Previous Homework

PARTIAL SOLUTIONS

Homework \#3

Exercise 10.

False. Counterexample: Consider, for $n \geq 1$,

$$
a_{n}=\frac{1}{n}, \quad b_{n}=n .
$$

Then, $\left\{a_{n}\right\}$ converges to 0 , but the product sequence $\left\{a_{n} b_{n}\right\}$ converges to 1 (because, for all $n \geq 1, a_{n} b_{n}=1$).

Exercise 11.

Consider, for $n \in \mathbb{N}$,

$$
a_{n}=n+(-1)^{n}
$$

Exercise 12.

Consider, for $n \geq 1$,

$$
a_{n}=1-\frac{1}{n}
$$

Exercise 13.

4. For all $n \geq 0$, we have

$$
\frac{a_{n+1}}{a_{n}}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)(2 n+1)}{2^{n+1}(n+1)!} \frac{2^{n} n!}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}=\frac{2 n+1}{2(n+1)}=\frac{2 n+1}{2 n+2} \leq 1
$$

Since $a_{n} \geq 0$, we deduce that $a_{n+1} \leq a_{n}$. Hence, $\left\{a_{n}\right\}$ is decreasing. Since $\left\{a_{n}\right\}$ is decreasing and lower bounded (by 0), a theorem in class allows us to conclude that $\left\{a_{n}\right\}$ converges.

Homework \#4

Exercise 3.

A theorem in class tells us that a sequence is Cauchy if and only if it is convergent (as we work with sequences in \mathbb{R}).

- 1., 2., 3., 5. are all convergent sequences, so they are Cauchy.
- 4. is not a Cauchy sequence (done in class).
- 6. Yes, it is a Cauchy sequence: Let $m \leq n$. Then, using triangle inequality,

$$
\left|a_{n}-a_{m}\right|=\left|a_{n}-a_{n-1}+\cdots+a_{m+1}-a_{m}\right| \leq\left|a_{n}-a_{n-1}\right|+\cdots+\left|a_{m+1}-a_{m}\right|
$$

$$
\leq r^{n-1}+\cdots+r^{m}=r^{m}\left(1+\cdots+r^{n-m-1}\right) \leq r^{m} \sum_{k=0}^{+\infty} r^{k}=\frac{r^{m}}{1-r}
$$

which converges to 0 as $n, m \rightarrow+\infty$.

Exercise 7.

1. $a_{2 n}=\frac{1-1}{2}=0$, and $a_{2 n+1}=\frac{1+1}{2}=1$. The subsequential limits are 0 and 1.
2. $a_{2 n}=\sin (n \pi)=0$, and $a_{4 n+1}=\sin \left(2 n \pi+\frac{\pi}{2}\right)=1$, and $a_{4 n+3}=\sin \left(2 n \pi+\frac{3 \pi}{2}\right)=-1$. The subsequential limits are $-1,0,1$.
3. $a_{2 n}=\frac{2 n-1}{2 n}$, which converges to 1 , and $a_{2 n+1}=-\frac{2 n}{2 n+1}$, which converges to -1 . The subsequential limits are -1 and 1 .

- The above sequences diverge because of the following theorem:

A sequence $\left\{a_{n}\right\}$ converges to L if and only if all its subsequences converge to L.

Homework \#5

Exercise 1.

2. We have for all $x>0$,

$$
\frac{\sqrt{x}}{x^{2}-1}=\frac{\sqrt{x}}{x^{2}} \frac{1}{1-\frac{1}{x^{2}}}=\frac{1}{x^{3 / 2}} \frac{1}{1-\frac{1}{x^{2}}}
$$

Since $\lim _{x \rightarrow+\infty} \frac{1}{x^{2}}=0$, we have, using theorems on limits, $\lim _{x \rightarrow+\infty} \frac{1}{1-\frac{1}{x^{2}}}=1$. And since $\lim _{x \rightarrow+\infty} \frac{1}{x^{3 / 2}}=0$, we have, using theorems on limits,

$$
\lim _{x \rightarrow+\infty} \frac{1}{x^{3 / 2}} \frac{1}{1-\frac{1}{x^{2}}}=\left(\lim _{x \rightarrow+\infty} \frac{1}{x^{3 / 2}}\right)\left(\lim _{x \rightarrow+\infty} \frac{1}{1-\frac{1}{x^{2}}}\right)=0
$$

3. We have for all $x>0$,

$$
\left|\frac{\sin (x)}{x}\right| \leq \frac{1}{x}
$$

Since $\lim _{x \rightarrow+\infty} \frac{1}{x}=0$, by squeeze theorem we conclude that $\lim _{x \rightarrow+\infty} \frac{\sin (x)}{x}=0$.

Exercise 4.

We use the following theorem from class:

- $\lim _{x \rightarrow a} f(x)=L$ if and only if for all sequence $\left\{x_{n}\right\}$ that converges to a, the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to L.

Now, denote $f(x)=\frac{1}{x}$, and consider the following sequences: $x_{n}=\frac{1}{n}$ and $y_{n}=-\frac{1}{n}$. Then, x_{n} and y_{n} converges to 0 , but $f\left(x_{n}\right)=n$ converges to $+\infty$ and $f\left(y_{n}\right)=-n$ converges to $-\infty$. Hence, $\lim _{x \rightarrow 0} \frac{1}{x}$ does not exist.

Exercise 5.

Same argument as Exercise 4. For example, consider $x_{n}=\frac{1}{2 \pi n}$ and $y_{n}=\frac{1}{\frac{\pi}{2}+2 \pi n}$.

