Simulation of Random Variables

In the following, we denote by U a random variable uniformly distributed on $[0,1]$.

We assume first that we know how to simulate U (see Appendix).
(a) Simulation of Bernoulli distribution of parameter p

Fix a number $p \in(0,1)$. Consider the random variable

$$
X=1_{(p, 1)}(U)= \begin{cases}0 & \text { if } U \leq p \\ 1 & \text { if } U>p\end{cases}
$$

Question: What is the distribution of X ? Draw the CDF of X.

Answer:

(b) Simulation of uniform distribution on $\{1,2,3,4,5,6\}$

Consider the random variable

$$
X=\sum_{i=1}^{6} i 1_{\left(\frac{i-1}{6}, \frac{i}{6}\right)}=\left\{\begin{array}{ll}
1 & \text { if } 0<U<\frac{1}{6} \\
2 & \text { if } \frac{1}{6}<U<\frac{2}{6} \\
& \vdots \\
6 & \text { if } \frac{5}{6}<U<1
\end{array} .\right.
$$

Question: What is the distribution of X ? Draw the CDF of X.

Answer:
(c) Simulation of distribution with bijective CDF

Let Y be a random variable such that F_{Y} is invertible (F_{Y}^{-1} exists). Consider the random variable

$$
X=F_{Y}^{-1}(U) .
$$

Question: What is the distribution of X ?

Answer:

- Example: Simulation of Cauchy distribution

Let Y be a standard Cauchy distribution, that is

$$
f_{Y}(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}, \quad x \in \mathbb{R}
$$

Question: Find a way to simulate a random variable having a Cauchy distribution.

Answer:

(d) Simulation of arbitrary distribution (from a uniform on $[0,1]$)

Let Y be a random variable. Let us define the generalized inverse of F_{Y} by

$$
F_{Y}^{-1}(u)=\inf \left\{x \in \mathbb{R}: F_{Y}(x)>u\right\}, \quad u \in[0,1] .
$$

Consider the random variable

$$
X=F_{Y}^{-1}(U)
$$

Question: What is the distribution of X ?

Answer:

Consequence: To simulate an arbitrary random variable with CDF F, perform the following algorithm:

1. \longrightarrow Compute F^{-1}.

2 . \longrightarrow Simulate U uniform on $[0,1]$.
3. \longrightarrow Output $X=F^{-1}(U)$.

From the above analysis, X is a random variable with CDF F.

Appendix. How to simulate a uniform random variable on $[0,1]$?

It is impossible in practice to simulate "truly" random numbers in $[0,1]$, as one would need to manipulate "infinity".

In practice, we use "pseudo-random numbers". Most random number generators start with an initial value X_{0}, called the seed, and then recursively compute values by specifying positive integers a, c and m, and then letting for $n \geq 0$,

$$
X_{n+1}=\left(a X_{n}+c\right) \text { modulo } m .
$$

Thus each X_{n} is either $0,1, \ldots, m-1$ and the quantity $\frac{X_{n}}{m}$ is taken as an approximation to a uniform random variable on $[0,1]$. It can be shown that subject to suitable choices for a, c, m, the preceding gives rise to a sequence of numbers that looks as if it were generated from independent random variables uniform on $[0,1]$.

