣∣∣sin(x)x

∣∣∣∣ ≤ 1

x
.

Since limx→+∞
1
x = 0, by squeeze theorem we conclude that limx→+∞

sin(x)
x = 0.

Exercise 4.
We use the following theorem from class:
• limx→a f(x) = L if and only if for all sequence {xn} that converges to a, the sequence

{f(xn)} converges to L.

Now, denote f(x) = 1
x , and consider the following sequences: xn = 1

n and yn = − 1
n . Then,

xn and yn converges to 0, but f(xn) = n converges to +∞ and f(yn) = −n converges to −∞.
Hence, limx→0

1
x does not exist.

Exercise 5.
Same argument as Exercise 4. For example, consider xn = 1

2πn and yn = 1
π
2
+2πn .
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