Solution - Homework \#4

Exercise 1.

Since $\left\{B_{t}\right\}$ is a Brownian motion, $B_{t}-B_{s}$ is independent of B_{s}, and $B_{t}-B_{s} \sim \mathcal{N}(0, t-s)$, and $B_{s} \sim \mathcal{N}(0, s)$. Without loss of generality, assume $s \leq t$. Then,

$$
\begin{aligned}
\operatorname{Cov}\left(B_{t}, B_{s}\right)= & \mathbb{E}\left[B_{t} B_{s}\right]=\mathbb{E}\left[\left(B_{t}-B_{s}+B_{s}\right) B_{s}\right]=\mathbb{E}\left[\left(B_{t}-B_{s}\right) B_{s}\right]+\mathbb{E}\left[B_{s}^{2}\right] \\
& =\mathbb{E}\left[B_{t}-B_{s}\right] \mathbb{E}\left[B_{s}\right]+\mathbb{E}\left[B_{s}^{2}\right]=s=\min (s, t) .
\end{aligned}
$$

Exercise 2. - B_{t} is \mathcal{F}_{t} measurable by assumption.

- $B_{t} \sim \mathcal{N}(0, t)$, hence $\mathbb{E}\left[\left|B_{t}\right|\right]<+\infty$.
- Let $s \leq t$. Then,

$$
\mathbb{E}\left[B_{t} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[B_{t}-B_{s}+B_{s} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[B_{t}-B_{s} \mid \mathcal{F}_{s}\right]+B_{s} .
$$

Since $\left\{B_{t}\right\}$ is a Brownian motion, $B_{t}-B_{s}$ is independent of B_{s}, and $B_{t}-B_{s} \sim \mathcal{N}(0, t-s)$, thus

$$
\mathbb{E}\left[B_{t}-B_{s} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[B_{t}-B_{s}\right]=0
$$

Exercise 3. 1. - Consider, for example, the characteristic function to see that $X_{t} \sim \mathcal{N}(0, t)$.

- For all $\omega \in \Omega$, the function $t \mapsto \sqrt{t} Z(\omega)$ is continuous. Hence, X_{t} has surely continuous paths.

2. No, since $X_{t}-X_{s}$ does not have variance $t-s$.

Exercise 4.

Yes.

Exercise 5.

1. $\widetilde{X}_{0}=\widetilde{X}_{1}$ a.s. is clear, as well as almost sure continuity of the paths. For all $t \geq 0$, $\mathbb{E}\left[\widetilde{X}_{t}\right]=0$, hence
$\operatorname{Cov}\left(\widetilde{X}_{t}, \widetilde{X}_{s}\right)=\mathbb{E}\left[\widetilde{X}_{t} \widetilde{X}_{s}\right]=\mathbb{E}\left[B_{t} B_{s}\right]-s \mathbb{E}\left[B_{t} B_{1}\right]-t \mathbb{E}\left[B_{s} B_{1}\right]+t s \mathbb{E}\left[B_{1}^{2}\right]=\min (s, t)-s t-s t+t s=\min (s, t)-s t$.
Since $\left\{B_{t}\right\}$ is a Gaussian process, $\left\{\widetilde{X}_{t}\right\}$ is also a Gaussian process (take an arbitrary linear combination of $\left.\widetilde{X}_{t_{1}}, \ldots, \widetilde{X}_{t_{n}}\right)$.
2. Lemma: A stochastic process $\left\{X_{t}\right\}$ is a Brownian motion if and only if its paths are almost surely continuous and $\left\{X_{t}\right\}$ is a centered Gaussian process with $\operatorname{Cov}\left(X_{t}, X_{s}\right)=\min (s, t)$.

We are going to use the above lemma to check that $\left\{\widetilde{B}_{t}\right\}$ is a Brownian motion. The fact that the paths are continuous a.s. is clear. Since Z is independent of $\left\{X_{t}\right\}$ and $\left\{X_{t}\right\}$ is a centered Gaussian process, $\left\{\widetilde{B}_{t}\right\}$ is a centered Gaussian process. Lastly, we easily check that

$$
\operatorname{Cov}\left(\widetilde{B}_{t}, \widetilde{B}_{s}\right)=\min (s, t) .
$$

3. Use the lemma above again.

Exercise 6.

1. Since $B_{1} \sim \mathcal{N}(0,1)$,

$$
\mathbb{P}\left(B_{1} \geq 0\right)=\frac{1}{2}
$$

2.

$$
\mathbb{P}\left(B_{2} \geq 0, B_{1} \geq 0\right)=\mathbb{P}\left(B_{2}-B_{1}+B_{1} \geq 0, B_{1} \geq 0\right)
$$

Putting $X=B_{1}$ and $Y=B_{2}-B_{1}$ we see that

$$
\mathbb{P}\left(B_{2} \geq 0, B_{1} \geq 0\right)=\mathbb{P}(Y \geq-X, X \geq 0)=\mathbb{P}((X, Y) \in A)
$$

where $A=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, y \geq-x\right\} \subset \mathbb{R}^{2}$. Since X, Y i.i.d. $\mathcal{N}(0,1)$, we see (draw a picture of A in the plane) that

$$
\mathbb{P}((X, Y) \in A)=\frac{3}{8}
$$

3. Same idea.
